
Proceedings of the 8th Python in Science
Conference

SciPy Conference – Pasadena, CA, August 18-23, 2009.

Editors: Gaël Varoquaux, Stéfan van der Walt, K. Jarrod Millman

Contents

Editorial 2
G. Varoquaux, S. van der Walt, J. Millman

Cython tutorial 4

S. Behnel, R. Bradshaw, D. Seljebotn
Fast numerical computations with Cython 15

D. Seljebotn
High-Performance Code Generation Using CorePy 23

A. Friedley, C. Mueller, A. Lumsdaine
Convert-XY: type-safe interchange of C++ and Python containers for NumPy extensions 29

D. Eads, E. Rosten
Parallel Kernels: An Architecture for Distributed Parallel Computing 36

P. Kienzle, N. Patel, M. McKerns
PaPy: Parallel and distributed data-processing pipelines in Python 41

M. Cieślik, C. Mura
PMI - Parallel Method Invocation 48

O. Lenz
Sherpa: 1D/2D modeling and fitting in Python 51

B. Refsdal, S. Doe, D. Nguyen, A. Siemiginowska, N. Bonaventura, D. Burke, I. Evans, J. Evans, A. Fruscione,
E. Galle, J. Houck, M. Karovska, N. Lee, M. Nowak

The FEMhub Project and Classroom Teaching of Numerical Methods 58

P. Solin, O. Certik, S. Regmi
Exploring the future of bioinformatics data sharing and mining with Pygr and Worldbase 62

C. Lee, A. Alekseyenko, C. Brown
Nitime: time-series analysis for neuroimaging data 68

A. Rokem, M. Trumpis, F. Pérez
Multiprocess System for Virtual Instruments in Python 76

B. D’Urso
Neutron-scattering data acquisition and experiment automation with Python 81

P. Zolnierczuk, R. Riedel
Progress Report: NumPy and SciPy Documentation in 2009 84

J. Harrington, D. Goldsmith

The content of the articles of the Proceedings of the Python in Science Conference is copyrighted and owned by their
original authors.
For republication or other use of the material published, please contact the copyright owners to obtain permission.

Proceedings of the 8th Python in Science Conference by Gaël Varoquaux, Stéfan van der Walt, K. Jarrod Milllman
ISBN: 978-0-557-23212-3

Proceedings of the 8th Python in Science Conference (SciPy 2009)

Organization

Conference chair

K. Jarrod Millman UC Berkeley, Helen Wills Neuroscience Institute, USA

Tutorial Co-chairs

Dave Peterson Enthought Inc, Austin, USA

Fernando Perez UC Berkeley, Helen Wills Neuroscience Institute, USA

Program Co-chairs

Gaël Varoquaux INRIA Saclay, France

Stéfan van der Walt Stellenbosh University, South Africa

Program Committee

Michael Aivazis Center for Advanced Computing Research, California Institute of Technology USA

Brian Granger Physics Department, California Polytechnic State University, San Luis Obispo USA

Aric Hagberg Theoretical Division, Los Alamos National Laboratory USA

Konrad Hinsen Centre de Biophysique Moléculaire, CNRS Orléans France

Randall LeVeque Mathematics, University of Washington, Seattle USA

Travis Oliphant Enthought Inc. USA

Prabhu Ramachandran Department of Aerospace Engineering, IIT Bombay India

Raphael Ritz International Neuroinformatics Coordinating Facility Sweden

William Stein Mathematics, University of Washington, Seattle USA

Proceeding reviewers

Francesc Alted Pytables Spain

Philippe Ciuciu CEA, Neurospin France

Yann Cointepas CEA, Neurospin France

Emmanuelle Gouillart CNRS Saint Gobain France

Jonathan Guyer NIST USA

Ben Herbst Stellenbosh University, South Africa

Paul Kienzle NIST USA

Michael McKerns Center for Advanced Computing Research, California Institute of Technology USA

Sturla Molden University of Oslo Norway

Jean-Baptiste Poline CEA, Neurospin France

Dag Sverre Seljebotn University of Oslo Norway

Gregor Thalhammer University of Florence Italy

1

Proceedings of the 8th Python in Science Conference (SciPy 2009)

Editorial

Gael Varoquaux (gael.varoquaux@normalesup.org) – INRIA, Saclay France

Stéfan van der Walt (stefan@sun.ac.za) – University of Stellenbosch, Stellenbosch South Africa

Jarrod Millman (millman@berkeley.edu) – UC Berkeley, Berkeley, CA USA

SciPy 2009 marks our eighth annual Python in Sci-
ence conference and the second edition of the confer-
ence proceedings. The conference and these proceed-
ings highlight the ongoing focus of the community on
providing practical software tools, created to address
real scientific problems.

As in previous years, topics at the conference ranged
from the presentation of tools and techniques for scien-
tific work with the Python language, to reports on sci-
entific achievement using Python. Interestingly, sev-
eral people noticed that something important hap-
pened in the Scientific Python world during the last
year: we are no longer constantly comparing our soft-
ware with commercial packages, nor justifying the
need for Python in Science. Python has now reached
the level of adoption where this sort of justification
is no longer necessary. The exact moment when this
shift in focus occurred is difficult to identify, but that
it happened was apparent during the conference.

Recurring scientific themes

This year the conference spanned two days, and each
day commenced with a keynote address. The first
keynote was delivered by Peter Norvig, the Director
of Research at Google; the second by Jonathan Guyer,
a materials scientist in the Thermodynamics and Ki-
netics Group at the National Institute of Standards
and Technology (NIST).

Peter Norvig’s talk was titled “What to demand from a
Scientific Computing Language—even if you don’t care
about computing or languages”, where he discussed a
number of desired characteristics in a scientific com-
puting environment. Such a platform should have the
ability to share code and data with other researchers
easily, provide extremely fast computations and state-
of-the-art algorithms to researchers in the field, and be
as easy as possible to use in a time-efficient manner.
He also stressed the importance of having code that
read like the mathematical ideas it expressed.

Jonathan Guyer’s keynote centred around “Modeling
of Materials with Python”. He expanded on several
of the above-mentioned characteristics as he discussed
the development of FiPy, a framework for solving par-
tial differential equations based on a finite volume ap-
proach. Jonathan explained how FiPy was created to
provide the most advanced numerical techniques to sci-
entists, so that they could focus on the scientific ques-
tions at hand, while having a standard platform for
sharing codes with colleagues. Importantly, FiPy has
become a critical tool in Jonathan’s research group and
has been adopted by many of their colleagues for both
research as well as teaching.

Both keynote addresses served to outline prominent
themes that were repeated throughout the conference,
as witnessed by the proceedings. These themes in-
clude: the need for software tools that allow scientists
to focus on their research, while taking advantage of
best-of-class algorithms and utilizing the full power of
their computational resources; the need for a high-
level computing environment with an easy—to-write
and read syntax; the usefulness of high-quality soft-
ware tools for teaching and education; and the impor-
tance of sharing code and data in scientific research.

The first several articles address high-level approaches
aimed at improving the performance of numerical code
written in Python. While making better use of in-
creased computation resources, such as parallel pro-
cessors or graphical processing units, many of these
approaches also focus on reducing code complexity and
verbosity. Again, simpler software allows scientists to
focus on the details of their computations, rather than
on administrating their computing resources.

The remaining articles focus on work done to solve
problems in specific research domains, ranging from
numerical methods to biology and astronomy. For the
last several years, using Python to wrap existing li-
braries has been a popular way to provide a scripting
frontend to computational code written primarily in a
more low-level language like C or Fortran. However, as
these proceedings show, Python is increasingly used as
the primary language for large scientific applications.
Python and its stack of scientific tools appears to be
well suited for application areas ranging from database
applications to user interfaces and numerical compu-
tation.

Review and selection process

This year we received 30 abstracts from five differ-
ent countries. The submissions covered a number of
research fields, including bioinformatics, computer vi-
sion, nanomaterials, neutron scattering, neuroscience,
applied mathematics, astronomy, and X-ray fluores-
cence. Moreover, the articles discussed involve a num-
ber of computational tools: these include statistical
modeling, data mining, visualization, performance op-
timization, parallel computing, code wrapping, instru-
ment control, time series analysis, geographic informa-
tion science, spatial data analysis, adaptive interpola-
tion, spectral analysis, symbolic mathematics, finite
element, and virtual reality. Several abstracts also ad-
dressed the role of scientific Python in teaching and
education.

G. Varoquaux, S. van der Walt, J. Millmanin Proc. SciPy 2009, G. Varoquaux, S. van der Walt, J. Millman (Eds), pp. 2–4 2

gael.varoquaux@normalesup.org
stefan@sun.ac.za
millman@berkeley.edu

Proceedings of the 8th Python in Science Conference (SciPy 2009)

Each abstract was reviewed by both the program
chairs, as well as two members of the program com-
mittee (PC). The PC consisted of 11 members from
five countries, and represented both industry and
academia. Abstracts were evaluated according to the
following criteria:

• Relevance of the contribution, with regard to the
topics and goals of the conference.

• Scientific or technical quality of the work presented.

• Originality and soundness.

We accepted 23 (76%) submission for oral presentation
at the conference. At the closure of the conference, we
invited the presenters to submit their work for publica-
tion in the conference proceedings. These submissions
were reviewed by 11 proceeding reviewers from seven
countries, according to the following criteria:

• Does the paper describe a well-formulated scientific
or technical achievement?

• Is the content of the paper accessible to a compu-
tational scientist with no specific knowledge in the
given field?

• Are the technical and scientific decisions well-
motivated?

• Does the paper reference scientific sources and ma-
terial used?

• Are the code examples (if any) sound, clear, and
well-written?

• Is the paper fit for publication in the SciPy pro-
ceedings? Improvements may be suggested, with or
without a second review.

From the 30 original abstracts, 12(40%) have been ac-
cepted for publication in these proceedings.

Prior to commencing the conference, we had two days
of tutorials with both an introductory and advanced
track. In addition to publishing a selection of the pre-
sented work, we also selected one of this year’s tutorial
presentations for publication.

The proceedings conclude with a short progress report
on the two-year long NumPy and SciPy documentation
project.

The SciPy Conference has been supported since its
inception by the Center for Advanced Computing Re-
search (CACR) at Caltech and Enthought Inc. In ad-
dition, we were delighted to receive funding this year
from the Python Software Foundation to cover the
travel, registration, and accommodation expenses of 10
students. Finally, we are very grateful to Leah Jones
of Enthought and Julie Ponce of the CACR for their
invaluable help in organizing the conference.

3 http://conference.scipy.org/proceedings/SciPy2009/paper_0

http://conference.scipy.org/proceedings/SciPy2009/paper_0

Proceedings of the 8th Python in Science Conference (SciPy 2009)

Cython tutorial

Stefan Behnel (stefan_ml@behnel.de) – Senacor Technologies AG, Germany

Robert W. Bradshaw (robertwb@math.washington.edu) – University of Washingtona, USA

Dag Sverre Seljebotn (dagss@student.matnat.uio.no) – University of Oslobcd, Norway

aDepartment of Mathematics, University of Washington, Seattle, WA, USA
bInstitute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo, Norway
cDepartment of Mathematics, University of Oslo, P.O. Box 1053 Blindern, N-0316 Oslo, Norway
dCentre of Mathematics for Applications, University of Oslo, P.O. Box 1053 Blindern, N-0316 Oslo, Norway

Cython is a programming language based on Python
with extra syntax to provide static type declarations.
This takes advantage of the benefits of Python while
allowing one to achieve the speed of C. In this paper
we describe the Cython language and show how it
can be used both to write optimized code and to
interface with external C libraries.

Cython - an overview

[Cython] is a programming language based on Python,
with extra syntax allowing for optional static type
declarations. It aims to become a superset of the
[Python] language which gives it high-level, object-
oriented, functional, and dynamic programming. The
source code gets translated into optimized C/C++
code and compiled as Python extension modules. This
allows for both very fast program execution and tight
integration with external C libraries, while keeping
up the high programmer productivity for which the
Python language is well known.

The primary Python execution environment is com-
monly referred to as CPython, as it is written in
C. Other major implementations use Java (Jython
[Jython]), C# (IronPython [IronPython]) and Python
itself (PyPy [PyPy]). Written in C, CPython has been
conducive to wrapping many external libraries that in-
terface through the C language. It has, however, re-
mained non trivial to write the necessary glue code in
C, especially for programmers who are more fluent in a
high-level language like Python than in a do-it-yourself
language like C.

Originally based on the well-known Pyrex [Pyrex], the
Cython project has approached this problem by means
of a source code compiler that translates Python code
to equivalent C code. This code is executed within the
CPython runtime environment, but at the speed of
compiled C and with the ability to call directly into C
libraries. At the same time, it keeps the original inter-
face of the Python source code, which makes it directly
usable from Python code. These two-fold characteris-
tics enable Cython’s two major use cases: extending
the CPython interpreter with fast binary modules, and
interfacing Python code with external C libraries.

While Cython can compile (most) regular Python
code, the generated C code usually gains major (and
sometime impressive) speed improvements from op-
tional static type declarations for both Python and

C types. These allow Cython to assign C semantics to
parts of the code, and to translate them into very effi-
cient C code. Type declarations can therefore be used
for two purposes: for moving code sections from dy-
namic Python semantics into static-and-fast C seman-
tics, but also for directly manipulating types defined in
external libraries. Cython thus merges the two worlds
into a very broadly applicable programming language.

Installing Cython

Many scientific Python distributions, such as the
Enthought Python Distribution [EPD], Python(x,y)
[Pythonxy], and Sage [Sage], bundle Cython and no
setup is needed. Note however that if your distribu-
tion ships a version of Cython which is too old you
can still use the instructions below to update Cython.
Everything in this tutorial should work with Cython
0.11.2 and newer, unless a footnote says otherwise.

Unlike most Python software, Cython requires a C
compiler to be present on the system. The details of
getting a C compiler varies according to the system
used:

• Linux The GNU C Compiler (gcc) is usu-
ally present, or easily available through the
package system. On Ubuntu or Debian, for
instance, the command sudo apt-get install

build-essential will fetch everything you need.

• Mac OS X To retrieve gcc, one option is to install
Apple’s XCode, which can be retrieved from the Mac
OS X’s install DVDs or from http://developer.

apple.com.

• Windows A popular option is to use the open
source MinGW (a Windows distribution of gcc). See
the appendix for instructions for setting up MinGW
manually. EPD and Python(x,y) bundle MinGW,
but some of the configuration steps in the appendix
might still be necessary. Another option is to use Mi-
crosoft’s Visual C. One must then use the same ver-
sion which the installed Python was compiled with.

The newest Cython release can always be downloaded
from http://cython.org. Unpack the tarball or zip
file, enter the directory, and then run:

python setup.py install

S. Behnel, R. Bradshaw, D. Seljebotnin Proc. SciPy 2009, G. Varoquaux, S. van der Walt, J. Millman (Eds), pp. 4–15 4

stefan_ml@behnel.de
robertwb@math.washington.edu
dagss@student.matnat.uio.no
http://developer.apple.com
http://developer.apple.com
http://developer.apple.com
http://developer.apple.com
http://cython.org
http://cython.org

Proceedings of the 8th Python in Science Conference (SciPy 2009)

If you have Python setuptools set up on your system,
you should be able to fetch Cython from PyPI and
install it using:

easy_install cython

For Windows there is also an executable installer avail-
able for download.

Building Cython code

Cython code must, unlike Python, be compiled. This
happens in two stages:

• A .pyx file is compiled by Cython to a .c file, con-
taining the code of a Python extension module

• The .c file is compiled by a C compiler to a .so

file (or .pyd on Windows) which can be import-ed
directly into a Python session.

There are several ways to build Cython code:

• Write a distutils setup.py.

• Use pyximport, importing Cython .pyx files as if
they were .py files (using distutils to compile and
build the background).

• Run the cython command-line utility manually to
produce the .c file from the .pyx file, then manually
compiling the .c file into a shared object library
or .dll suitable for import from Python. (This is
mostly for debugging and experimentation.)

• Use the [Sage] notebook which allows Cython code
inline and makes it easy to experiment with Cython
code without worrying about compilation details
(see figure 1 below).

Currently, distutils is the most common way Cython
files are built and distributed.

Building a Cython module using distutils

Imagine a simple “hello world” script in a file
hello.pyx:

def say_hello_to(name):

print(Hello %s!" % name)

The following could be a corresponding setup.py

script:
from distutils.core import setup

from distutils.extension import Extension

from Cython.Distutils import build_ext

ext_modules = [Extension("hello", ["hello.pyx"])]

setup(

name = ’Hello world app’,

cmdclass = {’build_ext’: build_ext},

ext_modules = ext_modules

)

To build, run python setup.py build_ext

--inplace. Then simply start a Python session
and do from hello import say_hello_to and use
the imported function as you see fit.

Figure 1 The Sage notebook allows transparently edit-
ing and compiling Cython code simply by typing
%cython at the top of a cell and evaluate it. Variables
and functions defined in a Cython cell imported into
the running session.

Data types in Cython

Cython is a Python compiler. This means that it can
compile normal Python code without changes (with
a few obvious exceptions of some as-yet unsupported
language features). However, for performance-critical
code, it is often helpful to add static type declarations,
as they will allow Cython to step out of the dynamic
nature of the Python code and generate simpler and
faster C code - sometimes faster by orders of magni-
tude.

It must be noted, however, that type declarations can
make the source code more verbose and thus less read-
able. It is therefore discouraged to use them with-
out good reason, such as where benchmarks prove that
they really make the code substantially faster in a per-
formance critical section. Typically a few types in the
right spots go a long way. Cython can produce an-
notated output (see figure 2 below) that can be very
useful in determining where to add types.

All C types are available for type declarations: integer
and floating point types, complex numbers, structs,
unions and pointer types. Cython can automatically
and correctly convert between the types on assign-
ment. This also includes Python’s arbitrary size in-
teger types, where value overflows on conversion to a
C type will raise a Python OverflowError at runtime.
The generated C code will handle the platform depen-
dent sizes of C types correctly and safely in this case.

Faster code by adding types

Consider the following pure Python code:

5 http://conference.scipy.org/proceedings/SciPy2009/paper_1

http://conference.scipy.org/proceedings/SciPy2009/paper_1

Cython tutorial

Figure 2 Using the -a switch to the cython command
line program (or following a link from the Sage note-
book) results in an HTML report of Cython code
interleaved with the generated C code. Lines are col-
ored according to the level of “typedness” - white
lines translates to pure C without any Python API
calls. This report is invaluable when optimizing a
function for speed.

from math import sin

def f(x):

return sin(x**2)

def integrate_f(a, b, N):

s = 0

dx = (b-a)/N

for i in range(N):

s += f(a+i*dx)

return s * dx

Simply compiling this in Cython merely gives a 5%
speedup. This is better than nothing, but adding some
static types can make a much larger difference.

With additional type declarations, this might look like:
from math import sin

def f(double x):

return sin(x**2)

def integrate_f(double a, double b, int N):

cdef int i

cdef double s, dx

s = 0

dx = (b-a)/N

for i in range(N):

s += f(a+i*dx)

return s * dx

Since the iterator variable i is typed with C semantics,
the for-loop will be compiled to pure C code. Typing a,
s and dx is important as they are involved in arithmetic
withing the for-loop; typing b and N makes less of a
difference, but in this case it is not much extra work
to be consistent and type the entire function.

This results in a 24 times speedup over the pure
Python version.

cdef functions

Python function calls can be expensive, and this is
especially true in Cython because one might need to
convert to and from Python objects to do the call. In
our example above, the argument is assumed to be a
C double both inside f() and in the call to it, yet a
Python float object must be constructed around the
argument in order to pass it.

Therefore Cython provides a syntax for declaring a C-
style function, the cdef keyword:

cdef double f(double) except *:

return sin(x**2)

Some form of except-modifier should usually be added,
otherwise Cython will not be able to propagate excep-
tions raised in the function (or a function it calls).
Above except * is used which is always safe. An ex-
cept clause can be left out if the function returns a
Python object or if it is guaranteed that an exception
will not be raised within the function call.

A side-effect of cdef is that the function is no longer
available from Python-space, as Python wouldn’t know
how to call it. Using the cpdef keyword instead of
cdef, a Python wrapper is also created, so that the
function is available both from Cython (fast, passing
typed values directly) and from Python (wrapping val-
ues in Python objects).

Note also that it is no longer possible to change f at
runtime.

Speedup: 45 times over pure Python.

Calling external C functions

It is perfectly OK to do from math import sin to
use Python’s sin() function. However, calling C’s
own sin() function is substantially faster, especially
in tight loops. It can be declared and used in Cython
as follows:

cdef extern from "math.h":

double sin(double)

cdef double f(double x):

return sin(x*x)

At this point there are no longer any Python wrapper
objects around our values inside of the main for loop,
and so we get an impressive speedup to 219 times the
speed of Python.

Note that the above code re-declares the function from
math.h to make it available to Cython code. The C
compiler will see the original declaration in math.h at
compile time, but Cython does not parse “math.h” and
requires a separate definition.

When calling C functions, one must take care to link
in the appropriate libraries. This can be platform-
specific; the below example works on Linux and Mac
OS X:

c©2009, S. Behnel, R. Bradshaw, D. Seljebotn 6

Proceedings of the 8th Python in Science Conference (SciPy 2009)

from distutils.core import setup

from distutils.extension import Extension

from Cython.Distutils import build_ext

ext_modules=[

Extension("demo",

["demo.pyx"],

libraries=["m"]) # Unix-like specific

]

setup(

name = "Demos",

cmdclass = {"build_ext": build_ext},

ext_modules = ext_modules

)

If one uses the Sage notebook to compile Cython code,
one can use a special comment to tell Sage to link in
libraries:

#clib: m

Just like the sin() function from the math library, it
is possible to declare and call into any C library as long
as the module that Cython generates is properly linked
against the shared or static library. A more extensive
example of wrapping a C library is given in the section
Using C libraries.

Extension types (aka. cdef classes)

To support object-oriented programming, Cython sup-
ports writing normal Python classes exactly as in
Python:

class MathFunction(object):

def __init__(self, name, operator):

self.name = name

self.operator = operator

def __call__(self, *operands):

return self.operator(*operands)

Based on what Python calls a “built-in type”, how-
ever, Cython supports a second kind of class: exten-
sion types, sometimes referred to as “cdef classes” due
to the keywords used for their declaration. They are
somewhat restricted compared to Python classes, but
are generally more memory efficient and faster than
generic Python classes. The main difference is that
they use a C struct to store their fields and meth-
ods instead of a Python dict. This allows them to
store arbitrary C types in their fields without requir-
ing a Python wrapper for them, and to access fields
and methods directly at the C level without passing
through a Python dictionary lookup.

Normal Python classes can inherit from cdef classes,
but not the other way around. Cython requires to
know the complete inheritance hierarchy in order to
lay out their C structs, and restricts it to single in-
heritance. Normal Python classes, on the other hand,
can inherit from any number of Python classes and ex-
tension types, both in Cython code and pure Python
code.

So far our integration example has not been very useful
as it only integrates a single hard-coded function. In

order to remedy this, without sacrificing speed, we will
use a cdef class to represent a function on floating point
numbers:

cdef class Function:

cpdef double evaluate(self, double x) except *:

return 0

Like before, cpdef makes two versions of the method
available; one fast for use from Cython and one slower
for use from Python. Then:

cdef class SinOfSquareFunction(Function):

cpdef double evaluate(self, double x) except *:

return sin(x**2)

Using this, we can now change our integration exam-
ple:

def integrate(Function f, double a, double b, int N):

cdef int i

cdef double s, dx

if f is None:

raise ValueError("f cannot be None")

s = 0

dx = (b-a)/N

for i in range(N):

s += f.evaluate(a+i*dx)

return s * dx

print(integrate(SinOfSquareFunction(), 0, 1, 10000))

This is almost as fast as the previous code, however
it is much more flexible as the function to integrate
can be changed. It is even possible to pass in a new
function defined in Python-space. Assuming the above
code is in the module integrate.pyx, we can do:

>>> import integrate

>>> class MyPolynomial(integrate.Function):

... def evaluate(self, x):

... return 2*x*x + 3*x - 10

...

>>> integrate.integrate(MyPolynomial(), 0, 1, 10000)

-7.8335833300000077

This is about 20 times slower than SinOfSquareFunc-

tion, but still about 10 times faster than the origi-
nal Python-only integration code. This shows how
large the speed-ups can easily be when whole loops
are moved from Python code into a Cython module.

Some notes on our new implementation of evaluate:

• The fast method dispatch here only works because
evaluate was declared in Function. Had evaluate

been introduced in SinOfSquareFunction, the code
would still work, but Cython would have used the
slower Python method dispatch mechanism instead.

• In the same way, had the argument f not been typed,
but only been passed as a Python object, the slower
Python dispatch would be used.

• Since the argument is typed, we need to check
whether it is None. In Python, this would have re-
sulted in an AttributeError when the evaluate

method was looked up, but Cython would instead
try to access the (incompatible) internal structure
of None as if it were a Function, leading to a crash
or data corruption.

7 http://conference.scipy.org/proceedings/SciPy2009/paper_1

http://conference.scipy.org/proceedings/SciPy2009/paper_1

Cython tutorial

There is a compiler directive nonecheck which turns on
checks for this, at the cost of decreased speed. Here’s
how compiler directives are used to dynamically switch
on or off nonecheck:

#cython: nonecheck=True

^^^ Turns on nonecheck globally

import cython

Turn off nonecheck locally for the function

@cython.nonecheck(False)

def func():

cdef MyClass obj = None

try:

Turn nonecheck on again for a block

with cython.nonecheck(True):

print obj.myfunc() # Raises exception

except AttributeError:

pass

print obj.myfunc() # Hope for a crash!

Attributes in cdef classes behave differently from at-
tributes in regular classes:

• All attributes must be pre-declared at compile-time

• Attributes are by default only accessible from
Cython (typed access)

• Properties can be declared to expose dynamic at-
tributes to Python-space

cdef class WaveFunction(Function):

Not available in Python-space:

cdef double offset

Available in Python-space:

cdef public double freq

Available in Python-space:

property period:

def __get__(self):

return 1.0 / self. freq

def __set__(self, value):

self. freq = 1.0 / value

<...>

pxd files

In addition to the .pyx source files, Cython uses .pxd

files which work like C header files - they contain
Cython declarations (and sometimes code sections)
which are only meant for sharing C-level declarations
with other Cython modules. A pxd file is imported
into a pyx module by using the cimport keyword.
pxd files have many use-cases:

1. They can be used for sharing external C declara-
tions.

2. They can contain functions which are well suited
for inlining by the C compiler. Such functions
should be marked inline, example:

cdef inline int int_min(int a, int b):

return b if b < a else a

3. When accompanying an equally named pyx file,
they provide a Cython interface to the Cython
module so that other Cython modules can com-
municate with it using a more efficient protocol
than the Python one.

In our integration example, we might break it up into
pxd files like this:

1. Add a cmath.pxd function which defines the C
functions available from the C math.h header file,
like sin. Then one would simply do from cmath

import sin in integrate.pyx.

2. Add a integrate.pxd so that other modules
written in Cython can define fast custom func-
tions to integrate.

cdef class Function:

cpdef evaluate(self, double x)

cpdef integrate(Function f, double a,

double b, int N)

Note that if you have a cdef class with attributes,
the attributes must be declared in the class dec-
laration pxd file (if you use one), not the pyx file.
The compiler will tell you about this.

Using Cython with NumPy

Cython has support for fast access to NumPy arrays.
To optimize code using such arrays one must cimport

the NumPy pxd file (which ships with Cython), and
declare any arrays as having the ndarray type. The
data type and number of dimensions should be fixed
at compile-time and passed. For instance:

import numpy as np

cimport numpy as np

def myfunc(np.ndarray[np.float64_t, ndim=2] A):

<...>

myfunc can now only be passed two-dimensional ar-
rays containing double precision floats, but array in-
dexing operation is much, much faster, making it suit-
able for numerical loops. Expect speed increases well
over 100 times over a pure Python loop; in some cases
the speed increase can be as high as 700 times or more.
[Seljebotn09] contains detailed examples and bench-
marks.

Fast array declarations can currently only be used
with function local variables and arguments to def-
style functions (not with arguments to cpdef or cdef,
and neither with fields in cdef classes or as global vari-
ables). These limitations are considered known defects
and we hope to remove them eventually. In most cir-
cumstances it is possible to work around these limi-
tations rather easily and without a significant speed
penalty, as all NumPy arrays can also be passed as
untyped objects.

Array indexing is only optimized if exactly as many
indices are provided as the number of array dimen-
sions. Furthermore, all indices must have a native in-
teger type. Slices and NumPy “fancy indexing” is not
optimized. Examples:

c©2009, S. Behnel, R. Bradshaw, D. Seljebotn 8

Proceedings of the 8th Python in Science Conference (SciPy 2009)

def myfunc(np.ndarray[np.float64_t, ndim=1] A):

cdef Py_ssize_t i, j

for i in range(A.shape[0]):

print A[i, 0] # fast

j = 2*i

print A[i, j] # fast

k = 2*i

print A[i, k] # slow, k is not typed

print A[i][j] # slow

print A[i,:] # slow

Py_ssize_t is a signed integer type provided by
Python which covers the same range of values as is
supported as NumPy array indices. It is the preferred
type to use for loops over arrays.

Any Cython primitive type (float, complex float and
integer types) can be passed as the array data type.
For each valid dtype in the numpy module (such as
np.uint8, np.complex128) there is a correspond-
ing Cython compile-time definition in the cimport-ed
NumPy pxd file with a _t suffix1. Cython structs are
also allowed and corresponds to NumPy record arrays.
Examples:

cdef packed struct Point:

np.float64_t x, y

def f():

cdef np.ndarray[np.complex128_t, ndim=3] a = \

np.zeros((3,3,3), dtype=np.complex128)

cdef np.ndarray[Point] b = np.zeros(10,

dtype=np.dtype([(’x’, np.float64),

(’y’, np.float64)]))

<...>

Note that ndim defaults to 1. Also note that NumPy
record arrays are by default unaligned, meaning data
is packed as tightly as possible without considering
the alignment preferences of the CPU. Such unaligned
record arrays corresponds to a Cython packed struct.
If one uses an aligned dtype, by passing align=True

to the dtype constructor, one must drop the packed

keyword on the struct definition.

Some data types are not yet supported, like boolean
arrays and string arrays. Also data types describing
data which is not in the native endian will likely never
be supported. It is however possible to access such
arrays on a lower level by casting the arrays:

cdef np.ndarray[np.uint8, cast=True] boolarr = (x < y)

cdef np.ndarray[np.uint32, cast=True] values = \

np.arange(10, dtype=’>i4’)

Assuming one is on a little-endian system, the values

array can still access the raw bit content of the array
(which must then be reinterpreted to yield valid results
on a little-endian system).

Finally, note that typed NumPy array variables in
some respects behave a little differently from untyped
arrays. arr.shape is no longer a tuple. arr.shape[0]

is valid but to e.g. print the shape one must do print

(<object>arr).shape in order to “untype” the vari-
able first. The same is true for arr.data (which in
typed mode is a C data pointer).

There are many more options for optimizations to con-
sider for Cython and NumPy arrays. We again refer
the interested reader to [Seljebotn09].

1In Cython 0.11.2, np.complex64_t and np.complex128_t

Using C libraries

Apart from writing fast code, one of the main use cases
of Cython is to call external C libraries from Python
code. As seen for the C string decoding functions
above, it is actually trivial to call C functions directly
in the code. The following describes what needs to be
done to use an external C library in Cython code.

Imagine you need an efficient way to store integer val-
ues in a FIFO queue. Since memory really matters,
and the values are actually coming from C code, you
cannot afford to create and store Python int objects
in a list or deque. So you look out for a queue imple-
mentation in C.

After some web search, you find the C-algorithms li-
brary [CAlg] and decide to use its double ended queue
implementation. To make the handling easier, how-
ever, you decide to wrap it in a Python extension type
that can encapsulate all memory management.

The C API of the queue implementation, which is de-
fined in the header file libcalg/queue.h, essentially
looks like this:

typedef struct _Queue Queue;

typedef void *QueueValue;

Queue *queue_new(void);

void queue_free(Queue *queue);

int queue_push_head(Queue *queue, QueueValue data);

QueueValue queue_pop_head(Queue *queue);

QueueValue queue_peek_head(Queue *queue);

int queue_push_tail(Queue *queue, QueueValue data);

QueueValue queue_pop_tail(Queue *queue);

QueueValue queue_peek_tail(Queue *queue);

int queue_is_empty(Queue *queue);

To get started, the first step is to redefine the C API
in a .pxd file, say, cqueue.pxd:

cdef extern from "libcalg/queue.h":

ctypedef struct Queue:

pass

ctypedef void* QueueValue

Queue* new_queue()

void queue_free(Queue* queue)

int queue_push_head(Queue* queue, QueueValue data)

QueueValue queue_pop_head(Queue* queue)

QueueValue queue_peek_head(Queue* queue)

int queue_push_tail(Queue* queue, QueueValue data)

QueueValue queue_pop_tail(Queue* queue)

QueueValue queue_peek_tail(Queue* queue)

bint queue_is_empty(Queue* queue)

Note how these declarations are almost identical to
the header file declarations, so you can often just copy
them over. One exception is the last line. The return
value of the queue_is_empty method is actually a C
boolean value, i.e. it is either zero or non-zero, indicat-
ing if the queue is empty or not. This is best expressed

does not work and one must write complex or double complex

instead. This is fixed in 0.11.3. Cython 0.11.1 and earlier does
not support complex numbers.

9 http://conference.scipy.org/proceedings/SciPy2009/paper_1

http://conference.scipy.org/proceedings/SciPy2009/paper_1

Cython tutorial

by Cython’s bint type, which is a normal int type
when used in C but maps to Python’s boolean values
True and False when converted to a Python object.
Another difference is the first line. Queue is in this
case used as an opaque handle; only the library that is
called know what is actually inside. Since no Cython
code needs to know the contents of the struct, we do
not need to declare its contents, so we simply provide
an empty definition (as we do not want to declare the
_Queue type which is referenced in the C header)2.

Next, we need to design the Queue class that should
wrap the C queue. Here is a first start for the Queue
class:

cimport cqueue

cimport python_exc

cdef class Queue:

cdef cqueue.Queue _c_queue

def __cinit__(self):

self._c_queue = cqueue.new_queue()

Note that it says __cinit__ rather than __init__.
While __init__ is available as well, it is not guaran-
teed to be run (for instance, one could create a sub-
class and forget to call the ancestor constructor). Be-
cause not initializing C pointers often leads to crashing
the Python interpreter without leaving as much as a
stack trace, Cython provides __cinit__ which is al-
ways called on construction. However, as __cinit__

is called during object construction, self is not fully
constructed yet, and one must avoid doing anything
with self but assigning to cdef fields.

Note also that the above method takes no parame-
ters, although subtypes may want to accept some. Al-
though it is guaranteed to get called, the no-arguments
__cinit__() method is a special case here as it does
not prevent subclasses from adding parameters as they
see fit. If parameters are added they must match those
of any declared __init__ method.

Before we continue implementing the other methods,
it is important to understand that the above imple-
mentation is not safe. In case anything goes wrong in
the call to new_queue(), this code will simply swallow
the error, so we will likely run into a crash later on.
According to the documentation of the new_queue()

function, the only reason why the above can fail is
due to insufficient memory. In that case, it will return
NULL, whereas it would normally return a pointer to
the new queue.

The normal way to get out of this is to raise an excep-
tion, but allocating a new exception instance may actu-
ally fail when we are running out of memory. Luckily,
CPython provides a function PyErr_NoMemory() that
raises the right exception for us. We can thus change
the init function as follows:

2There’s a subtle difference between cdef struct Queue:

pass and ctypedef struct Queue: pass. The former declares
a type which is referenced in C code as struct Queue, while the
latter is referenced in C as Queue. This is a C language quirk
that Cython is not able to hide. Most modern C libraries use
the ctypedef kind of struct.

def __cinit__(self):

self._c_queue = cqueue.new_queue()

if self._c_queue is NULL:

python_exc.PyErr_NoMemory()

The next thing to do is to clean up when the Queue is
no longer used. To this end, CPython provides a call-
back that Cython makes available as a special method
__dealloc__(). In our case, all we have to do is to
free the Queue, but only if we succeeded in initialising
it in the init method:

def __dealloc__(self):

if self._c_queue is not NULL:

cqueue.queue_free(self._c_queue)

At this point, we have a compilable Cython module
that we can test. To compile it, we need to configure
a setup.py script for distutils. Based on the exam-
ple presented earlier on, we can extend the script to
include the necessary setup for building against the
external C library. Assuming it’s installed in the nor-
mal places (e.g. under /usr/lib and /usr/include

on a Unix-like system), we could simply change the
extension setup from

ext_modules = [Extension("hello", ["hello.pyx"])]

to
ext_modules = [

Extension("hello", ["hello.pyx"],

libraries=["calg"])

]

If it is not installed in a ’normal’ location, users can
provide the required parameters externally by passing
appropriate C compiler flags, such as:

CFLAGS="-I/usr/local/otherdir/calg/include" \

LDFLAGS="-L/usr/local/otherdir/calg/lib" \

python setup.py build_ext -i

Once we have compiled the module for the first time,
we can try to import it:

PYTHONPATH=. python -c ’import queue.Queue as Q; Q()’

However, our class doesn’t do much yet so far, so let’s
make it more usable.

Before implementing the public interface of this class,
it is good practice to look at what interfaces Python
offers, e.g. in its list or collections.deque classes.
Since we only need a FIFO queue, it’s enough to pro-
vide the methods append(), peek() and pop(), and
additionally an extend() method to add multiple val-
ues at once. Also, since we already know that all val-
ues will be coming from C, it’s better to provide only
cdef methods for now, and to give them a straight C
interface.

In C, it is common for data structures to store data
as a void* to whatever data item type. Since we only
want to store int values, which usually fit into the
size of a pointer type, we can avoid additional memory
allocations through a trick: we cast our int values to
void* and vice versa, and store the value directly as
the pointer value.

c©2009, S. Behnel, R. Bradshaw, D. Seljebotn 10

Proceedings of the 8th Python in Science Conference (SciPy 2009)

Here is a simple implementation for the append()

method:
cdef append(self, int value):

cqueue.queue_push_tail(self._c_queue, <void*>value)

Again, the same error handling considerations as for
the __cinit__() method apply, so that we end up
with this implementation:

cdef append(self, int value):

if not cqueue.queue_push_tail(self._c_queue,

<void*>value):

python_exc.PyErr_NoMemory()

Adding an extend() method should now be straight
forward:

cdef extend(self, int* values, Py_ssize_t count):

"""Append all ints to the queue.

"""

cdef Py_ssize_t i

for i in range(count):

if not cqueue.queue_push_tail(

self._c_queue, <void*>values[i]):

python_exc.PyErr_NoMemory()

This becomes handy when reading values from a
NumPy array, for example.

So far, we can only add data to the queue. The next
step is to write the two methods to get the first ele-
ment: peek() and pop(), which provide read-only and
destructive read access respectively:

cdef int peek(self):

return <int>cqueue.queue_peek_head(self._c_queue)

cdef int pop(self):

return <int>cqueue.queue_pop_head(self._c_queue)

Simple enough. Now, what happens when the queue
is empty? According to the documentation, the func-
tions return a NULL pointer, which is typically not a
valid value. Since we are simply casting to and from
ints, we cannot distinguish anymore if the return value
was NULL because the queue was empty or because the
value stored in the queue was 0. However, in Cython
code, we would expect the first case to raise an excep-
tion, whereas the second case should simply return 0.
To deal with this, we need to special case this value,
and check if the queue really is empty or not:

cdef int peek(self) except? 0:

cdef int value = \

<int>cqueue.queue_peek_head(self._c_queue)

if value == 0:

this may mean that the queue is empty, or

that it happens to contain a 0 value

if cqueue.queue_is_empty(self._c_queue):

raise IndexError("Queue is empty")

return value

The except? 0 declaration is worth explaining. If
the function was a Python function returning a Python
object value, CPython would simply return NULL in-
stead of a Python object to indicate a raised excep-
tion, which would immediately be propagated by the
surrounding code. The problem is that any int value
is a valid queue item value, so there is no way to ex-
plicitly indicate an error to the calling code.

The only way CPython (and Cython) can deal with
this situation is to call PyErr_Occurred() when re-
turning from a function to check if an exception was
raised, and if so, propagate the exception. This obvi-
ously has a performance penalty. Cython therefore al-
lows you to indicate which value is explicitly returned
in the case of an exception, so that the surrounding
code only needs to check for an exception when receiv-
ing this special value. All other values will be accepted
almost without a penalty.

Now that the peek() method is implemented, the
pop() method is almost identical. It only calls a dif-
ferent C function:

cdef int pop(self) except? 0:

cdef int value = \

<int>cqueue.queue_pop_head(self._c_queue)

if value == 0:

this may mean that the queue is empty, or

that it happens to contain a 0 value

if cqueue.queue_is_empty(self._c_queue):

raise IndexError("Queue is empty")

return value

Lastly, we can provide the Queue with an emptiness
indicator in the normal Python way:

def __nonzero__(self):

return not cqueue.queue_is_empty(self._c_queue)

Note that this method returns either True or False

as the return value of the queue_is_empty function is
declared as a bint.

Now that the implementation is complete, you may
want to write some tests for it to make sure it works
correctly. Especially doctests are very nice for this
purpose, as they provide some documentation at the
same time. To enable doctests, however, you need a
Python API that you can call. C methods are not
visible from Python code, and thus not callable from
doctests.

A quick way to provide a Python API for the class
is to change the methods from cdef to cpdef. This
will let Cython generate two entry points, one that is
callable from normal Python code using the Python
call semantics and Python objects as arguments, and
one that is callable from C code with fast C semantics
and without requiring intermediate argument conver-
sion from or to Python types.

The following listing shows the complete implementa-
tion that uses cpdef methods where possible. This
feature is obviously not available for the extend()

method, as the method signature is incompatible with
Python argument types.

11 http://conference.scipy.org/proceedings/SciPy2009/paper_1

http://conference.scipy.org/proceedings/SciPy2009/paper_1

Cython tutorial

cimport cqueue

cimport python_exc

cdef class Queue:

cdef cqueue.Queue* _c_queue

def __cinit__(self):

self._c_queue = cqueue.queue_new()

if self._c_queue is NULL:

python_exc.PyErr_NoMemory()

def __dealloc__(self):

if self._c_queue is not NULL:

cqueue.queue_free(self._c_queue)

cpdef append(self, int value):

if not cqueue.queue_push_tail(self._c_queue,

<void*>value):

python_exc.PyErr_NoMemory()

cdef extend(self, int* values, Py_ssize_t count):

cdef Py_ssize_t i

for i in range(count):

if not cqueue.queue_push_tail(

self._c_queue, <void*>values[i]):

python_exc.PyErr_NoMemory()

cpdef int peek(self) except? 0:

cdef int value = \

<int>cqueue.queue_peek_head(self._c_queue)

if value == 0:

this may mean that the queue is empty,

or that it happens to contain a 0 value

if cqueue.queue_is_empty(self._c_queue):

raise IndexError("Queue is empty")

return value

cpdef int pop(self) except? 0:

cdef int value = \

<int>cqueue.queue_pop_head(self._c_queue)

if value == 0:

this may mean that the queue is empty,

or that it happens to contain a 0 value

if cqueue.queue_is_empty(self._c_queue):

raise IndexError("Queue is empty")

return value

def __nonzero__(self):

return not cqueue.queue_is_empty(self._c_queue)

As a quick test with numbers from 0 to 9999 indicates,
using this Queue from Cython code with C int values
is about five times as fast as using it from Cython code
with Python values, almost eight times faster than us-
ing it from Python code in a Python loop, and still
more than twice as fast as using Python’s highly op-
timised collections.deque type from Cython code
with Python integers.

Unicode and passing strings

Similar to the string semantics in Python 3, Cython
also strictly separates byte strings and unicode strings.
Above all, this means that there is no automatic con-
version between byte strings and unicode strings (ex-
cept for what Python 2 does in string operations). All
encoding and decoding must pass through an explicit
encoding/decoding step.

It is, however, very easy to pass byte strings between C
code and Python. When receiving a byte string from a

C library, you can let Cython convert it into a Python
byte string by simply assigning it to a Python variable:

cdef char* c_string = c_call_returning_a_c_string()

py_string = c_string

This creates a Python byte string object that holds a
copy of the original C string. It can be safely passed
around in Python code, and will be garbage collected
when the last reference to it goes out of scope.
To convert the byte string back into a C char*, use
the opposite assignment:

cdef char* other_c_string = py_string

This is a very fast operation after which
other_c_string points to the byte string buffer
of the Python string itself. It is tied to the life time of
the Python string. When the Python string is garbage
collected, the pointer becomes invalid. It is therefore
important to keep a reference to the Python string as
long as the char* is in use. Often enough, this only
spans the call to a C function that receives the pointer
as parameter. Special care must be taken, however,
when the C function stores the pointer for later use.
Apart from keeping a Python reference to the string,
no manual memory management is required.
The above way of passing and receiving C strings is
as simple that, as long as we only deal with binary
data in the strings. When we deal with encoded text,
however, it is best practice to decode the C byte strings
to Python Unicode strings on reception, and to encode
Python Unicode strings to C byte strings on the way
out.
With a Python byte string object, you would normally
just call the .decode() method to decode it into a
Unicode string:

ustring = byte_string.decode(’UTF-8’)

You can do the same in Cython for a C string, but the
generated code is rather inefficient for small strings.
While Cython could potentially call the Python C-API
function for decoding a C string from UTF-8 to Uni-
code (PyUnicode_DecodeUTF8()), the problem is that
this requires passing the length of the C string, which
Cython cannot know at compile time nor runtime. So
it would have to call strlen() first, although the user
code will already know the length of the string in al-
most all cases. Also, the encoded byte string might
actually contain null bytes, so this isn’t even a safe so-
lution. It is therefore currently recommended to call
the API functions directly:

.pxd file that comes with Cython

cimport python_unicode

cdef char* c_string = NULL

cdef Py_ssize_t length = 0

get pointer and length from a C function

get_a_c_string(&c_string, &length)

decode the string to Unicode

ustring = python_unicode.PyUnicode_DecodeUTF8(

c_string, length, ’strict’)

c©2009, S. Behnel, R. Bradshaw, D. Seljebotn 12

Proceedings of the 8th Python in Science Conference (SciPy 2009)

It is common practice to wrap this in a dedicated func-
tion, as this needs to be done whenever receiving text
from C. This could look as follows:

cimport python_unicode

cimport stdlib

cdef extern from "string.h":

size_t strlen(char *s)

cdef unicode tounicode(char* s):

return python_unicode.PyUnicode_DecodeUTF8(

s, strlen(s), ’strict’)

cdef unicode tounicode_with_length(

char* s, size_t length):

return python_unicode.PyUnicode_DecodeUTF8(

s, length, ’strict’)

cdef unicode tounicode_with_length_and_free(

char* s, size_t length):

try:

return python_unicode.PyUnicode_DecodeUTF8(

s, length, ’strict’)

finally:

stdlib.free(s)

Most likely, you will prefer shorter function names in
your code based on the kind of string being handled.
Different types of content often imply different ways of
handling them on reception. To make the code more
readable and to anticipate future changes, it is good
practice to use separate conversion functions for differ-
ent types of strings.
The reverse way, converting a Python unicode string to
a C char*, is pretty efficient by itself, assuming that
what you actually want is a memory managed byte
string:

py_byte_string = py_unicode_string.encode(’UTF-8’)

cdef char* c_string = py_byte_string

As noted above, this takes the pointer to the byte
buffer of the Python byte string. Trying to do the
same without keeping a reference to the intermediate
byte string will fail with a compile error:

this will not compile !

cdef char* c_string = py_unicode_string.encode(’UTF-8’)

Here, the Cython compiler notices that the code takes
a pointer to a temporary string result that will be
garbage collected after the assignment. Later access
to the invalidated pointer will most likely result in a
crash. Cython will therefore refuse to compile this
code.

Caveats

Since Cython mixes C and Python semantics, some
things may be a bit surprising or unintuitive. Work al-
ways goes on to make Cython more natural for Python
users, so this list may change in the future.

• 10**-2 == 0, instead of 0.01 like in Python.

• Given two typed int variables a and b, a % b has
the same sign as the first argument (following C se-
mantics) rather then having the same sign as the
second (as in Python). This will change in Cython
0.12.

• Care is needed with unsigned types. cdef unsigned

n = 10; print(range(-n, n)) will print an empty
list, since -n wraps around to a large positive integer
prior to being passed to the range function.

• Python’s float type actually wraps C double val-
ues, and Python’s int type wraps C long values.

Further reading

The main documentation is located at http://docs.

cython.org/. Some recent features might not have
documentation written yet, in such cases some notes
can usually be found in the form of a Cython Enhance-
ment Proposal (CEP) on http://wiki.cython.org/

enhancements.

[Seljebotn09] contains more information about Cython
and NumPy arrays. If you intend to use Cython code
in a multi-threaded setting, it is essential to read up on
Cython’s features for managing the Global Interpreter
Lock (the GIL). The same paper contains an explana-
tion of the GIL, and the main documentation explains
the Cython features for managing it.

Finally, don’t hesitate to ask questions (or post re-
ports on successes!) on the Cython users mailing
list [UserList]. The Cython developer mailing list,
[DevList], is also open to everybody. Feel free to use
it to report a bug, ask for guidance, if you have time
to spare to develop Cython, or if you have suggestions
for future development.

Related work

Pyrex [Pyrex] is the compiler project that Cython was
originally based on. Many features and the major de-
sign decisions of the Cython language were developed
by Greg Ewing as part of that project. Today, Cython
supersedes the capabilities of Pyrex by providing a
higher compatibility with Python code and Python
semantics, as well as superior optimisations and bet-
ter integration with scientific Python extensions like
NumPy.

ctypes [ctypes] is a foreign function interface (FFI) for
Python. It provides C compatible data types, and al-
lows calling functions in DLLs or shared libraries. It
can be used to wrap these libraries in pure Python
code. Compared to Cython, it has the major ad-
vantage of being in the standard library and being
usable directly from Python code, without any addi-
tional dependencies. The major drawback is its per-
formance, which suffers from the Python call overhead
as all operations must pass through Python code first.
Cython, being a compiled language, can avoid much of
this overhead by moving more functionality and long-
running loops into fast C code.

SWIG [SWIG] is a wrapper code generator. It makes
it very easy to parse large API definitions in C/C++
header files, and to generate straight forward wrapper

13 http://conference.scipy.org/proceedings/SciPy2009/paper_1

http://docs.cython.org/
http://docs.cython.org/
http://docs.cython.org/
http://docs.cython.org/
http://wiki.cython.org/enhancements
http://wiki.cython.org/enhancements
http://wiki.cython.org/enhancements
http://wiki.cython.org/enhancements
http://conference.scipy.org/proceedings/SciPy2009/paper_1

Cython tutorial

code for a large set of programming languages. As op-
posed to Cython, however, it is not a programming
language itself. Thin wrappers are easy to generate,
but the more functionality a wrapper needs to pro-
vide, the harder it gets to implement it with SWIG.
Cython, on the other hand, makes it very easy to write
very elaborate wrapper code specifically for the Python
language. Also, there exists third party code for pars-
ing C header files and using it to generate Cython def-
initions and module skeletons.

ShedSkin [ShedSkin] is an experimental Python-to-
C++ compiler. It uses profiling information and very
powerful type inference engine to generate a C++ pro-
gram from (restricted) Python source code. The main
drawback is has no support for calling the Python/C
API for operations it does not support natively, and
supports very few of the standard Python modules.

Appendix: Installing MinGW on Windows

1. Download the MinGW installer from http://

mingw.org. (As of this writing, the download link
is a bit difficult to find; it’s under “About” in the
menu on the left-hand side). You want the file en-
titled “Automated MinGW Installer” (currently
version 5.1.4).

2. Run it and install MinGW. Only the basic pack-
age is strictly needed for Cython, although you
might want to grab at least the C++ compiler as
well.

3. You need to set up Windows’ “PATH” en-
vironment variable so that includes e.g.
“c:\mingw\bin” (if you installed MinGW to
“c:\mingw”). The following web-page describes
the procedure in Windows XP (the Vista proce-
dure is similar): http://support.microsoft.

com/kb/310519

4. Finally, tell Python to use MinGW as the default
compiler (otherwise it will try for Visual C). If
Python is installed to “c:\Python26”, create a file
named “c:\Python26\Lib\distutils\distutils.cfg”
containing:

[build]

compiler = mingw32

The [WinInst] wiki page contains updated informa-
tion about this procedure. Any contributions towards

making the Windows install process smoother is wel-
comed; it is an unfortunate fact that none of the regu-
lar Cython developers have convenient access to Win-
dows.

References

[Cython] G. Ewing, R. W. Bradshaw, S. Behnel, D.
S. Seljebotn et al., The Cython compiler,
http://cython.org.

[Python] G. van Rossum et al., The Python program-
ming language, http://python.org.

[Sage] W. Stein et al., Sage Mathematics Software,
http://sagemath.org

[EPD] Enthought, Inc., The Enthought Python
Distribution http://www.enthought.com/

products/epd.php

[Pythonxy] P. Raybault, http://www.pythonxy.com/

[Jython] J. Huginin, B. Warsaw, F. Bock, et al.,
Jython: Python for the Java platform,
http://www.jython.org/

[Seljebotn09] D. S. Seljebotn, Fast numerical computa-
tions with Cython, Proceedings of the 8th
Python in Science Conference, 2009.

[NumPy] T. Oliphant et al., NumPy, http://numpy.

scipy.org/

[CAlg] S. Howard, C Algorithms library, http://

c-algorithms.sourceforge.net/

[Pyrex] G. Ewing, Pyrex: C-Extensions for
Python, http://www.cosc.canterbury.

ac.nz/greg.ewing/python/Pyrex/

[ShedSkin] M. Dufour, J. Coughlan, ShedSkin, http:

//code.google.com/p/shedskin/

[PyPy] The PyPy Group, PyPy: a Python im-
plementation written in Python, http://

codespeak.net/pypy.
[IronPython] J. Hugunin et al., http://www.codeplex.

com/IronPython.
[SWIG] D.M. Beazley et al., SWIG: An Easy to Use

Tool for Integrating Scripting Languages
with C and C++, http://www.swig.org.

[WinInst] http://wiki.cython.org/

InstallingOnWindows

[ctypes] T. Heller et al., http://docs.python.org/

library/ctypes.html.
[UserList] Cython users mailing list: http://groups.

google.com/group/cython-users

[DevList] Cython developer mailing list: http:

//codespeak.net/mailman/listinfo/

cython-dev.

c©2009, S. Behnel, R. Bradshaw, D. Seljebotn 14

http://mingw.org
http://mingw.org
http://mingw.org
http://mingw.org
http://support.microsoft.com/kb/310519
http://support.microsoft.com/kb/310519
http://support.microsoft.com/kb/310519
http://support.microsoft.com/kb/310519
http://cython.org
http://cython.org
http://python.org
http://python.org
http://sagemath.org
http://sagemath.org
http://www.enthought.com/products/epd.php
http://www.enthought.com/products/epd.php
http://www.enthought.com/products/epd.php
http://www.enthought.com/products/epd.php
http://www.pythonxy.com/
http://www.pythonxy.com/
http://www.jython.org/
http://www.jython.org/
http://numpy.scipy.org/
http://numpy.scipy.org/
http://numpy.scipy.org/
http://numpy.scipy.org/
http://c-algorithms.sourceforge.net/
http://c-algorithms.sourceforge.net/
http://c-algorithms.sourceforge.net/
http://c-algorithms.sourceforge.net/
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://code.google.com/p/shedskin/
http://code.google.com/p/shedskin/
http://code.google.com/p/shedskin/
http://code.google.com/p/shedskin/
http://codespeak.net/pypy
http://codespeak.net/pypy
http://codespeak.net/pypy
http://codespeak.net/pypy
http://www.codeplex.com/IronPython
http://www.codeplex.com/IronPython
http://www.codeplex.com/IronPython
http://www.codeplex.com/IronPython
http://www.swig.org
http://www.swig.org
http://wiki.cython.org/InstallingOnWindows
http://wiki.cython.org/InstallingOnWindows
http://wiki.cython.org/InstallingOnWindows
http://wiki.cython.org/InstallingOnWindows
http://docs.python.org/library/ctypes.html
http://docs.python.org/library/ctypes.html
http://docs.python.org/library/ctypes.html
http://docs.python.org/library/ctypes.html
http://groups.google.com/group/cython-users
http://groups.google.com/group/cython-users
http://groups.google.com/group/cython-users
http://groups.google.com/group/cython-users
http://codespeak.net/mailman/listinfo/cython-dev
http://codespeak.net/mailman/listinfo/cython-dev
http://codespeak.net/mailman/listinfo/cython-dev
http://codespeak.net/mailman/listinfo/cython-dev
http://codespeak.net/mailman/listinfo/cython-dev
http://codespeak.net/mailman/listinfo/cython-dev

Proceedings of the 8th Python in Science Conference (SciPy 2009)

Fast numerical computations with Cython

Dag Sverre Seljebotn (dagss@student.matnat.uio.no) – University of Osloabc, Norway

aInstitute of Theoretical Astrophysics, University of Oslo, P.O. Box 1029 Blindern, N-0315 Oslo, Norway
bDepartment of Mathematics, University of Oslo, P.O. Box 1053 Blindern, N-0316 Oslo, Norway
cCentre of Mathematics for Applications, University of Oslo, P.O. Box 1053 Blindern, N-0316 Oslo, Norway

Cython has recently gained popularity as a tool for
conveniently performing numerical computations in
the Python environment, as well as mixing efficient
calls to natively compiled libraries with Python code.
We discuss Cython’s features for fast NumPy array
access in detail through examples and benchmarks.
Using Cython to call natively compiled scientific li-
braries as well as using Cython in parallel computa-
tions is also given consideration. We conclude with
a note on possible directions for future Cython de-
velopment.

Introduction

Python has in many fields become a popular choice
for scientific computation and visualization. Being de-
signed as a general purpose scripting language without
a specific target audience in mind, it tends to scale well
as simple experiments grow to complex applications.
From a numerical perspective, Python and associated
libraries can be regarded mainly as a convenient shell
around computational cores written in natively com-
piled languages, such as C, C++ and Fortran. For in-
stance, the Python-specific SciPy [SciPy] library con-
tains over 200 000 lines of C++, 60 000 lines of C, and
75 000 lines of Fortran, compared to about 70 000 lines
of Python code.

There are several good reasons for such a workflow.
First, if the underlying compiled library is usable in
its own right, and also has end-users writing code in
MATLAB, C++ or Fortran, it may make little sense to
tie it too strongly to the Python environment. In such
cases, writing the computational cores in a compiled
language and using a Python wrapper to direct the
computations can be the ideal workflow. Secondly, as
we will see, the Python interpreter is too slow to be
usable for writing low-level numerical loops. This is
particularly a problem for computations which can not
be expressed as operations on entire arrays.

Cython is a programming language based on Python,
with additional syntax for optional static type declara-
tions. The Cython compiler is able to translate Cython
code into C code making use of the CPython C API
[CPyAPI], which can in turn be compiled into a mod-
ule loadable into any CPython session. The end-result
can perhaps be described as a language which allows
one to use Python and C interchangeably in the same
code. This has two important applications. First,
it is useful for creating Python wrappers around na-
tively compiled code, in particular in situations where
one does not want a 1:1 mapping between the library

API and the Python API, but rather a higher-level
Pythonic wrapper. Secondly, it allows incrementally
speeding up Python code. One can start out with
a simple Python prototype, then proceed to incre-
mentally add type information and C-level optimiza-
tion strategies in the few locations that really mat-
ter. While being a superset of Python is a goal for
Cython, there is currently a few incompatibilities and
unsupported constructs. The most important of these
is inner functions and generators (closure support).

In this paper we will discuss Cython from a numerical
computation perspective. Code is provided for illus-
tration purposes and the syntax is not explained in
full, for a detailed introduction to Cython we refer to
[Tutorial] and [Docs]. [Wilbers] compares Cython with
similar tools ([f2py], [Weave], [Instant] and [Psyco]).
The comparison is for speeding up a particular numer-
ical loop, and both speed and usability is discussed.
Cython here achieves a running time 1.6 times that
of the Fortran implementation. We note that had the
arrays been declared as contiguous at compile-time,
this would have been reduced to 1.3 times the time
of Fortran. [Ramach] is a similar set of benchmarks,
which compare Pyrex and other tools with a pure
Python/NumPy implementation. Cython is based on
[Pyrex] and the same results should apply, the main
difference being that Cython has friendlier syntax for
accessing NumPy arrays efficiently.

Fast array access

Fast array access, added to the Cython language by
D. S. Seljebotn and R. W. Bradshaw in 2008, was an
important improvement in convenience for numerical
users. The work is based on PEP 3118, which defines a
C API for direct access to the array data of Python ob-
jects acting as array data containers1. Cython is able
to treat most of the NumPy array data types as cor-
responding native C types. Since Cython 0.11.2, com-
plex floating point types are supported, either through
the C99 complex types or through Cython’s own im-
plementation. Record arrays are mapped to arrays of
C structs for efficient access. Some data types are not
supported, such as string/unicode arrays, arrays with
non-native endianness and boolean arrays. The lat-
ter can however be treated as 8-bit integer arrays in
Cython. [Tutorial] contains further details.

1PEP 3118 is only available on Python 2.6 and greater, there-
fore a backwards-compatibility mechanism is also provided to
emulate the protocol on older Python versions. This mecha-
nism is also used in the case of NumPy arrays, which do not yet

15 D. Seljebotnin Proc. SciPy 2009, G. Varoquaux, S. van der Walt, J. Millman (Eds), pp. 15–23

dagss@student.matnat.uio.no

Fast numerical computations with Cython

To discuss this feature we will start with the example
of naive matrix multiplication. Beginning with a pure
Python implementation, we will incrementally add op-
timizations. The benchmarks should help Cython
users decide how far one wants to go in other cases.
For C = AB the computation is

Cij =
∑n

k=1
AikBkj

where n is the number of columns in A and rows in B.
A basic implementation in pure Python looks like this:

def matmul(A, B, out):

for i in range(A.shape[0]):

for j in range(B.shape[1]):

s = 0

for k in range(A.shape[1]):

s += A[i, k] * B[k, j]

out[i,j] = s

For clarity of exposition, this skips the details of sanity
checking the arguments. In a real setting one should
probably also automatically allocate out if not pro-
vided by the caller.

Simply compiling this in Cython results in a about
1.15x speedup over Python. This minor speedup is
due to the compiled C code being faster than Python’s
byte code interpreter. The generated C code still uses
the Python C API, so that e.g. the array lookup A[i,

k] translates into C code very similar to:
tmp = PyTuple_New(2);

if (!tmp) { err_lineno = 21; goto error; }

Py_INCREF(i);

PyTuple_SET_ITEM(tmp, 0, i);

Py_INCREF(k);

PyTuple_SET_ITEM(tmp, 1, k);

A_ik = PyObject_GetItem(A, tmp);

if (!A_ik) { err_lineno = 21; goto error; }

Py_DECREF(tmp);

The result is a pointer to a Python object, which is
further processed with PyNumber_Multiply and so on.

To get any real speedup, types must be added:
import numpy as np

cimport numpy as np

ctypedef np.float64_t dtype_t

def matmul(np.ndarray[dtype_t, ndim=2] A,

np.ndarray[dtype_t, ndim=2] B,

np.ndarray[dtype_t, ndim=2] out=None):

cdef Py_ssize_t i, j, k

cdef dtype_t s

if A is None or B is None:

raise ValueError("Input matrix cannot be None")

for i in range(A.shape[0]):

for j in range(B.shape[1]):

s = 0

for k in range(A.shape[1]):

s += A[i, k] * B[k, j]

out[i,j] = s

In our benchmarks this results in a speedup of be-
tween 180-190 times over pure Python. The exact fac-
tor varies depending on the size of the matrices. If they
are not small enough to be kept in the CPU cache, the
data must be transported repeatedly over the memory
bus. This is close to equally expensive for Python and
Cython and thus tends to slightly diminish any other

support PEP 3118, even on Python 2.6.

effects. Table 1 has the complete benchmarks, with
one in-cache benchmark and one out-of-cache bench-
mark in every case.

Note however that the speedup does not come without
some costs. First, the routine is now only usable for
64-bit floating point. Arrays containing any other data
type will result in a ValueError being raised. Second,
it is necessary to ensure that typed variables containing
Python objects are not None. Failing to do so can
result in a crash or data corruption if None is passed
to the routine.

The generated C source for the array lookup A[i, k]

now looks like this:
tmp_i = i; tmp_k = k;

if (tmp_i < 0) tmp_i += A_shape_0;

if (tmp_i < 0 || tmp_i >= A_shape_1) {

PyErr_Format(<...>);

err_lineno = 33; goto error;

}

if (tmp_k < 0) tmp_k += A_shape_1;

if (tmp_k < 0 || tmp_k >= A_shape_1) {

PyErr_Format(<...>);

err_lineno = 33; goto error;

}

A_ik = *(dtype_t*)(A_data +

tmp_i * A_stride_0 + tmp_k * A_stride_1);

This is a lot faster because there are no API calls in
a normal situation, and access of the data happens
directly to the underlying memory location. The ini-
tial conditional tests are there for two reasons. First,
an if-test is needed to support negative indices. With
the usual Python semantics, A[-1, -1] should refer
to the lower-right corner of the matrix. Second, it is
necessary to raise an exception if an index is out of
bounds.

Such if-tests can bring a large speed penalty, especially
in the middle of the computational loop. It is therefore
possible to instruct Cython to turn off these features
through compiler directives. The following code dis-
ables support for negative indices (wraparound) and
bounds checking:

cimport cython

@cython.boundscheck(False)

@cython.wraparound(False)

def matmul(np.ndarray[dtype_t, ndim=2] A,

np.ndarray[dtype_t, ndim=2] B,

np.ndarray[dtype_t, ndim=2] out=None):

<...>

This removes all the if-tests from the generated code.
The resulting benchmarks indicate around 800 times
speedup at this point in the in-cache situation, 700
times out-of-cache. Only disabling one of either
wraparound or boundscheck will not have a signifi-
cant impact because there will still be if-tests left.

One trade-off is that should one access the arrays out
of bounds, one will have data corruption or a program
crash. The normal procedure is to leave bounds check-
ing on until one is completely sure that the code is
correct, then turn it off. In this case we are not us-
ing negative indices, and it is an easy decision to turn
them off. Even if we were, it would be faster to man-
ually add code to calculate the corresponding positive

c©2009, D. Seljebotn 16

Proceedings of the 8th Python in Science Conference (SciPy 2009)

index. wraparound is mainly enabled by default to re-
duce the number of surprises for casual Cython users,
and one should rarely leave it on.
In addition to per-function level like here, compiler
directives can also be specified globally for the source
file or for individual code blocks. See [directives] for
further information.

80x80 1500x1500

Units: MFLOPS

Optimal layout

Python 0.94 0.98

Cython 1.08 1.12

Added types 179 177

boundscheck/wraparound 770 692

mode="c"/mode="fortran" 981 787

BLAS ddot (ATLAS) 1282 911

Intel C 2560 1022

gfortran A
T
B 1113 854

Intel Fortran A
T
B 2833 1023

NumPy dot 3656 4757

Worst-case layout

Python 0.94 0.97

boundscheck/wraparound 847 175

BLAS ddot (ATLAS) 910 183

gfortran AB
T 861 94

Intel Fortran AB
T 731 94

Table 1: Matrix multiplication benchmarks on an Intel
Xeon 3.2 GHz, 2 MB cache, SSE2. The smaller data
set fits in cache, while the larger does not. Keep
in mind that different implementations have differ-
ent constant-time overhead, which e.g. explains that
NumPy dot does better for larger dataset.

Caring about memory layout

Both C/C++ and Fortran assume that arrays are
stored as one contiguous chunk in memory. NumPy
arrays depart from this tradition and allows for arbi-
trarily strided arrays. Consider the example of B =

A[::-2,:]. That is, let B be the array consisting of
every other row in A, in reverse order. In many envi-
ronments, the need for representing B contiguously in
memory mandates that a copy is made in such situa-
tions. NumPy supports a wider range of array memory
layouts and can in this situation construct B as a new
view to the same data that A refers to. The bene-
fit of the NumPy approach is that it is more flexible,
and allows avoiding copying of data. This is especially
important if one has huge data sets where the main
memory might only be able to hold one copy at the
time. With choice does however come responsibility.
In order to gain top performance with numerical com-
putations it is in general crucial to pay attention to
memory layout.

In the example of matrix multiplication, the first ma-
trix is accessed row-by-row and the second column-
by-column. The first matrix should thus be stored
with contiguous rows, “C contiguous”, while the sec-
ond should be stored with contiguous columns, “For-
tran contiguous”. This will keep the distance between
subsequent memory accesses as small as possible. In
an out-of-cache situation, our fastest matmul routine
so far does around 700 times better than pure Python
when presented with matrices with optimal layout, but
only around 180 times better with the worst-case lay-
out. See table 1.
The second issue concerning memory layout is that a
price is paid for the generality of the NumPy approach:
In order to address arbitrarily strided arrays, an extra
integer multiplication operation must be done per ac-
cess. In the matmul implementation above, A[i,k] was
translated to the following C code:

A_ik = *(dtype_t*)(A_data + i * A_stride_0

+ j * A_stride_1);

By telling Cython at compile-time that the arrays are
contiguous, it is possible to drop the innermost stride
multiplication. This is done by using the “mode” ar-
gument to the array type:

def matmul(

np.ndarray[dtype_t, ndim=2, mode="c"] A,

np.ndarray[dtype_t, ndim=2, mode="fortran"] B,

np.ndarray[dtype_t, ndim=2] out=None):

<...>

The in-cache benchmark now indicate a 780x speedup
over pure Python. The out-of-cache improvement is
smaller but still noticeable. Note that no restrictions
is put on the out argument. Doing so did not lead to
any significant speedup as out is not accessed in the
inner loop.
The catch is, of course, that the routine will now re-
ject arrays which does not satisfy the requirements.
This happens by raising a ValueError. One can make
sure that arrays are allocated using the right layout by
passing the “order” argument to most NumPy array
constructor functions, as well as the copy() method
of NumPy arrays. Furthermore, if an array A is C-
contiguous, then the transpose, A.T, will be a Fortran-
contiguous view of the same data.
The number of memory accesses of multiplying two
n×n matrices scale as O(n3), while copying the matri-
ces scale as O(n2). One would therefore expect, given
that enough memory is available, that making a tem-
porary copy pays off once n passes a certain threshold.
In this case benchmarks indicate that the threshold is
indeed very low (in the range of n = 10) and one would
typically copy in all situations. The NumPy functions
ascontiguousarray and asfortranarray are helpful
in such situations.

Calling an external library

The real world usecase for Cython is to speed up cus-
tom numerical loops for which there are no prior imple-
mentations available. For a simple example like matrix

17 http://conference.scipy.org/proceedings/SciPy2009/paper_2

http://conference.scipy.org/proceedings/SciPy2009/paper_2

Fast numerical computations with Cython

multiplication, going with existing implementations is
always better. For instance, NumPy’s dot function
is about 6 times faster than our fastest Cython imple-
mentation, since it uses smarter algorithms. Under the
hood, dot makes a call to the dgemm function in the Ba-
sic Linear Algebra Software API ([BLAS], [ATLAS])2.

One advantage of Cython is how easy it is to call native
code. Indeed, for many, this is the entire point of using
Cython. We will demonstrate these features by calling
BLAS for the inner products only, rather than for the
whole matrix multiplication. This allows us to stick
with the naive matrix multiplication algorithm, and
also demonstrates how to mix Cython code and the
use of external libraries. The BLAS API must first be
declared to Cython:

cdef extern from "cblas.h":

double ddot "cblas_ddot"(int N,

double *X, int incX,

double *Y, int incY)

The need to re-declare functions which are already de-
clared in C is unfortunate and an area of possible im-
provement for Cython. Only the declarations that are
actually used needs to be declared. Note also the use
of C pointers to represent arrays. BLAS also accepts
strided arrays and expects the strides passed in the
incX and incY arguments. Other C APIs will often
require a contiguous array where the stride is fixed to
one array element; in the previous section it was dis-
cussed how one can ensure that arrays are contiguous.
The matrix multiplication can now be performed like
this:

ctypedef np.float64_t dtype_t

def matmul(np.ndarray[dtype_t, ndim=2] A,

np.ndarray[dtype_t, ndim=2] B,

np.ndarray[dtype_t, ndim=2] out):

cdef Py_ssize_t i, j

cdef np.ndarray[dtype_t, ndim=1] A_row, B_col

for i in range(A.shape[0]):

A_row = A[i,:]

for j in range(B.shape[1]):

B_col = B[:, j]

out[i,j] = ddot(

A_row.shape[0],

<dtype_t*>A_row.data,

A_row.strides[0] // sizeof(dtype_t),

<dtype_t*>B_col.data,

B_col.strides[0] // sizeof(dtype_t))

This demonstrates how NumPy array data can be
passed to C code. Note that NumPy strides are in
number of bytes, while BLAS expects them in num-
ber of elements. Also, because the array variables are
typed, the “data” attributes are C pointers rather than
Python buffer objects.

Unfortunately, this results in a slowdown for moder-
ate n. This is due to the slice operations. Operations
like A_row = A[i,:] is a Python operation and re-
sults in Python call overhead and the construction of
several new objects. Cython is unlikely to ever opti-
mize slicing of np.ndarray variables because it should

2BLAS is an API with many implementations; the bench-
marks in this paper is based on using the open-source ATLAS
implementation, custom-compiled on the host by Sage [Sage].

remain possible to use subclasses of ndarray with a dif-
ferent slicing behaviour3. The new memory view type,
discussed below, represents a future solution to this
problem. Another solution is to do the slice calcula-
tions manually and use C pointer arithmetic:

out[i,j] = ddot(

A.shape[1],

<dtype_t*>(A.data + i*A.strides[0]),

A.strides[1] // sizeof(dtype_t),

<dtype_t*>(B.data + j*B.strides[1]),

B.strides[0] // sizeof(dtype_t))

This version leads to over 1300 times speedup over pure
Python in the optimal, in-cache situation. This is due
to BLAS using the SSE2 instruction set, which enables
doing two double-precision floating point multiplica-
tions in one CPU instruction. When non-contiguous
arrays are used the performance drops to 970 times
that of pure Python (in-cache) as SSE2 can no longer
be used.

For more advanced array data passing, Cython makes
it easy to make use of NumPy’s C API. Consider for
instance a custom C library which returns a pointer
to some statically allocated data, which one would like
to view as a NumPy array. Using Cython and the
NumPy C API this is easily achieved:

cimport numpy as np

cdef extern from "mylib.h":

cdef int get_my_data(double** out_data,

int* out_size)

def my_data_as_ndarray():

cdef np.npy_intp* shape = [0]

cdef int arr_length

cdef double* arr_ptr

if get_my_data(&arr_ptr, &arr_length) != 0:

raise RuntimeError("get_my_data failed")

shape[0] = arr_length

return np.PyArray_SimpleNewFromData(1, shape,

np.NPY_DOUBLE, <void*>arr_ptr)

SSE and vectorizing C compilers

What about using SSE directly in a Cython program?
One possibility is to use the SSE API of the C com-
piler. The details varies according to the C compiler
used, but most C compilers offers a set of special func-
tions which corresponds directly to SSE instructions.
These can be used as any other C function, also from
Cython code. In general, such code tends to be some-
what more complicated, as the first element in every
loop must be treated as a special case (in case the el-
ements involved are not aligned on 128-bit boundaries
in memory, as required by SSE). We have not included
code or benchmarks for this approach.

Another popular approach to SSE is to use a “vectoriz-
ing” C compiler. For instance both Intel’s C compiler,
[ICC], and the GNU C compiler, [GCC], can recognize

3This principle has of course already been violated, as one
could change the behaviour of the element indexing in a sub-
class as well. The policy is however not to go further in this
direction. Note also that only indexing with typed integer vari-
ables is optimized; A[i, some_untyped_var] is not optimized as
the latter index could e.g. point to a Python slice object.

c©2009, D. Seljebotn 18

Proceedings of the 8th Python in Science Conference (SciPy 2009)

certain loops as being fit for SSE optimization (and
other related optimizations). Note that this is a non-
trivial task as multiple loop iterations are combined,
and the loop must typically be studied as a whole. Un-
fortunately, neither ICC v. 11 nor GCC v. 4.3.3 man-
aged to vectorize the kind of code Cython outputs by
default. After some manual code massaging we man-
aged to have ICC compile a vectorized version which
is included in the benchmarks. We did not manage to
get GCC to vectorize the kind of sum-reduce loop used
above.

It appears that Cython has some way to go to be able
to benefit from vectorizing C compilers. Improving
Cython so that the generated C code is more easily
vectorizable should be possible, but has not been at-
tempted thus far. Another related area of possible
improvement is to support generating code containing
the C99 restrict modifier, which can be used to provide
guarantees that arrays do not overlap. GCC (but not
ICC) needs this to be present to be able to perform
vectorization.

Linear time: Comparisons with NumPy

We turn to some examples with linear running time.
In all cases the computation can easily be expressed in
terms of operations on whole arrays, allowing compar-
ison with NumPy.

First, we consider finding elements with a given value
in a one-dimensional array. This operation can be per-
formed in NumPy as:

haystack = get_array_data()

result = np.nonzero(haystack == 20)

This results in a array of indices, listing every element
equal to 20. If the goal is simply to extract the first
such element, one can instead use a very simple loop in
Cython. This avoids constructing a temporary array
and the result array. A simple Cython loop then per-
formed about five times faster than the NumPy code in
our benchmarks. The point here is merely that Cython
allows easily writing code specifically tailored for the
situation at hand, which sometimes can bring speed
benefits.

Another example is that of operating on a set of array
elements matching some filter. For instance, consider
transforming all 2D points within a given distance from
zero:

Point_dtype = np.dtype([(’x’, np.float64),

(’y’, np.float64)])

points = load_point_data(filename, Point_dtype)

radius = 1.2

tmp = points[’x’]**2

tmp += points[’y’]**2

pointset = tmp < radius**2

points[’x’][pointset] *= 0.5

points[’y’][pointset] *= 0.3

This code uses a number of temporary arrays to per-
form the calculation. In an in-cache situation, the
overhead of constructing the temporary Python arrays
becomes noticeable. In an out-of-cache situation, the

data has to be transported many times over the mem-
ory bus. The situation is worsened by using a record
array (as more data is transported over the bus in to-
tal, and less cache becomes available). Using separate
arrays for x and y results in a small speedup; both
array layouts are included in the benchmarks.

A Cython loop is able to do the operation in a single
pass, so that the data is only transported once:

cdef packed struct Point:

np.float64_t x, y

def transform_within_circle(np.ndarray[Point] points,

np.float64_t radius):

cdef Py_ssize_t i

cdef Point p

cdef np.float64_t radius_sq = radius**2

for i in range(points.shape[0]):

p = points[i]

if p.x**2 + p.y**2 < radius_sq:

p.x *= 0.5

p.y *= 0.3

points[i] = p

This is 10 times faster than the NumPy code for a large
data set, due to the heavily reduced memory bus traf-
fic. NumPy also uses twice as much memory due to the
temporaries. If the data set is several gigabytes, then
the additional memory used by NumPy could mean
the difference between swapping and not swapping to
disk. For Cython, operating on separate x and y arrays
is slightly slower. See table 2.

Finally, it would have been possible to separate the
filter and the transform by passing a callback to be
called in each iteration in the loop. By making use
of Cython extension type classes, which have faster
method dispatches than Python classes, the penalty of
such an approach is only around 20-25%. [Tutorial]
demonstrates such callbacks.

Million elements processed per second

2× 10
7 element test set

Records Seperate

Python loop 0.028 0.069

NumPy 9.5 10

Cython plain 95 79

Cython optimized 110 100

Cython w/callback 79 73

Table 2: Benchmarks for operating on points within
a circle. The optimized Cython version and the
callback version both has boundscheck/wraparound

turned off and mode=’c’ specified. All benchmarks
on an Intel Xeon 3.2 GHz, 2 MB cache. All points
were within the circle in the test data set.

Parallel computation

When discussing parallel computation there is an im-
portant distinction between shared-memory models
and message passing models. We start with discussing

19 http://conference.scipy.org/proceedings/SciPy2009/paper_2

http://conference.scipy.org/proceedings/SciPy2009/paper_2

Fast numerical computations with Cython

the shared memory case. A common approach in par-
allel numerical code is to use OpenMP. While not diffi-
cult to support in principle, OpenMP is currently not
available in Cython. Instead, Python threads must be
used. This comes with some problems, but they can
be worked around.

Threads is a problem with CPython because every op-
eration involving a Python object must be done while
holding the Global Interpreter Lock (GIL). The result
is that pure Python scripts are typically unable to uti-
lize more than one CPU core, even if many threads
are used. It should be noted that for many computa-
tional scripts this does not matter. If the bulk of the
computation happens in wrapped, native code (like in
the case of NumPy or SciPy) then the GIL is typ-
ically released during the computation. For Cython
the situation is worse. Once inside Cython code, the
GIL is by default held until one returns to the Python
caller. The effect is that threads doesn’t switch at all.
Whereas a pure Python script will tend to switch be-
tween threads on a single CPU core, a Cython program
will by default tend to not switch threads at all.

The solution is to use Cython language constructs to
manually release the GIL. One can then achieve proper
multi-threading on many cores. The catch is that no
Python operations are allowed when the GIL is re-
leased; for instance, all variables used must be typed
with a C type. Optimized NumPy array lookups are
allowed. The Cython compiler will help enforce these
rules. Example:

@cython.boundscheck(False)

def find_first(np.ndarray[np.int64_t] haystack,

np.int64_t needle):

cdef Py_ssize_t i, ret = -1

with nogil:

for i from 0 <= i < haystack.shape[0]:

if haystack[i] == needle:

ret = i; break

return ret

Without nogil, invocations from separate threads
would be serialized. Returning the result is a Python
operation, so that has to be put outside of the nogil

block . Furthermore, boundscheck must be turned
off as raising an IndexError would require the GIL4.
[Docs] contains further information on the various
primitives for managing the GIL (search for “nogil”).

The message passing case is much simpler. Several
Python interpreters are launched, each in its own pro-
cess, so that the GIL is not an issue. A popular ap-
proach is mpi4py [mpi4py], together with an MPI im-
plementation (such as OpenMPI [OpenMPI]). mpi4py
very conveniently allows passing full Python objects
between computational nodes through Python pick-
ling5. It is also possible to efficiently pass NumPy
arrays. mpi4py is itself written in Cython, and ships
with the Cython compile-time definitions necessary to
communicate directly with the underlying MPI C API.
It is thus possible to use both interchangeably:

4Finally, a different for loop syntax must be used, but this
restriction will disappear in Cython 0.12.

from mpi4py import MPI

from mpi4py cimport MPI

from mpi4py cimport mpi_c

cdef MPI.Comm comm = MPI.COMM_WORLD

if comm.Get_rank() == 0:

High-level send of Python object

comm.send({’a’: any_python_object, ’b’: other},

to=1)

for <...a lot of small C-typed messages...>:

Fast, low-level send of typed C data

mpi_c.MPI_Send(<...>, comm.ob_mpi)

elif ...

This is useful e.g. in situations where one wants to
pass typed Cython variables and does not want to
bother with conversion back and forth to Python ob-
jects. This also avoids the overhead of the Python
call to mpi4py (although in practice there is likely to
be other, larger bottlenecks). While contrived, this
example should demonstrate some of the flexibility of
Cython with regards to native libraries. mpi4py can
be used for sending higher-level data or a few big mes-
sages, while the C API can be used for sending C data
or many small messages.

The same principle applies to multi-threaded code:
It is possible, with some care, to start the threads
through the Python API and then switch to e.g. native
OS thread mutexes where any Python overhead would
become too large. The resulting code would however
be platform-specific as Windows and Unix-based sys-
tems have separate threading APIs.

Conclusions and future work

While the examples shown have been simple and in
part contrived, they explore fundamental properties of
loops and arrays that should apply in almost any real-
world computation. For computations that can only
be expressed as for-loops, and which is not available in
a standard library, Cython should be a strong candi-
date. Certainly, for anything but very small amounts
of data, a Python loop is unviable. The choice stands
between Cython and other natively compiled technolo-
gies. Cython may not automatically produce quite as
optimized code as e.g. Fortran, but we believe it is fast
enough to still be attractive in many cases because of
the high similarity with Python. With Cython and
NumPy, copying of non-contiguous arrays is always
explicit, which can be a huge advantage compared to
some other technologies (like Fortran) when dealing
with very large data sets.

For the algorithms which are expressible as NumPy
operations, the speedup is much lower, ranging from
no speedup to around ten times. The Cython code
is usually much more verbose and requires more deci-
sions to be made at compile-time. Use of Cython in

5In addition to normal Python classes, Cython supports a
type more efficient classes known as “extension types”. For effi-
ciency reasons these need explicit implementations provided for
pickling and unpickling. See “Pickling and unpickling extension
types” in [CPyPickle].

c©2009, D. Seljebotn 20

Proceedings of the 8th Python in Science Conference (SciPy 2009)

these situations seems much less clear cut. A good ap-
proach is to prototype using pure Python, and, if it is
deemed too slow, optimize the important parts after
benchmarks or code profiling.

Cython remains in active development. Because of
the simple principles involved, new features are often
easy to add, and are often the result of personal itch-
scratching. Sometimes the experience has been that
it is quicker to add a feature to Cython than to re-
peatedly write code to work around an issue. Some
highlights of current development:

• Support for function-by-function profiling through
the Python cProfile module was added in 0.11.3.

• Inner functions (closures) are maturing and will be
released soon.

• Cython benefited from two Google Summer of Code
[GSoC] projects over summer of 2009, which will
result in better support for calling C++ and Fortran
code.

One important and often requested feature for numer-
ical users is template support. This would make it
possible to make a single function support all array
data types, without code duplication. Other possible
features are improved parallel programming support,
like OpenMP primitives. While no work is currently
going on in these areas, the Cython developers remain
conscious about these shortcomings.

One important future feature for numerical users is
the new memory view type. K. W. Smith and D. S.
Seljebotn started work on this in summer 2009 as part
of Smith’s Google Summer of Code.

The new Python buffer protocol based on PEP 3118
promise a shift in focus for array data. In Python 2.6
and greater, any Python object can export any array-
like data to natively compiled code (like Cython code)
in an efficient and standardized manner. In some re-
spects this represents adoption of some NumPy func-
tionality into the Python core. With this trend, it
seems reasonable that Cython should provide good
mechanisms for working with PEP 3118 buffers inde-
pendently of NumPy. Incidentally, this will also pro-
vide a nice unified interface for interacting with C and
Fortran arrays in various formats. Unlike NumPy,
PEP 3118 buffers also supports pointer indirection-
style arrays, sometimes used in C libraries.

With this new feature, the matrix multiplication rou-
tine could have been declared as:

def matmul(double[:,:] A,

double[:,:] B,

double[:,:] out):

<...>

Using this syntax, a buffer is acquired from the ar-
guments on entry. The interface of the argument vari-
ables are entirely decided by Cython, and it is not pos-
sible to use Python object operations. NumPy array
methods like A.mean() will therefore no longer work.
Instead, one will have to call np.mean(A) (which will

work once NumPy supports PEP 3118). The advan-
tage is that when Cython defines the interface, further
optimizations can be introduced. Slices and arithmetic
operations are not currently subject for optimization
because of polymorphism. For instance, it would cur-
rently be impossible for Cython to optimize the mul-
tiplication operator, as it means different things for
ndarray and its subclass matrix.
A nice benefit of the chosen syntax is that individual
axis specifications becomes possible:

def matmul(double[:,::contig] A,

double[::contig,:] B,

double[:,:] out):

<...>

Here, A is declared to have contiguous rows, without
necessarily being contiguous as a whole. For instance,
slicing along the first dimension (like A[::3,:]) would
result in such an array. The matmul function can still
benefit from the rows being declared as contiguous. Fi-
nally, we contemplate specific syntax for automatically
making contiguous copies:

def matmul(in double[:,::contig] A,

in double[::contig,:] B,

double[:,:] out):

<...>

This is particularly convenient when interfacing with
C or Fortran libraries which demand such arrays.
Once basic memory access support is supported, it be-
comes possible to add optimizations for whole-array
“vectorized” operations. For instance, this example
could be supported:

cdef extern from "math.h":

double sqrt(double)

def func(double[:] x, double[:] y):

return sqrt(x**2 + y**2)

This would translate into a loop over the elements of
x and y. Both a naive translation to C code, SSE
code, GPU code, and use of BLAS or various C++
linear algebra libraries could eventually be supported.
Whether Cython will actually move in this direction
remains an open question. For now we simply note
that even the most naive implementation of the above
would lead to at least a 4 times speedup for large arrays
over the corresponding NumPy expression; again due
to NumPy’s need for repeatedly transporting the data
over the memory bus.

Acknowledgments

DSS wish to thank Stefan Behnel and Robert Brad-
shaw for enthusiastically sharing their Cython knowl-
edge, and his advisor Hans Kristian Eriksen for helpful
advice on writing this article. Cython is heavily based
on [Pyrex] by Greg Ewing. The efficient NumPy array
access was added to the language as the result of finan-
cial support by the Google Summer of Code program
and Enthought Inc. The Centre of Mathematics for
Applications at the University of Oslo and the Python
Software Foundation provided funding to attend the
SciPy ’09 conference.

21 http://conference.scipy.org/proceedings/SciPy2009/paper_2

http://conference.scipy.org/proceedings/SciPy2009/paper_2

Fast numerical computations with Cython

References

[Wilbers] I. M. Wilbers, H. P. Langtangen, Å. Ødegård,
Using Cython to Speed up Numerical Python
Programs, Proceedings of MekIT’09, 2009.

[Ramach] P. Ramachandran et al., Performance
of NumPy, http://www.scipy.org/

PerformancePython.
[Tutorial] S. Behnel, R. W. Bradshaw, D. S. Selje-

botn, Cython Tutorial, Proceedings of the 8th
Python in Science Conference, 2009.

[Cython] G. Ewing, R. W. Bradshaw, S. Behnel, D. S.
Seljebotn, et al., The Cython compiler, http:

//cython.org.
[Pyrex] G. Ewing, Pyrex: C-Extensions for Python,

http://www.cosc.canterbury.ac.nz/greg.

ewing/python/Pyrex/

[Python] G. van Rossum et al., The Python language,
http://python.org.

[NumPy] T. Oliphant, http://numpy.scipy.org
[SciPy] E. Jones, T. Oliphant, P. Peterson, http://

scipy.org

[f2py] P. Peterson, f2py: Fortran to Python interface
generator, http://scipy.org/F2py.

[Weave] E. Jones, Weave: Tools for inlining C/C++
in Python, http://scipy.org/Weave.

[Instant] M. Westlie, K. A. Mardal, M. S. Alnæs, In-
stant: Inlining of C/C++ in Python http://

fenics.org/instant.
[Psyco] A. Rigo, Psyco: Python Specializing Compiler.

http://psyco.sourceforge.net.
[Sage] W. Stein et al., Sage Mathematics Software,

http://sagemath.org/.

[BLAS] L. S. Blackford, J. Demmel, et al., An Up-
dated Set of Basic Linear Algebra Subpro-
grams (BLAS), ACM Trans. Math. Soft., 28-
2 (2002), pp. 135--151. http://www.netlib.

org/blas/

[ATLAS] C. Whaley and A. Petitet, Minimizing de-
velopment and maintenance costs in support-
ing persistently optimized BLAS, in Software:
Practice and Experience, 5, 2, 101-121, 2005,
http://math-atlas.sourceforge.net/

[GCC] The GNU C Compiler, http://gcc.gnu.

org/.
[ICC] The Intel C Compiler, http://software.

intel.com/en-us/intel-compilers/.
[mpi4py] L. Dalcin et al., mpi4py: MPI bind-

ings for Python, http://code.google.com/p/

mpi4py/.
[OpenMPI] Open MPI, http://open-mpi.org

[Docs] http://docs.cython.org

[directives] http://wiki.cython.org/enhancements/

compilerdirectives

[CPyAPI] Python/C API Reference Manual, http://

docs.python.org/c-api/

[CPyPickle] The Python pickle module. http://docs.

python.org/library/pickle.html

[PEP3118] T. Oliphant, C. Banks, PEP 3118 - Revising
the buffer protocol, http://www.python.org/

dev/peps/pep-3118.
[GSoC] The Google Summer of Code Program, http:

//code.google.com/soc.

c©2009, D. Seljebotn 22

http://www.scipy.org/PerformancePython
http://www.scipy.org/PerformancePython
http://www.scipy.org/PerformancePython
http://www.scipy.org/PerformancePython
http://cython.org
http://cython.org
http://cython.org
http://cython.org
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex/
http://python.org
http://python.org
http://numpy.scipy.org
http://numpy.scipy.org
http://scipy.org
http://scipy.org
http://scipy.org
http://scipy.org
http://scipy.org/F2py
http://scipy.org/F2py
http://scipy.org/Weave
http://scipy.org/Weave
http://fenics.org/instant
http://fenics.org/instant
http://fenics.org/instant
http://fenics.org/instant
http://psyco.sourceforge.net
http://psyco.sourceforge.net
http://sagemath.org/
http://sagemath.org/
http://www.netlib.org/blas/
http://www.netlib.org/blas/
http://www.netlib.org/blas/
http://www.netlib.org/blas/
http://math-atlas.sourceforge.net/
http://math-atlas.sourceforge.net/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://gcc.gnu.org/
http://software.intel.com/en-us/intel-compilers/
http://software.intel.com/en-us/intel-compilers/
http://software.intel.com/en-us/intel-compilers/
http://software.intel.com/en-us/intel-compilers/
http://code.google.com/p/mpi4py/
http://code.google.com/p/mpi4py/
http://code.google.com/p/mpi4py/
http://code.google.com/p/mpi4py/
http://open-mpi.org
http://open-mpi.org
http://docs.cython.org
http://docs.cython.org
http://wiki.cython.org/enhancements/compilerdirectives
http://wiki.cython.org/enhancements/compilerdirectives
http://wiki.cython.org/enhancements/compilerdirectives
http://wiki.cython.org/enhancements/compilerdirectives
http://docs.python.org/c-api/
http://docs.python.org/c-api/
http://docs.python.org/c-api/
http://docs.python.org/c-api/
http://docs.python.org/library/pickle.html
http://docs.python.org/library/pickle.html
http://docs.python.org/library/pickle.html
http://docs.python.org/library/pickle.html
http://www.python.org/dev/peps/pep-3118
http://www.python.org/dev/peps/pep-3118
http://www.python.org/dev/peps/pep-3118
http://www.python.org/dev/peps/pep-3118
http://code.google.com/soc
http://code.google.com/soc
http://code.google.com/soc
http://code.google.com/soc

Proceedings of the 8th Python in Science Conference (SciPy 2009)

High-Performance Code Generation Using CorePy

Andrew Friedley (afriedle@indiana.edu) – Indiana University, USA

Christopher Mueller (chemuell@indiana.edu) – Indiana University, USA

Andrew Lumsdaine (lums@indiana.edu) – Indiana University, USA

Although Python is well-known for its ease of use, it
lacks the performance that is often necessary for
numerical applications. As a result, libraries like
NumPy and SciPy implement their core operations
in C for better performance. CorePy represents an
alternative approach in which an assembly language
is embedded in Python, allowing direct access to
the low-level processor architecture. We present
the CoreFunc framework, which utilizes CorePy to
provide an environment for applying element-wise
arithmetic operations (such as addition) to arrays
and achieving high performance while doing so. To
evaluate the framework, we develop and experiment
with several ufunc operations of varying complexity.
Our results show that CoreFunc is an excellent tool
for accelerating NumPy-based applications.

Python is well-known for its ease of use, and has an
excellent collection of libraries for scientific computing
(e.g., NumPy, SciPy). However, Python does not have
the performance that is necessary for numerical appli-
cations. Many Python libraries work around this by
implementing performance-critical functionality in an-
other language. NumPy for example implements many
of its operations in C for better performance. Fur-
thermore, modern processor architectures are adding
functionality (e.g. SIMD vector extensions, highly spe-
cialized instructions) that cannot be easily exploited in
existing languages like C or Python.

CorePy is a tool (implemented as a Python library)
aimed at providing direct access to the processor archi-
tecture so that developers can write high-performance
code directly in Python.

To make CorePy more accessible to scientific applica-
tions, we have developed a framework for implement-
ing NumPy ufunc operations (element-wise arithmetic
operations extended to arrays) using CorePy. Al-
though some performance gains can be had for the ex-
isting ufunc operations, we have found that our frame-
work (referred to as CoreFunc) is most useful for devel-
oping custom ufuncs that combine multiple operations
and take advantage of situation-specific optimizations
to obtain better performance. To evaluate our frame-
work, we use examples ranging from addition, to vector
normalization, to a particle simulation kernel.

Accelerated NumPy Ufuncs

NumPy is a Python library built around an advanced
multi-dimensional array object. Simple arithmetic
such as addition and multiplication are supported as
element-wise operations over the array class; these op-
erations are referred to as ufuncs. Ufunc operations are

implemented in C and invoked directly from Python.
Although ufuncs are a powerful and convenient tool
for working with data in arrays, they incur significant
performance overhead: computational kernels are built
using many ufunc calls, each of which makes a pass
over its input arrays and sometimes allocates a new
temporary array to pass on to later operations. When
the input/output arrays do not fit entirely into cache,
data must be transferred multiple times to and from
memory, creating a performance bottlneck.

The Numexpr library [Numexpr], part of the SciPy
project, addresses this problem by evaluating an arith-
metic expression (e.g. a+ b ∗ c) expressed as a string.
The arrays to be processed are broken down into
smaller blocks which fit entirely into the processor’s
cache. An optimized loop is generated (in C) to per-
form the complete operation on one block before mov-
ing on to the next. A limitation of this approach
however, is that Numexpr relies on a compiler to take
advantage of advanced processor features (e.g., SIMD
vector extections). Although modern compilers are al-
ways improving, this approach does not give the user
the opportunity to introduce their own optimizations
that a compiler may not be capable of implementing.

To address the shortcomings of these existing ap-
proaches, we developed the CoreFunc framework, in
which CorePy is used as a backend for writing custom
ufunc operations. Our primary goal in developing this
framework was to create a system not just for accel-
erating the existing ufunc operations, but also to al-
low arbitrary custom operations to be defined to fully
optimize performance. By using CorePy, the Core-
Func framework makes the entire processor architec-
ture (e.g., vector SIMD instructions) available for use
in a ufunc operation. Furthermore, we take advan-
tage of multi-core functionality in recent processors by
splitting work across multiple threads. Each thread
runs in parallel, invoking the ufunc operation over a
sub-range of the arrays.

A seconday goal of the framework is to reduce the ef-
fort needed to implement optimized ufunc operations.
A CoreFunc user needs only to write code specific to
their operation. This is a distinct advantage over us-
ing a C module (and perhaps inline assembly) to im-
plement custom ufunc operations, in which case a user
must also implement and debug a significant amount
of auxiliary code, distracting from the task at hand.

The CoreFunc framework interface consists of only two
functions. The first, gen_ufunc, generates the code to
perform a ufunc operation on a specific datatype. We
require that a separate code segment be generated for
each data type the ufunc should support. The imple-
mentation of the operation can vary greatly from type

23 A. Friedley, C. Mueller, A. Lumsdainein Proc. SciPy 2009, G. Varoquaux, S. van der Walt, J. Millman (Eds), pp. 23–29

afriedle@indiana.edu
chemuell@indiana.edu
lums@indiana.edu

High-Performance Code Generation Using CorePy

to type due to varying processor capabilities and avail-
able instructions. Three code segments are needed for
a ufunc operation. The first is a vector/unrolled loop
body, which operates on multiple elements per loop it-
eration, and performs the majority of the work. When
fewer elements need to be processed than are handled
by a single iteration of the vector loop body, a second
scalar loop body is used to process one element per ier-
ation. Lastly, a reduction operation is needed, and is
usually just a single instruction. gen_ufunc generates
the surrounding loop initialization, flow control code,
ands atomic reduction operations to support multi-
core parallelism. A synthetic program is returned that
can be invoked directly by NumPy to perform an op-
eration on a specific array and data type.

Once the code for a ufunc operation has been gener-
ated, the create_ufunc is used to create a complete
ufunc object. Synthetic programs for each data type to
be supported by the ufunc are combined into a single,
invocable ufunc object. Rather than calling synthetic
programs directly, a C-based wrapper function is in-
troduced to split work among multiple threads to run
on multiple cores.

Ufuncs created using the CoreFunc framework behave
very similarly to NumPy’s built-in ufuncs. The fol-
lowing example shows the use of both the NumPy and
CoreFunc addition implementations:

>>> import numpy

>>> import corefunc

>>> a = numpy.arange(5, dtype=numpy.int32)

>>> b = numpy.arange(5, dtype=numpy.int32)

NumPy ufunc

>>> numpy.add(a, b)

array([0, 2, 4, 6, 8], dtype=int32)

CorePy ufunc

>>> corefunc.add(a, b)

array([0, 2, 4, 6, 8], dtype=int32)

Reduction works in the same way, too:
>>> corefunc.add.reduce(a)

10

CorePy

Before evaluating applications of the CoreFunc frame-
work, an a brief introduction to CorePy is necessary.
The foundation of CorePy is effectively an object-
oriented assembler embedded in Python; more ad-
vanced and higher-level abstractions are built on top
of this to assist with software development. Assembly-
level elements such as Instructions, registers, and other
processor resources are represented as first-class ob-
jects. These objects are combined and manipulated
by a developer to generate and transform programs on
the fly at run-time. Machine-level code is synthesized
directly in Python; no external compilers or assemblers
are required.

The following is a simple example that defines a syn-
thetic program to compute the sum 31+11 and returns
the correct result:

Create a simple synthetic program

>>> prgm = x86_env.Program()

>>> code = prgm.get_stream()

Synthesize assembly code

>>> code += x86.mov(prgm.gp_return, 31)

>>> code += x86.add(prgm.gp_return, 11)

>>> prgm += code

Execute the synthetic program

>>> proc = Processor()

>>> result = proc.execute(prgm)

>>> print result

42

The first line of the example creates an empty
Program object. Program objects manage resources
such as register pools, label names, and the code it-
self. The code in a synthetic program consists of
a sequence of one or more InstructionStream ob-
jects, created using the Program’s get_stream factory
method. InstructionStream objects (effectively code
segments) are containers for instructions and labels.
The x86 mov instruction is used to load the value 31

into the special gp_return register. CorePy returns
the value stored in this register after the generated pro-
gram is executed. Next, and add instruction is used
to add the value 11 to the return register. With code
generation completed, the instruction stream is added
into the program. Finally, a Processor object is cre-
ated and used to execute the generated program. The
result, 42, is stored and printed.

CorePy is more than just an embedded assembler; a
number of abstractions have been developed to make
programming easier and faster. Synthetic Expressions
[CEM06] overload basic arithmetic operators such that
instead of executing the actual arithmetic operation,
assembly code representing the operation is gener-
ated and added to an instruction stream. Similarly,
synthetic iterators [CEM06] can be used to generate
assembly-code loops using Python iterators and for-
loop syntax. Specialized synthetic iterators can auto-
matically unroll, vectorize, or parallelize loop bodies
for better performance.

General code optimization is possible using an instruc-
tion scheduler transformation [AWF10] (currently only
available for Cell SPU architecture). In addition to
optimizing individual instruction streams, the instruc-
tion scheduler can be used to interleave and optimize
multiple independent streams. For example, the sine
and cosine functions are often called together (e.g., in
a convolution algorithm). The code for each function
can be generated separately, then combined and op-
timized to achieve far better performance. A similar
approach can be used for optimizing and interleaving
multiple iterations of an unrolled loop body.

c©2009, A. Friedley, C. Mueller, A. Lumsdaine 24

Proceedings of the 8th Python in Science Conference (SciPy 2009)

Evaluation

To evaluate the effectiveness of the CoreFunc frame-
work we consider two ufunc operations, addition and
vector normalization. In addition, we implement the
computational kernel portion of an existing particle
simulation as a single ufunc operation.

Addition Ufunc

We implemented the addition ufunc to provide a direct
comparison to an existing NumPy ufunc and demon-
strate how the framework is used. Below is the Core-
Func implementation for 32-bit floating point addition:

def gen_ufunc_add_float32():

def vector_fn(prgm, r_args):

code = prgm.get_stream()

code += x86.movaps(xmm0, MemRef(r_args[0]))

code += x86.addps(xmm0, MemRef(r_args[1]))

code += x86.movntps(MemRef(r_args[2]), xmm0)

return code

def scalar_fn(prgm, r_args):

code = prgm.get_stream()

code += x86.movss(xmm0, MemRef(r_args[0]))

code += x86.addss(xmm0, MemRef(r_args[1]))

code += x86.movss(MemRef(r_args[2]), xmm0)

return code

return gen_ufunc(2, 1, vector_fn, scalar_fn, 4,

x86.addss, ident_xmm_0, XMMRegister, 32)

First, note that very little code is needed in addition
to the instructions that carry out the actual operation.
The CoreFunc framework abstracts away unnecessary
details, leaving the user free to focus on implementing
their ufunc operations.

SIMD (Single-Instruction Multiple-Data) instructions
simultaneously perform one operation on multiple val-
ues (four 32-bit floating point values in this case).
x86 supports SIMD instructions using SSE (Streaming
SIMD Extensions). In the above example, the movaps

and movntps instructions load and store four contigu-
ous floating point values to/from a single SIMD reg-
ister. The addps instruction then performs four addi-
tions simultaneously. scalar_fn uses scalar forms of
the same instructions to process one element at a time,
and is used when there is not enough work remaining
to use the vector loop. The gen_ufunc call generates
and returns the CorePy synthetic program, which is
later passed to create_ufunc.

Timings were taken applying the ufuncs to varying
array sizes. The average time to execute a varying
number of iterations (80 to 10, scaling with the ar-
ray length) at each array size was used to compute
the number of ufunc operations completed per second.
The system used contains two 1.86GHz Intel quad-
core processors with 4mb cache and 16gb of ram, run-
ning Redhat Enterprise Linux 5.2. Python v2.6.2 and
NumPy v1.3.0 were used.

Below, we compare the performance of NumPy’s addi-
tion ufunc to the CoreFunc implementation using vary-
ing numbers of cores. Higher results are better.

 0.1

 1

 10

 100

 1000

 10000

 10 100 1000 10000 100000 1e+06 1e+07 1e+08

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Array length (elements)

NumPy
CorePy 1 core

CorePy 2 cores
CorePy 4 cores
CorePy 8 cores

Single-core performance using CoreFunc is highly simi-
lar to NumPy-a simple operation like addition is mem-
ory bound, so computational differences in implemen-
tation have little impact. Due to vector size and align-
ment requirements, multiple threads/cores are not
used for array sizes less than 32 elements. We believe
the performance gain realized using multiple cores is
due to effectively having a larger processor cache for
the array data and increased parallelism in memory
requests, rather than additional compute cycles.

NumPy supports reduction as a special case of a nor-
mal ufunc operation in which one of the input arrays
and the output array are the same, and are one element
long. Thus the same loop is used for both normal op-
erations and reductions. CoreFunc generates code to
check for the reduction case and execute a separate
loop in which the accumulated result is kept in a reg-
ister during the operation. If multiple cores are used,
each thread performs the reduction loop on a sepa-
rate part of the input array, then atomically updates
a shared accumulator with its part of the result. The
performance comparison is below.

 1

 10

 100

 1000

 10000

 100000

 10 100 1000 10000 100000 1e+06 1e+07 1e+08

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Array length (elements)

NumPy
CorePy 1 core

CorePy 2 cores
CorePy 4 cores
CorePy 8 cores

Vector Normalization Ufunc

The second operation we examine is 2-D vector nor-
malization, which was chosen as a more complex oper-
ation to experiment with how custom ufunc operations
can achieve higher performance. The idea is that we

25 http://conference.scipy.org/proceedings/SciPy2009/paper_3

http://conference.scipy.org/proceedings/SciPy2009/paper_3

High-Performance Code Generation Using CorePy

can combine operations to eliminate temporary arrays,
and create opportunities for optimizations to better
utilize the processor. Using NumPy, vector normaliza-
tion is implemented in the following manner:

def vector_normalize(x, y):

l = numpy.sqrt(x**2 + y**2)

return (x / l, y / l)

Two arrays are taken as input, containing the respec-
tive x and y components for the vectors. Two arrays
are output with the same data organization.

In the figure below, we compare the NumPy imple-
mentation, a C implementation (compiled using full
optimizations with GCC 4.0.2), and the CoreFunc im-
plementation with progressive stages of optimization.
A single core is used for the CoreFunc results in this
example. We believe the NumPy and CoreFunc im-
plementations incur an overhead due to Python-level
function calls to invoke the ufuncs, as well as type/size
checking performed by NumPy. Otherwise, the C and
CoreFunc scalar implementations are highly similar.
NumPy is slightly slower due to additional overhead-
-each NumPy ufunc operation makes a pass over its
entire input arrays and creates a new temporary ar-
ray to pass to the next operation(s), rather than doing
all the processing for one element (or a small set of
elements) before moving on to the next.

 0.1

 1

 10

 100

 1000

 10 100 1000 10000 100000 1e+06 1e+07 1e+08

T
hr

ou
gh

pu
t (

M
op

s/
se

c)

Array length (elements)

NumPy
C

CoreFunc scalar
CoreFunc vector

CoreFunc optimized

We took advantage of CorePy’s wide open processor
access to progressively optimize the CoreFunc imple-
mentation. The scalar implementation shown in the
figure is very similar to the assembly generated by the
C code. SSE is used, but only scalar instructions--
the code does not take advantage of SIMD vectoriza-
tion. The CoreFunc vector implementation does how-
ever, resulting in significant performance gains. The
same instruction sequence as the scalar implementa-
tion was used; we merely switched to the vector forms
of the same instructions. Finally, we optimized the
instruction sequence itself by taking advantage of the
SSE reciprocal square-root function. This instruction
is significantly less accurate than the square-root in-
struction, so we implemented a single iteration of the
Newton-Raphson algorithm as suggested in [AMD09]
section 9.11 to increase accuracy. [AMD09] suggests
that this approach is not IEEE-754 compliant, but that
the results are acceptable for most applications. Not

only is this approach quicker than a single square-root
instruction, we can also take advantage of the recipro-
cal square-root to convert the two division operations
to multiplication for even more performance.

Particle Simulation

A particle simulation application has been used in pre-
vious work [CEM06b] to show how CorePy can be
used to obtain speedups over a NumPy-based com-
putational kernel. To experiment with using the Core-
Func framework to implement an entire kernel inside a
single ufunc operation, we revisited the particle simu-
lation application. Below is a screenshot of the running
application:

The window forms a bounding box in which particles
are subjected to gravity and air resistance. If a par-
ticle collides with any of the sides, its velocity in the
appropriate axis is reversed, creating a bouncing ef-
fect. Particles are created interactively by moving the
mouse pointer inside the window; their initial veloc-
ity is determined based on the velocity of the mouse
movement.

A set of four arrays is used to represent the particles.
Two arrays contain the x and y components of the par-
ticle positions, while the other two arrays contain the
x and y components of the particle velocities. A fixed
length for the arrays limits the number of particles on
the screen; when the maximum number of particles is
reached, the oldest particle is replaced.

The simulation is organized into a series of timesteps
in which each particle’s velocity and position is up-
dated. A single timestep consists of one execution of
the computational kernel at the core of the simulation.
First, the particles’ velocities are updated to account
for forces imposed by gravity and air resistance. The
updated velocity is then used to update each particle’s
position. Next, collision detection is performed. If any
particle has moved past the boundaries of the window,
its velocity component that is normal to the crossed
boundary is negated. Bounces off the bottom edge,
or floor, are dampened by scaling the value of the ve-
locity y component. Implementation of the simulation
in NumPy is straightforward; ufuncs and supporting

c©2009, A. Friedley, C. Mueller, A. Lumsdaine 26

Proceedings of the 8th Python in Science Conference (SciPy 2009)

functions (e.g., where for conditionals) are used. Tem-
porary arrays are avoided when possible by using out-
put arguments to NumPy functions.

Our CoreFunc-based implementation moves all of the
particle update calculations into a ufunc operation; we
do this to evaluate whether this approach is a viable so-
lution for developing high-performance computational
kernels. The main loop uses SSE instructions to up-
date four particles at a time in parallel. The four
arrays are read and written only once per timestep;
temporary values are stored in registers. Collision de-
tection requires conditional updating of particle val-
ues. We achieved this without branches by using SSE
comparison and bitwise arithmetic instructions. The
following code performs collision detection for the left
wall using NumPy:

lt = numpy.where(numpy.less(pos_x, 0), -1, 1)

numpy.multiply(vel_x, lt, vel_x)

An optimized equivalent using SSE instructions looks
like the following:

x86.xorps(r_cmp, r_cmp)

x86.cmpnltps(r_cmp, r_pos_x)

x86.andps(r_cmp, FP_SIGN_BIT)

x86.orps(r_vel_x, r_cmp)

The first instruction above clears the temporary com-
parison register by performing an exclusive-OR against
itself (this is a common technique for initializing reg-
isters to zero on x86). The next instruction compares,
in parallel, the x components of the positions of four
particles against zero. If zero is not less than the x
component, all 1 bits are written to the part of the
comparison register corresponding to the x component.
Otherwise, 0 bits are written. To make the particles
bounce off the wall, the x velocity component needs to
be forced to a positive value. However, only those par-
ticles that have crossed the wall should be modified.
The ’truth mask’ generated by the compare instruc-
tion is bitwise AND’d with a special constant with only
the most significant bit (the floating point sign bit) of
each value set. This way, only those particles whose
direction needs to be changed are updated; particles
that have not crossed the boundary will have a cor-
responding value of zero in the temporary comparison
register. A bitwise OR operation then forces the sign
bit of the velocity x component to positive for only
those particles which have crossed the wall. Similar
code sequences are used for the other three walls.

Implementing the simulation using CoreFunc proved
to be straightforward, although getting the sequence
of bit-wise operations right for collision detection took
some creative thought and experimentation. The as-
sembly code has surprisingly direct mapping from the
NumPy code: this suggests that developing a set of
abstractions for generating code analogous to common
NumPy functions (i.e., where) would likely prove use-
ful. We compare the performance of the two imple-
mentations in the following chart:

 0.001

 0.01

 0.1

 1

 10

 100

500000250000100000500002500010000

T
im

e
(s

ec
on

ds
)

NumPy
CoreFunc

Timings were obtained by executing 100 timesteps in
a loop. The display code was disabled so that only
the simulation kernel was benchmarked. The sys-
tem used was a 2.33GHz Intel quad-core processor
with 4Mb cache. The operating system was Ubuntu
9.04; distribution-provided builds of Python 2.5.2 and
NumPy 1.1.1 were used. Lower results indicate better
performance.

Both implementations scale linearly with the number
of particles, but the CoreFunc implementation is as
much as two orders of magnitude (100x) faster. Even
though the CoreFunc effort took more time to imple-
ment, this time pays off with a significant speedup. We
conclude that our approach is suitable for development
of simple to fairly complex computational kernels.

Conclusion

We have introduced the CoreFunc framework, which
leverages CorePy to enable the development of highly
optimized ufunc operations. Our experimentation
with ufuncs of varying complexity shows that our
framework is an effective tool for developing custom
ufunc operations that implement significant portions
of a computational kernel. Results show that the most
effective optimizations are realized by combining sim-
ple operations together to make more effective use of
low-level hardware capabilities.

Complete source code for CorePy, the CoreFunc frame-
work, and a collection of sample ufunc implementa-
tions (including addition, vector normalization, and
particle simulation) are available via anonymous Sub-
version at www.corepy.org. Code is distributed under
BSD license.

Acknowledgements

Laura Hopkins and Benjamin Martin assisted in edit-
ing this paper. This work was funded by a grant from
the Lilly Endowment, and by the Google Summer of
Code program. Many thanks to Chris Mueller and
Stefan van der Walt, who supported and mentored the
CoreFunc project.

27 http://conference.scipy.org/proceedings/SciPy2009/paper_3

http://conference.scipy.org/proceedings/SciPy2009/paper_3

High-Performance Code Generation Using CorePy

[AMD09] Advanced Micro Devices (AMD). Software
Optimization Guide for AMD64 Proces-
sors, September 2005. http://developer.

amd.com/documentation/guides/ (Accessed
November 2009)

[Numexpr] D. Cooke, F. Alted, T. Hochberg, I. Valita,
and G. Thalhammer. Numexpr: Fast nu-
merical array expression evaluator for Python
and NumPy. http://code.google.com/p/

numexpr/ (Accessed October 2009)

[AWF10] A. Friedley, C. Mueller, and A. Lumsdaine.
Enabling code transformation via synthetic
composition. Submitted to CGO 2010.

[CEM06] C. Mueller and A. Lumsdaine. Expression and
loop libraries for high-performance code syn-
thesis. In LCPC, November 2006.

[CEM06b] C. Mueller and A. Lumsdaine. Runtime syn-
thesis of high-performance code from scripting
languages. In DLS, October 2006

c©2009, A. Friedley, C. Mueller, A. Lumsdaine 28

http://developer.amd.com/documentation/guides/
http://developer.amd.com/documentation/guides/
http://developer.amd.com/documentation/guides/
http://developer.amd.com/documentation/guides/
http://code.google.com/p/numexpr/
http://code.google.com/p/numexpr/
http://code.google.com/p/numexpr/
http://code.google.com/p/numexpr/

Proceedings of the 8th Python in Science Conference (SciPy 2009)

Convert-XY: type-safe interchange of C++ and Python containers for
NumPy extensions

Damian Eads (eads@soe.ucsc.edu) – University of California, 1156 High Street, Santa Cruz USA

Edward Rosten (er258@cam.ac.uk) – University of Cambridge, Trumpington Street, Cambridge UK

We present Convert-XY: a new, header-only tem-
plate library for converting containers between C++
and Python with a simple, succinct syntax. At compile-
time, template-based recursive pattern matching is
performed on the static structure of the C++ type
to build dynamic type checkers and conversion func-
tions.

Note: proper C++ syntax encloses template param-
eters with angle brackets. We omit the extra space
placed between two adjacent right brackets for space
purposes, e.g. vector<map<int, vector<int>>> in-
stead of vector<map<int, vector<int> > >.

Introduction

We present Convert-XY: a library for converting ar-
bitrary containers between C++ and Python. Here
is a simple “hello world” example of Convert-XY in
action; it converts a Python dictionary x to a C++
object y:

void hello_world(PyObject *x) {

map <string, vector<int>> y;

convert(x, y);

}

This function can be called from Python with a dic-
tionary (or any object obeying the mapping protocol)
with key objects that can be converted to strings and
sequence protocol objects containing objects that can
be converted to numbers:

hello_world({"a": [1,2,3], "b": (4,5),

"c": np.array([6,7]),

"d": (x for x in (8,9))})

At compile time, pattern matching is applied to the
structure of the C++ type of y. This yields two pieces
of information: how to check for compatible struc-
ture in the Python type (e.g. a dictionary mapping
strings to lists, tuples, arrays or sequences is com-
patible with map<string, vector<int>>) and which
set of converters is applicable (e.g. sequences vs.
dictionaries). Dynamic type checkers and converter
functions can be built with this static type infor-
mation at compile time. Further, the library stati-
cally determines when an array buffer pointer can be
reused, preventing unnecessary copying which can be
very useful for programs operating on large data sets.
LIBCVD, a popular computer vision library used in
our work, provides a BasicImage class, which can
be used to wrap two-dimensional image addressing
around a buffer pointer. Convert-XY avoids copying
and allocation by reusing the NumPy buffer pointer
whenever it can:

void example(PyObject *x) {

map <string, BasicImage<float>> y;

convert(x, y);

}

In this example, the type of the target object for con-
version is known at compile time; it’s an STL map.
The compiler’s template pattern matching algorithm
matches on the structure of this type to build a dy-
namic type checker to ensure every part of the source
Python object x follows compatible protocols, e.g. the
outermost part of x follows the mapping protocol. In
Python, we construct a dictionary of NumPy arrays
containing integers.:

def example():

hello = np.zeros((50,50), dtype=’i’)

x = {’hello’: hello}

Use your favorite wrapping tool to call C++

(e.g. Boost, Weave, Python C API)

cpp.example(x);

Since the buffer is reused in this example and the
NumPy array contains elements of a different type
than the BasicImage objects in the STL map, a
run time exception results, “Expected a contiguous

NumPy array of type code (f)”.

Unlike BasicImage objects, LIBCVD’s Image objects
allocate and manage their own memory. In this situa-
tion, the source x can be discontiguous and the array
elements can be of a different type than in the source
x.

Background

NumPy offers a succinct syntax for writing fast, vec-
torized numerical algorithms in pure Python. Low-
level operations on large data structures happen in
C, hidden from the user. The broader SciPy toolset
(SciPy, NumPy, Mayavi, Chaco, Traits, Matplotlib,
etc.) is a framework for developing scientific applica-
tions, simulations, GUIs, and visualizations [Jon01].
The simplicity and expressiveness of Python makes
scientific computation more accessible to traditionally
non-programmer scientists.

Writing extensions is tedious and inherently error-
prone, but sometimes necessary when an algorithm
can’t be expressed in pure Python and give good
performance. Additionally, a significant number of
physics and computer vision codes are already written
in C++ so Python/C++ integration is an unavoidable
problem in need of good solutions.

Interfacing between C/C++ and Python can mean
several different things; the figure illustrates three
cases. First, wrapping C/C++ functions exposes their

29 D. Eads, E. Rostenin Proc. SciPy 2009, G. Varoquaux, S. van der Walt, J. Millman (Eds), pp. 29–36

eads@soe.ucsc.edu
er258@cam.ac.uk

Convert-XY: type-safe interchange of C++ and Python containers for NumPy extensions

MyCppFunction(x,y,z)

Python Code

x y getX() getY()
MethodsAttributes

Point Class
C++ Code

Calling C++ Functions Wrapping C++ Classes Exposing
Python Interface

Figure 1 Existing tools expose C/C++ functions,
structures, and objects from Python and Python
functions and data from C/C++. Convert-XY con-
verts between arbitrary C++ and Python containers.

interface so they can be called from Python. This
is a well-explored problem with several mature tools
in mainstream use including Boost Python [Abr03],
SWIG [Bea95], Cython [Ewi08], Weave [Jon01], ctypes
[Hel00], Py++ [Yak09], and the Python C API
[GvR92] to name a few. Second, wrapping C++
structs and classes exposes user-defined data struc-
tures in Python. Boost, SWIG, and Py++ are very
well-suited to interface problems of this kind. Third,
exposing Python from C++ enables C++ code to
manipulate Python objects. PyCXX serves this pur-
pose. It wraps the Python Standard Library with
C++ classes, performing reference counting and mem-
ory management automatically using C++ language
features [Sco04].

map

string vector

BasicImage

float

dictionary

string list

NDArray

Numpy Float

C++ Python

Figure 2 Helper templates deduce sensible mappings
and conversion behavior between Python and C++
types at compile time.

Convert-XY is not meant to replace any of the other
extension tools because it addresses a different problem
altogether: how to convert objects between Python
and C++ automatically.

SWIG supports typemaps which enable the developer
to define how data is converted from Python to C++
and vice versa.:

namespace CVD {

template<class T> class BasicImage;

%typemap(in) BasicImage<float> {

// Conversion code goes here.

}

}

However the task of conversion must be specified man-
ually. Convert-XY is a solution which can be used
to automatically build converters for SWIG typemaps.

Differences in Type-checking

Python and C++ use fundamentally different type sys-
tems. In dynamic typing (Python), types are not pre-
specified and can change as the program runs. Thus,
checks for type errors happen at run time. In static
typing (C++), types never change throughout the ex-
ecution of a program so type errors are found at com-
pile time but type checks are omitted at run time be-
cause type correctness guarantees are made before the
program starts. The template facility within C++ is
a language in itself because templates are just com-
pile time programs. Templates can be used to express
sophisticated code generation and compile time logic.
Convert-XY exploits the template facility to build
conversion functions and dynamic type checkers for
converting between C++ and Python objects at com-
pile time.

Convert-XY

Convert-XY’s names and functions are declared
within the ConvertXY namespace. For the rest of
this paper, we assume its symbols have been imported
into the local namespace with using namespace

ConvertXY;. We will be explicit when introducing a
Convert-XY class or function for the first time.

The standard API for converting from a Python object
to a C++ object is:

// From Python to C++

void ConvertXY::convert(PyObject *x, CPPType &y);

Reference counts are updated to ensure a consistent
state in cases where the flow of execution returns to
Python during conversion.

The ConvertXY::convert function is also used to con-
vert from a C++ object back to a Python object; it
returns an unowned reference to the Python object it
creates:

// From C++ to Python

PyObject *ConvertXY::convert(CPPType &x);

In cases where an object of type CPPType does not sup-
port a default constructor, the ConvertXY::Holder

class can be used:

void convert(PyObject *x, Holder<CPPType> &y);

The Holder class defers construction until more in-
formation is known about the source x, e.g. its
dimensions, contiguity, or striding. A specialized
ConvertXY::ObjectFactory<CPPType> class invokes
a non-default constructor of CPPType with the infor-
mation needed for construction. For example, an im-
age size and buffer pointer are both needed to con-
struct a BasicImage object. The Holder class conve-
niently enables us to declare a target without immedi-
ately constructing its innards. For example,

c©2009, D. Eads, E. Rosten 30

Proceedings of the 8th Python in Science Conference (SciPy 2009)

void example(PyObject *x) {

Holder<BasicImage <float>> y;

convert(x, y);

BasicImage <float> &yr(y.getReference());

display_image(yr);

}

The BasicImage object in the Holder object is not
created until convert is called. The getReference()

method returns a BasicImage reference created
in convert. Holder ’s destructor destroys the
BasicImage object it contains. The display_image

function opens up a viewer window to display the im-
age. We assume that the control of execution never
returns to Python while the viewer is still open. In a
later section, we explain how to handle cases when this
cannot be safely assumed.

ToCPP and ToCPPBase classes

ConvertXY::ToCPPBase<CPPType, Action> and
ConvertXY::ToCPP<CPPType, PyType, Action>

are the most fundamental classes in Convert-XY.
Inheritence enables us to manage conversion between
statically-typed C++ objects and dynamically-typed
Python objects. The base class ToCPPBase assumes
a C++ type but makes no assumptions about a
Python type or protocol. Its derived class ToCPP

assumes the Python object follows a protocol or has
a specific type. There is a separate derived class
for each possible (C++, Python) type pair. This
effective design pattern mixes static polymorphism
(templates) and dynamic polymorphism (inheritence)
to properly handle two different typing paradigms.
The Action template argument specifies how the
conversion takes place; providing it is optional as an
action specification is automatically generated for you
by default.

::convert(PyObject *x)=0

ToCPP<T,PyList>

Base Class

ToCPP<T,PyTuple>

ToCPP<T,PySequence>

Derived Class

ToCPPDispatch<T>

ListCode TupleCode SeqCode

STL Map

Pure virtual

Finds appropriate
ToCPP<T,*> instance.

ToCPPBase<T>

::convert(PyObject *x) ::convert(PyObject *x)

::convert(PyObject *x)

dispatchMap

::convert(PyObject* x)

Base Class Derived Class Dispatcher Class

Performs conversion
given Python type

or protocol
assumptions

Figure 3 The fundamental design pattern of Convert-

XY: mixing dynamic polymorphism (inheritence)
and static polymorphism (templates). The
ToCPPDispatch class determines which types and
protocols are applicable, and finds the appropriate
ToCPP converter instance.

ConvertXY::ToCPPDispatch<CPPType, Action>

maintains an associative array between Python

object types/ protocols and ToCPP derived classes.
When the call convert(x,y) is compiled, pat-
tern matching is applied on the type of y to
recursively deduce which base converters could
be needed at run-time. The convert function calls
ToCPPDispatch<CPPType,Action>::getConverter(x),
which examines at run time the type and pro-
tocol information of the Python object x and
returns a ToCPP<CPPType,T,Action> instance as
a ToCPPBase<CPPType> reference, call it z. Then,
the code z.convert(x,y) converts x to y with type
assumptions of x (encoded with the type T) deduced
at run-time.

At compile time, a Python object is converted to a
C++ object of type CPPType, ToCPP classes are in-
stantiated recursively for each subpart of CPPType,
and this is repeated until no more containing types
remain. The end result from this recursive instantia-
tion is a compiled chain of converters for interchanging
C++ objects of a specific type. Figure 4 illustrates
how recursive instantiation works on a map<string,

vector<BasicImage<float>>>>.

ToCPPBase<map<string,

vector<BasicImage<float>>>>

ToCPPBase<string>

KeyConverter

ToCPPBase<vector<BasicImage<float>>>

ToCPPBase<BasicImage<float>>

ElementConverter

Non-terminal Converters

Terminal Converters

ValueConverter

Figure 4 Illustrates the process of instantiating
Convert classes recursively. In orange are non-
terminal converters which instantiate either non-
terminal or terminal converters, and in yellow, ter-
minal converters.

In most cases, the basic user will never need to use to
ObjectFactory, ToCPP, ToCPPBase, ToCPPDispatch,
or DefaultToCPPAction classes directly.

Default Conversion Actions

Some C++ array classes, such as LIBCVD’s
BasicImage, do not manage their own memory and
can reuse existing buffers such as ones coming from
a different language layer (e.g. Python) or special
memory from a device (e.g. a digital camera). These
are called reference array classes. There are two dif-
ferent ways to convert a NumPy array to a refer-
ence array object: copy the buffer pointer or copy
the data. ConvertXY::DefaultToCPPAction is a tem-
plated class for defining how each part of the conver-
sion chain happens; it serves a purpose only at compile
time. The typedef:

DefaultToCPPAction<map<string,

vector<BasicImage<float>>>>::Action

is expanded recursively, mapping the STL std::map

to the type:

31 http://conference.scipy.org/proceedings/SciPy2009/paper_4

http://conference.scipy.org/proceedings/SciPy2009/paper_4

Convert-XY: type-safe interchange of C++ and Python containers for NumPy extensions

Copy<Copy, Copy<Reuse>>

This compound type specifies that the string keys and
vector elements be copied but the buffer pointer to the
arrays should be reused. Figure 5 illustrates how this
recursive instantiation works.

DefaultToCPPAction<map<string,

 vector<Image<float>>>>::Action

KeyAction ValueAction

Copy<KeyAction,ValueAction>

DefaultToCPPAction

<string>::Action

DefaultToCPPAction

<vector<Image<float>>>::Action

Copy

Action Action

Copy<Copy, Copy<AllocateCopy>>

AllocateCopy

ActionDefaultToCPPAction

<Image<float>>::Action

Copy<ElementAction>

ElementAction

Action

Figure 5 The process of conversion is deduced
at compile time via recursive instantiation of
DefaultToCPPAction.

The process of conversion can be overridden by passing
as a template argument a different Action type. For
example, suppose the target BasicImage was allocated
from elsewhere (e.g. a special malloc function that
properly aligns buffers), we can override the default
conversion action (Reuse) so Copy<> is used as the
Action instead. The ConvertXY::convert_override

function can be used for this purpose:
void example(PyObject *x, BasicImage<float> &y) {

convert_override<Copy<>>(x, y);

}

Suppose a C++ object y of a compound container type
already exists, e.g. an object of type map<string,

BasicImage<float>>. In this case, the keys should
not be copied but we must ensure that the C++ map
contains exactly the same set of keys as the Python
dictionary. This is done by first checking that the size
of the dictionary is the same as the std::map and then
making sure each unique key in the dictionary is equiv-
alent to some unique key in the map.

The contents of a dictionary of arrays can be copied
into a std::map of existing BasicImage buffers as fol-
lows:

void example(PyObject *x,

map<string, BasicImage<float>> &y) {

convert_override

<CheckSize<CheckExists, Copy<>>>(x, y);

}

The CheckSize simple checks that the size of
the std::map and Python map are equivalent.
CheckExists ensures each key in the Python map is
also in the STL map.

Reference counting is automatically handled during
conversion with PyCXX. In cases where the flow of

execution may return to Python after conversion, Py-
CXX can be used to ensure objects that are in use by
C++ routines don’t get prematurely destroyed.:

void example(PyObject *x,

BasicImage<float> &y) {

// The line below is safe.

convert(x,y);

// However, if it can’t be guaranteed that program

// control flow will never return to Python

// for the rest of this function, use PyCXX’s

// Py::Object to increment the reference count.

Py::Object obj(x);

// If the flow of execution returns to Python while

// executing the function below, y will always point

// to a valid buffer.

compute(y);

}

The Other Way Around: from C++ to Python

When converting from C++ to Python, the type
structure of the target Python object must be
prespecified at compile time (e.g. the type of the
Python object to be created is static). This is not
straightforward since there is sometimes more than
one compatible Python type for a C++ type. For
example, an STL vector can be converted to a Python
list, tuple, or NumPy object array. In Convert-XY
this is deduced with a compile-time-only Structure

metatype deduced by recursive instantiation of
DefaultToPythonStructure<CPPType>::Structure.
Figure 6illustrates how DefaultToPythonStructure

is recursively instantiated to yield a default Python
target type.

ToPythonDefaultStructure<map<string,

vector<BasicImage<float>>>>::Structure

PyDict<KeyStructure,ValueStructure>

Structure

ToPythonDefaultStructure

<string>::Structure

PyString

Structure

KeyStructure

ToPythonDefaultStructure

<vector<BasicImage<float>>>::Structure

ElementStructure

ValueStructure

PyList<ElementStructure>

Default<BasicImage<float>>::Structure

ElementStructure

PyArray<npy_float>

Structure

Non-terminal Structure Type

Terminal Structure Type

Expanded typedef

PyDict<PyString,

 PyList<PyArray<npy_float>>>

Figure 6 The default Python type when converting
from C++ to Python is deduced by recursive instan-
tiation of ToPythonDefaultStructure<CPPType>.

As the figure illustrates, the default type for a Python
target given a source object that’s an STL map map-
ping string to vectors of images is PyDict<PyString,

PyList<PyArray<npy_float>>>. If a tuple is pre-
ferred over a list, the default structure can be overriden
as follows:

c©2009, D. Eads, E. Rosten 32

Proceedings of the 8th Python in Science Conference (SciPy 2009)

PyObject *y

= convert_override

<PyDict<PyString,

PyTuple<PyArray<npy_float>>>>(x)

If an attempt is made to convert a C++ object to a
Python object that’s incompatible, meaningful com-
piler messages can be generated via a trick involving
incomplete types:

in not_found.hpp:88:

’unsupport_type_or_structure’

has incomplete type

CannotConvertToPython<map<int,vector<int>>,PyInt>.

Allocating Result Arrays

One approach to allocating result arrays is to copy
the result (e.g. image or matrix) into a new NumPy
array. This overhead can be avoided using the
ConvertXY::allocate_numpy_array function. This
function is templated, and pattern matching is per-
formed on the C++ type to generate an alloca-
tor at compile time. In this example, when the
allocate_numpy_array function is called, NumPy
array and BasicImage object are allocated at the
same time, sharing the same buffer pointer. The
image is smoothed using the LIBCVD function
convolveGaussian, as illustrated on figure 7:

PyObject *smooth_image(PyObject *x, double radius) {

// First convert the NumPy array input image

// to a BasicImage<float>.

Holder<BasicImage <float>> y;

convert(x, y);

// Now allocate enough memory to store the

// result. Use the same buffer pointer for

// both the NumPy array and BasicImage.

Holder<BasicImage<float>> result;

PyObject *pyResult =

allocate_numpy_array(result,

y.getReference().size());

// Using LIBCVD, convolve a Gaussian on the

// converted input, store the result in the

// buffer pointed to by both pyResult and

// result.

CVD::convolveGaussian(y.getReference(),

result.getReference(),

radius);

return pyResult;

}

Libraries Supported

Convert-XY supports conversion between Python
and objects from several C++ libraries including
TooN, LIBCVD, and STL. The library is split into
three different headers, all of which are optional.

• ConvertXY/TooN.hpp: for converting between
NumPy arrays and TooN matrices and vectors.

• ConvertXY/STL.hpp: for converting between STL
structures and Python objects.

float buffer

BasicImage

data float*

PyArrayObject*

datafloat*

C++ Computation

Python
Computation

Figure 7 allocate_numpy_array constructs a new
Python and C++ array at the same time, to wit, a
NumPy array and a BasicImage object. The NumPy
array owns the buffer allocated so when its reference
count goes to zero, its memory buffer will be freed.

• ConvertXY/CVD.hpp: for converting between
NumPy arrays and CVD::Image C++ objects.

The compiler can convert combinations
of STL, CVD, and TooN structures (e.g.
vector<pair<BasicImage<float>,Matrix<>>>)
only when their respective headers are included
together.

Tom’s object-oriented Numerics Library (TooN)

TooN is a header-only linear algebra library that
is very fast on small matrices making it particu-
larly useful for real-time Computer Vision applications
[Dru03]. TooN provides templated classes for static
and dynamically-sized vectors and matrices, and uses
templated-based pattern matching to catch for com-
mon linear algebra errors at compile time. For exam-
ple, when converting the result of an a matrix multipli-
cation involving two matrices X and Y of incompatible
dimensions:

Matrix <3,5> X;

Matrix <6,3> Y;

PyObject *Z;

Z = convert(X * Y);

an easy-to-understand compiler error results,
“dimension_mismatch has incomplete type

SizeMismatch<5,6>”.

Dimension checking is performed at compile time even
when some dimensions are not known beforehand as
the following example shows:

Matrix <Dynamic,5> X;

Matrix <6,Dynamic> Y;

PyObject *Z;

Z = convert(X * Y);

If a dimension check passes at compile time, it is omit-
ted at run time. A buffer pointer of a NumPy array
can be reused in a TooN::Matrix by specifying a lay-
out type as the third template argument to Matrix

(which is matched with DefaultAction):

33 http://conference.scipy.org/proceedings/SciPy2009/paper_4

http://conference.scipy.org/proceedings/SciPy2009/paper_4

Convert-XY: type-safe interchange of C++ and Python containers for NumPy extensions

void example(PyObject *x) {

Holder<Matrix <Dynamic,

Dynamic,

Reference::RowMajor>> y;

convert(x, y);

cout << "The matrix is: "

<< y.getReference() << endl;

}

Calling the function above from Python with a very
large NumPy array incurs practically no overhead be-
cause the NumPy array buffer pointer is copied.

Cambridge Video Dynamics Library (LIBCVD)

LIBCVD is a C++ library popular in the frame-
rate, real-time computer vision community [Ros04].
The three main classes of the library are BasicImage,
Image, and ImageRef. The base class BasicImage

does not manage its own memory and can reuse buffer
pointers from other objects such as NumPy arrays.
The Image class inherits from the BasicImage, allo-
cates its own memory, keeps a reference count of the
number of Image objects referring to it, and deletes
its buffer when the reference count drops to zero.
ImageRef is simply a location in an image, i.e. an
(x,y) pair. Image inherits from BasicImage so algo-
rithms can be written to generically operate on both
Image and BasicImage objects. Invoking size() on
an image returns an ImageRef. The ImageRef objects
are also used to index the image.

LIBCVD contains many of the most common image
processing algorithms including convolution, morphol-
ogy, camera calibration and connected components. It
can load and process streaming video in many formats
as well as PNG, JPEG, BMP, and PNM image for-
mats.

The example below converts a NumPy array to a Ba-
sicImage, finds all local maxima within a 3 by 3 win-
dow above a threshold, converts the result to a Python
object, and returns it:

template <class T>

PyObject* large_local_maxima(PyObject *pyImage,

PyObject *pyThresh) {

Holder<BasicImage<T>> image;

double thresh;

convert(pyImage, image);

convert(pyThresh, thresh);

BasicImage<T> &I(image.getReference());

vector<ImageRef> maxima;

for(int y=1; y < I.size().y-1; y++)

for(int x=1; x < I.size().x-1; x++) {

T ctr = I[y][x];

if(ctr > thresh && ctr > I[y-1][x-1] &&

ctr > I[y-1][x] && ctr > I[y-1][x+1] &&

ctr > I[y][x-1] && ctr > I[y][x+1] &&

ctr > I[y+1][x-1] && ctr > I[y+1][x] &&

ctr > I[y+1][x+1]) {

maxima.push_back(ImageRef(x, y));

}

}

}

return convert(maxima);

}

The example shows that with LIBCVD’s lightweight,
simple design, computer vision codes can be written
in C++ succinct with good run-time performance.
Convert-XY in combination with an existing wrap-
ping tool greatly simplifies the task of interfacing
Python with a C++ library.

The function is templated so it works on array elements
of any numeric type. Templated functions are harder
to wrap from Python. One simple, flexible approach
involves writing a function that walks across a list of
types specified as a template argument. In this case,
the list of types is called List:

template <class List>

PyObject*

large_local_maxima_walk(PyObject *pyImage,

PyObject *pyThresh) {

typedef List::Head HeadType;

typedef List::Tail TailList;

const bool listEnd = List::listEnd;

if (listEnd) {

throw Py::Exception("type not supported!");

}

try {

return large_local_maxima<HeadType>(pyImage,

pyThresh);

}

catch (ConvertXY::TypeMismatch &e) {

return large_local_maxima_walk<TailList>(pyImage,

pyThresh);

}

}

Then write a C wrapper function:
extern "C"

PyObject* large_local_maxima_c(PyObject *pyImage,

PyObject *pyThresh) {

return large_local_maxima_walk

<ConvertXY::NumberTypes>(pyImage, pyThresh);

}

that calls the walk function on a list of types. This C
function can easily be called with SWIG, the Python C
API, PyCXX, boost, or Cython. When debugging new
templated functions, each error is usually reported by
the compiler for each type in the type list. This can be
avoided by first debugging with a list containing only
a single type:

extern "C"

PyObject* large_local_maxima_c(PyObject *pyImage,

PyObject *pyThresh) {

return large_local_maxima_walk

<ConvertXY::SingletonList<float>>

(pyImage, pyThresh);

}

Improvements and PyCXX Integration

Convert-XY has been refactored considerably since
its first introduction at the SciPy conference in Au-
gust 2009. The most significant improvements include
customizable actions and structures, greatly simplified
semantics, as well as being fully integrated with the
mature C++ package PyCXX. It handles Python ref-
erencing and dereferencing in Convert-XY is handled
to make conversion safe to exceptions and return of ex-
ecution control to Python.

c©2009, D. Eads, E. Rosten 34

Proceedings of the 8th Python in Science Conference (SciPy 2009)

Packages Using Convert-XY

The authors have written several packages that already
use Convert-XY .

• GGFE: grammar guided feature extraction is a tech-
nique for generating image features from generative
grammars. GGFE is a tool for expressing genera-
tive grammars in pure Python. (see http://ggfe.

googlecode.com). Some image features are imple-
mented in C++ using LIBCVD with conversion han-
dled by Convert-XY.

• ACD: a Python package for anomalous change detec-
tion in hyperspectral imagery. All algorithms are
written in pure Python but optional, performance-
enhanced C++ versions of functions make heavy use
of Convert-XY. ACD is property of the Los Alamos
National Laboratory and its release is still being con-
sidered by management.

• ETSE: a package for performing dynamic time warp-
ing and time series clustering in Python. (see http:

//www.soe.ucsc.edu/~eads/software.shtml)

• Tesla: a new object localisation system under de-
velopment as part of our research. The software will
be released upon publication of our algorithm.

Conclusion

Convert-XY is a powerful tool that facilitates au-
tomatic conversion of arbitrarily structured contain-
ers between C++ and Python with a succinct syntax,
convert(x,y). By exploiting template-based pattern
matching in C++, dynamic type checkers and convert-
ers can be recursively built based on the static struc-
ture of a C++ object. At run-time, the dispatcher
class decodes the type of the Python object and de-
duces the protocols it obeys. Additionally, conversion
is customizable by specifying different action or struc-
ture meta-types. Large data sets can be converted be-
tween Python and C++ with minimal copying. When
possible, erroneous conversions are caught at compile
time but otherwise caught at run time. Convert-XY
integrates with PyCXX to improve exception safety

during conversion. It can also be used to automati-
cally facilitate conversion for SWIG typemaps.

License

Convert-XY is offered under the terms of the General
Public License version 2.0 with a special exception.

As a special exception, you may use these files as part of a
free software library without restriction. Specifically, if other
files instantiate templates or use macros or inline functions
from this library, or you compile this library and link it with
other files to produce an executable, this library does not by
itself cause the resulting executable to be covered by the GNU
General Public License. This exception does not however in-
validate any other reasons why the executable file might be
covered by the GNU General Public License.

Future Work

The primary focus of Convert-XY’s development un-
til now has been on greatly improving the safety, sim-
plicity, and flexibility of the interface. Moving forward,
we plan to focus efforts on improving the documenta-
tion, finishing a regression test suite, and writing a
tutorial on how to write custom converters for other
libraries.

References

[Abr03] D. Abrahams. Building Hybrid Systems with
Boost Python. PyCon 2003. 2003.

[Bea95] D. Beazley. Simplified Wrapper and Interface
Generator. http://www.swig.org/. 1995--.

[Dru03] T. Drummond, E. Rosten, et al. TooN: Tom’s
Object-oriented Numerics. http://mi.eng.cam.

ac.uk/~twd20/TooNhtml/. 2003.
[Ewi08] M. Ewing. Cython. 2008--.
[Hel00] T. Heller. ctypes. 2000--.
[Jon01] E. Jones, T. Oliphant, P. Peterson, et al. “SciPy:

Open Source Scientific tools for Python”. 2001--.
[GvR92] G. van Rossum. Python. 1991--.
[Ros04] E. Rosten, et al. LIBCVD. 2004--
[Sco04] B. Scott, P. Dubois. Writing Python Exten-

sions in C++ with PyCXX. http://cxx.sf.

net/. 2004--.
[Yak09] R. Yakovenko. Py++: Language Binding

Project. 2009.

35 http://conference.scipy.org/proceedings/SciPy2009/paper_4

http://ggfe.googlecode.com
http://ggfe.googlecode.com
http://ggfe.googlecode.com
http://ggfe.googlecode.com
http://www.soe.ucsc.edu/~eads/software.shtml
http://www.soe.ucsc.edu/~eads/software.shtml
http://www.soe.ucsc.edu/~eads/software.shtml
http://www.soe.ucsc.edu/~eads/software.shtml
http://www.swig.org/
http://www.swig.org/
http://mi.eng.cam.ac.uk/~twd20/TooNhtml/
http://mi.eng.cam.ac.uk/~twd20/TooNhtml/
http://mi.eng.cam.ac.uk/~twd20/TooNhtml/
http://mi.eng.cam.ac.uk/~twd20/TooNhtml/
http://cxx.sf.net/
http://cxx.sf.net/
http://cxx.sf.net/
http://cxx.sf.net/
http://conference.scipy.org/proceedings/SciPy2009/paper_4

Proceedings of the 8th Python in Science Conference (SciPy 2009)

Parallel Kernels: An Architecture for Distributed Parallel Computing

P. A. Kienzle (pkienzle@nist.gov) – NIST Center for Neutron Research, National Institute of Standards and Tech-

nology, Gaithersburg, Maryland 20899 USA

N. Patel (npatel17@umd.edu) – Department of Materials Science and Engineering, University of Maryland, College

Park, Maryland 20742 USA

M. McKerns (mmckerns@caltech.edu) – Materials Science, California Institute of Technology, Pasadena, California

91125 USA

Global optimization problems can involve huge com-
putational resources. The need to prepare, sched-
ule and monitor hundreds of runs and interactively
explore and analyze data is a challenging problem.
Managing such a complex computational environ-
ment requires a sophisticated software framework
which can distribute the computation on remote
nodes hiding the complexity of the communication
in such a way that scientist can concentrate on the
details of computation. We present PARK, the com-
putational job management framework being devel-
oped as a part of DANSE project, which will offer a
simple, efficient and consistent user experience in a
variety of heterogeneous environments from multi-
core workstations to global Grid systems. PARK
will provide a single environment for developing and
testing algorithms locally and executing them on re-
mote clusters, while providing user full access to
their job history including their configuration and
input/output. This paper will introduce the PARK
philosophy, the PARK architecture and current and
future strategy in the context of global optimization
algorithms.

Introduction

In this paper we present PARK, a flexible job man-
agement and parallel computation framework which is
being developed as a part of DANSE project [Ful09].
PARK is a high level tool written in Python to pro-
vide the necessary tools for parallel and distributed
computing [Bal89]. The heart of the system is yet
another parallel mapping kernel, hiding the details of
communication and freeing the end-user scientist to
concentrate on the computational algorithm. The suc-
cess of environments like Matlab and NumPy show
that using an abstract interface using high level prim-
itives such as vector mathematics, slow interpreted
languages can achieve high performance on numeri-
cal codes. For parallel computations, Google intro-
duced the Map-Reduce algorithm [Dea04], a robust im-
plementation of master-slave parallelism where nodes
could enter into and out of the computation. Indi-
vidual map-reduce programs do not have to deal with
the complexities of managing a reliable cluster envi-
ronment, but can achieve fast robust performance on
distributed database applications. The powerful map
construct can be used equally well in many scientific
computing problems.

A number of Python packages are addressing parts of
this problem. PaPy[Cie09] is based on map constructs
and directed acyclic graphs (DAGs) for scalable work-
flows to process data. Parallel Python[Von09] allows
users to run functions remotely or locally. They pro-
vide code movement facilities to ease the installation
and maintenance of parallel systems. IPython Paral-
lel[Per09] gives users direct control of remote nodes
through an interactive python console. They provide
a load balancing map capability as well as supporting
direct communication between nodes. Pyro [Jon09] is
a python remote object implementation with a name
service to find remote processes. It includes a publish-
subscribe messaging system. PARK uses ideas from
all of these systems.

Concept and architecture

PARK is a user-friendly job management tool that
allows easy interaction with heterogeneous computa-
tional environments.

PARK uses a front end for submitting complex com-
putational jobs to variety of computing environments.
The backend computational service can use a dedi-
cated cluster, or a shared cluster controlled by a batch
queue. The front end allows the user to submit, kill,
resubmit, copy and delete jobs. Like PaPy, jobs will be
able to be composed as workflows. Unlike traditional
batch processing systems, applications can maintain
contact with the running service, receiving notifica-
tion of progress and sending signals to change the flow
of the computation. Communication from services to
the client is handled through a publish-subscribe event
queue, allowing multiple clients to monitor the same
job. The client can signal changes to running jobs
by adding messages to their own queues. Clients can
choose to monitor the job continuously or to poll status
periodically. The emphasis of the system is on early
feedback and high throughput rather than maximum
processing speed of any one job.

Remote jobs run as service components. A service
component contains the full description of a compu-
tational task, including code to execute, input data
for processing, environment set-up specification, post-
processing tasks, output data produced by the appli-
cation and meta-data for bookkeeping. The purpose of
PARK can then be seen as making it easy for end-user
scientist to create, submit and monitor the progress of
services. PARK keeps a record of the services created

P. Kienzle, N. Patel, M. McKernsin Proc. SciPy 2009, G. Varoquaux, S. van der Walt, J. Millman (Eds), pp. 36–41 36

pkienzle@nist.gov
npatel17@umd.edu
mmckerns@caltech.edu

Proceedings of the 8th Python in Science Conference (SciPy 2009)

and submitted by the user in a persistent job reposi-
tory.

The PARK API is designed for both the needs of inter-
active Graphical User Interfaces (GUI) and for scripted
or Command Line Interfaces (CLI). A service in PARK
is constructed from a set of components. All services
are required to have an application component and
a backend component, which define respectively the
software to be run and the computational resources
to be used. A client can connect to multiple back-
ends at the same time, one of which will be the client
machine. Services have input and output data com-
ponents which are used during service execution. The
overall PARK architecture is illustrated in figure 1.
PARK monitors the evolution of submitted services
and categorizes them into submitted, waiting, sched-
uled, running, completed, failed or killed states. All
service objects are stored in a job repository database
and the input and output files associated with the ser-
vices are stored in file workspace. Both job repository
and the file workspace may be in a local file system or
on a remote server.

Figure 1: The overall architecture of PARK.
The client interacts with PARK via the Graphical
User Interface (GUI) or via Command Line Interface
(CLI). All jobs are stored in the persistent data store.

PARK interface

The client initiates the connection to PARK through
a connect object, with the URL of the resource as a
parameter. Different resources may use different con-
nection and authentication and transport protocols,
but the returned connection object provides a unified
interface. The connection may be to the local ma-
chine or a remote cluster. Client can submit their
jobs through this connect object to respective compu-
tational resources and also retrieve the results of jobs.
PARK provides functions for executing jobs, retrieving
the results of finished jobs, checking the status of the
jobs and controlling the jobs. The functions provided
by PARK are independent of various computational
resources so that a client may write a single program

that will run on any platform with minor changes in
interface.

The connect function creates a new connection object
associated with specified computational resources. If
no connection is established, then the job will be run
on the client machine. The example below connects to
the cluster at compufans.ncnr.nist.gov:

compufans = park.connect(‘compufans.ncnr.nist.gov’)

The submit function creates a job and submits it to the
compufans job queue. This function returns immedi-
ately. It returns job id back to the client with which
client can control the job. The executable can be a
script or a function. If executable is a function, the
modules argument specify what modules are required
to execute the function:

job_id = compufans.submit(executable,

input_data=None, modules=())

The get_result_id function returns the result of the
submitted job after it is completed, or None if it is not
completed:

result = compufans.get_result_id(job_id=None)

The get_status function returns a python dictionary
with keys specifying the current status of all the three
queues (waiting, running and finished) and values as
number of jobs in each queues:

status_dict = compufans.get_status(tag)

Job management architecture

The job management components include job creator,
job scheduler and job launcher. Its architecture is
shown on figure 2.

Figure 2: Job management architecture. In this
case client connects to a local system and PARK au-
tomatically identifies the number of cores present in
the system and spawns that many workers to run job.
The job communicates back to the client through a
publish-subscribe event queue.

The job creator receives information on the jobs from
the client either through GUI or through CLI. The

37 http://conference.scipy.org/proceedings/SciPy2009/paper_5

http://conference.scipy.org/proceedings/SciPy2009/paper_5

Parallel Kernels: An Architecture for Distributed Parallel Computing

job creator assigns an job identifier to every job and
returns this to the client. The combination of job man-
ager URL and job id is unique.

The job scheduler is the core scheduling component
which decides which jobs to run when. The scheduler is
responsible for maintaining enough information about
the state of the jobs to make good decisions about
job placement. All the resources are allocated to the
jobs by job priority. This ensures that high-priority
jobs are added at the front of the queue. If jobs have
equal priority, resources are allocated to the job that
was submitted first. The job scheduler also supports
backfill. This ensures that a resource-intensive appli-
cation will not delay other applications that are ready
to run. The job scheduler will schedule a lower-priority
job if a higher-priority job is waiting for resources to
become available and the lower-priority job can be fin-
ished with the available resources without delaying the
start time of the higher-priority job.

The job launcher’s function is to accept the jobs and
launch them. Job launcher contains the logic required
to initiate execution on the selected platform for the
selected network configuration. The job launcher re-
ceives messages sent by the job scheduler. When
receiving an execution request, it will create a new
thread in order to allow asynchronous job execution.
After getting a job identifier (i.e. the handle to the job
at the server side) as the response, the job launcher will
send it to the corresponding thread of the job sched-
uler. The job handle will be used to monitor the job
status and control the job.

The job monitor is used to monitor the submitted jobs.
Information about the remote execution site, queue
status and successful termination are collected. The
job manager maintains a connection to the running job
so that the client can steer the job if necessary. For
example, a fitting service may allow the user to change
the range of values for a fit parameter. This level of
control will not be possible on some architectures, such
as TeraGRID nodes that do not allow connections back
to the event server.

Job execution workflow

In order to simplify the complexity of job management,
various operations of job management are organized
as a workflow. Within the workflow the job can be
deleted or modified at any time. PARK manages three
job queues namely the waiting, running and finished
queues and jobs are stored in one of the three queues
based on their status. The waiting queue keeps the
un-scheduled jobs. The running queue keeps running
jobs and the finished queue keeps finished jobs which
are either completed successfully or failed. After the
job is created, it is put on the waiting queue. When all
dependencies are met the job description is submitted
to the job launcher and the job is moved to the run-
ning queue. On job completion, a completion event
is published on the job event queue. The job moni-
tor subscribes to this queue, and moves the job to the

Figure 3: Job lifetime. The normal execution se-
quence complete separates the client from the compu-
tational resources, allowing users to disconnect when
the job is started and reconnect to get the results.

finished queue when it receives the completion event.
After the job reaches the finished queue, the results
are ready to be retrieved by the client (see figure 3).
All the logging and error messages are automatically
saved. At the client side, multiple jobs can be defined
at the same time, so there may exist more than one
job workflow in the system. All jobs are independent
of each other and identified by either job ID or client
tags. Future versions will support workflow conditions,
only launching a new job when the dependent jobs are
complete.

Parallel mapper

Figure 4: Mapper workflow architecture. fn is the
function to be mapped and v_i are the inputs. The
function should be stateless, with output depending
only on the current input v_i, not on the previous
inputs.

c©2009, P. Kienzle, N. Patel, M. McKerns 38

Proceedings of the 8th Python in Science Conference (SciPy 2009)

A running service has many facilities available. It can
use a data store or file system for data retrieval. A
service can use Mapper which applies a function to a
set of inputs. Mapper acts like the built-in ‘map’ func-
tion of Python, but the work is completed in parallel
across the available computing nodes. Mapper keeps
tracks of all map requests from various running service
and handles any issues like node failure or nested maps
and infinite loops in a functions. Mapper can be ex-
cellent resource for data parallelism where same code
runs concurrently on different data elements. Mapper
workflow is described in figure 4, in which running ser-
vice sends map request to Mapper via service handler.
Mapper queues individual function-value pairs. Work-
ers pull from this queue, returning results to Mapper.
After all results are complete, Mapper orders them and
sends them back to the service.

Global optimization

We are using PARK to construct a global optimization
framework. The basic algorithm for optimization is as
follows:

optimizer.configure()

population = optimizer.start(function.parameters)

while True:

cost = map(function, population)

optimizer.update(population)

if converged():

break

post_progress_event()

population = optimizer.next()

This algorithm applies equally to pure stochastic op-
timizers like differential evolution and genetic algo-
rithms as well as deterministic methods such as branch
and bound, and even quasi-Newton methods where
multiple evaluations are required to estimate the de-
scent direction.

In order to implement this algorithm in PARK, we
need to define a Fit service which accepts an optimizer,
some convergence conditions and the function to be
optimized. The Fit service first registers the function
with Mapper. Workers who participate in the map
evaluation are first configured with the function, and
then called repeatedly with members of the popula-
tion. Since the configuration cost is incurred once per
worker, we can handle problems with a significant con-
figuration cost. For example a fit to a 100Mb dataset
requires the file to be transferred to each worker node
once at the beginning rather than each time the fitness
function is evaluated. This mechanism also supports a
dynamic worker pool, since new workers can ask Map-
per for the function when they join the pool.

We have generalized convergence conditions. Rather
than building convergence into each optimizer, the Fit
service keeps track of the values of the population,
the best fit, the number of iterations, the number of
function calls and similar parameters that are used to
control the optimizer. To write a new optimizer for
PARK, users will need to subclass from Optimizer as
follows:

class Optimizer:

def configure(self):

“prepare the optimizer”

def start(self, parameters):

“generate the initial population”

def update(self, population):

“record results of last population”

def next(self):

“generate the next population”

Each cycle the optimizer has the option of informing
the client of the progress of the fit. If the fit value
has improved or if a given percentage of the maximum
number of iterations is reached then a message will
be posted to the event stream associated with the fit
job. If the cluster cannot connect to the event queue
(which will be the case when running on TeraGRID
machines), or if the client is not connected then this
event will be ignored.

The assumption we are making is that the cost of func-
tion evaluations is large compared to the cost of gener-
ating the next population and sending it to the work-
ers. These assumptions are not implicit to the global
optimization problem; in some cases the cost of eval-
uating the population members is cheap compared to
processing the population. In a dedicated cluster we
can hide this problem by allowing several optimiza-
tion problems to be run at the same time on the same
workers, thus when one optimizer is busy generating
the next population, the workers can be evaluating the
populations from the remaining optimizers. A solution
which can exploit all available parallelism will require
dedicated code for each optimizer and more communi-
cation mechanisms than PARK currently provides.

Conclusions and future work

A robust job management and optimization system is
essential for harnessing computational potential of var-
ious heterogeneous computing resources. In this paper
we presented an overview of the architecture of PARK
distributed parallel framework and its various features
which makes running single job across various hetero-
geneous platform almost painless.

The PARK framework and the global optimizer are
still under active development and not yet ready for
general use. We are preparing for an initial public
release in the next year.

In future we would like to implement new scheduling
scheme for optimizing resource sharing. We will add
tools to ease the monitoring of jobs and administer-
ing a cluster. We are planning various forms of fault
tolerance features to PARK, making it robust against
failure of any nodes, including the master node via
checkpoint and restore. Security is also an important
issue, further work being needed to improve the exist-
ing security features. Using the high level map prim-
itive, ambitious users can implement PARK applica-
tions on new architectures such as cloud computing,
BOINC[And04], and TeraGrid by specializing the map
primitive for their system. The application code will
remain the same.

39 http://conference.scipy.org/proceedings/SciPy2009/paper_5

http://conference.scipy.org/proceedings/SciPy2009/paper_5

Parallel Kernels: An Architecture for Distributed Parallel Computing

Acknowledgments

This work is supported by National Science Founda-
tion as a part of the DANSE project, under grant
DMR-0520547.

References

[And04] D. P. Anderson. BOINC: A system for public-
resource computing and storage, in R. Buyya, ed-
itor, 5th International Workshop on Grid Com-
puting (GRID 2004), 8 November 2004, Pitts-
burgh, PA, USA, Proceedings, pages 4-10. IEEE
Computer Society, 2004.

[Bal89] H. E. Bal, J. G. Steiner, and A. S. Tanenbaum.
Programming languages for distributed computing
systems ACM computing Surveys, 21(3):261-322,
September 1989.

[Cie09] M. Cieslik, PaPy: Parallel and distributed data-
processing pipelines in Python, in Proceedings

of the 8th Python in Science Conference (SciPy
2009)

[Dea04] J. Dean and S. Ghemawat, MapReduce: Simpli-
fied Data Processing on Large Clusters, OSDI’04:
Sixth Symposium on Operating System Design
and Implementation, San Francisco, CA, Decem-
ber, 2004.

[Ful09] B. Fultz, et al.: DANSE: Distributed data anal-
ysis for neutron scattering experiments, http://

danse.us/ (Accessed Aug. 2009)
[Jon09] I. de Jong: Pyro - Python Remote Objects,

http://pyro.sourceforge.net/ (Accessed Aug.
2009)

[Per09] F. Perez and B. Granger: IPython: a system
for interactive scientific computing, Computing
in Science & Engineering 9(3) 21-29, 2007

[Van09] V. Vanovschi: Parallel Python, http://www.

parallelpython.com/ (Accessed Aug. 2009)

c©2009, P. Kienzle, N. Patel, M. McKerns 40

http://danse.us/
http://danse.us/
http://danse.us/
http://danse.us/
http://pyro.sourceforge.net/
http://pyro.sourceforge.net/
http://www.parallelpython.com/
http://www.parallelpython.com/
http://www.parallelpython.com/
http://www.parallelpython.com/

Proceedings of the 8th Python in Science Conference (SciPy 2009)

PaPy: Parallel and distributed data-processing pipelines in Python

Marcin Cieślik (mpc4p@virginia.edu) – University of Virginia, U.S.

Cameron Mura (cmura@virginia.edu) – University of Virginia, U.S.

PaPy, which stands for parallel pipelines in Python,
is a highly flexible framework that enables the con-
struction of robust, scalable workflows for either gen-
erating or processing voluminous datasets. A work-
flow is created from user-written Python functions
(nodes) connected by ’pipes’ (edges) into a directed
acyclic graph. These functions are arbitrarily de-
finable, and can make use of any Python modules
or external binaries. Given a user-defined topology
and collection of input data, functions are composed
into nested higher-order maps, which are transpar-
ently and robustly evaluated in parallel on a sin-
gle computer or on remote hosts. Local and re-
mote computational resources can be flexibly pooled
and assigned to functional nodes, thereby allowing
facile load-balancing and pipeline optimization to
maximimize computational throughput. Input items
are processed by nodes in parallel, and traverse the
graph in batches of adjustable size - a trade-off be-
tween lazy-evaluation, parallelism, and memory con-
sumption. The processing of a single item can be
parallelized in a scatter/gather scheme. The sim-
plicity and flexibility of distributed workflows using
PaPy bridges the gap between desktop -> grid, en-
abling this new computing paradigm to be leveraged
in the processing of large scientific datasets.

Introduction

Computationally-intense fields ranging from astron-
omy to chemoinformatics to computational biology
typically involve complex workflows of data produc-
tion or aggregation, processing, and analysis. Sev-
eral fundamentally different forms of data - se-
quence strings (text files), coordinates (and coor-
dinate trajectories), images, interaction maps, mi-
croarray data, videos, arrays - may exist in dis-
tinct file formats, and are typically processed using
available tools. Inputs/outputs are generally linked
(if at all) via intermediary files in the context of
some automated build software or scripts. The re-
cently exponential growth of datasets generated by
high-throughput scientific approaches (e.g. struc-
tural genomics [TeStYo09]) or high-performance par-
allel computing methods (e.g. molecular dynam-
ics [KlLiDr09]) necessitates more flexible and scal-
able tools at the consumer end, enabling, for in-
stance, the leveraging of multiple CPU cores and com-
putational grids. However, using files to communi-
cate and synchronize processes is generally inconve-
nient and inefficient, particularly if specialized scien-
tific Python modules (e.g., BioPython [CoAnCh09],
PyCogent [Knight07], Cinfony [OBHu08], MMTK

[Hinsen00], Biskit [GrNiLe07]) are to be used.

Many computational tasks fundamentally consist of
chained transformations of collections of data that are
independent, and likely of variable type (strings, im-
ages, etc.). The scientific programmer is required to
write transformation steps, connect them and - for
large datasets to be feasible - parallelize the process-
ing. Solutions to this problem generally can be di-
vided into: (i) Make-like software build tools, (ii)
workflow management systems (WMS), or (iii) grid
engines and frontends. PaPy, which stands for parallel
pipelines in Python, is a module for processing arbi-
trary streams of data (files, records, simulation frames,
images, videos, etc.) via functions connected into di-
rected graphs (flowcharts) like a WMS. It is not a par-
allel computing paradigm like MapReduce [DeGh08]
or BSP [SkHiMc96], nor is it a dependency-handling
build tool like Scons [Knight05]. Neither does it sup-
port declarative programming [Lloyd94]. In a nutshell,
PaPy is a tool that makes it easy to structure proce-
dural workflows into Python scripts. The tasks and
data are composed into nested higher-order map func-
tions, which are transparently and robustly evaluated
in parallel on a single computer or remote hosts.

Workflow management solutions typically provide a
means to connect standardized tasks via a structured,
well-defined data format to construct a workflow. For
transformations outside the default repertoire of the
program, the user must program a custom task with
inputs and outputs in some particular (WMS-specific)
format. This, then, limits the general capability of
a WMS in utilizing available codes to perform non-
standard or computationally-demanding analyses. Ex-
amples of existing frameworks for constructing data-
processing pipelines include Taverna (focused on web-
services; run locally [OiAdFe04]), DAGMan (general;
part of the Condor workload management system
[ThTaLi05]) and Cyrille2 (focused on genomics; run
on SGE clusters [Ham08]). A typical drawback of in-
tegrated WMS solutions such as the above is that,
for tasks which are not in the standard repertoire of
the program, the user has to either develop a custom
task or revert to traditional scripting for parts of the
pipeline; while such an approach offers an immediate
solution, it is not easily sustainable, scalable, or adapt-
able, insofar as the processing logic becomes hardwired
into these script-based workflows.

In PaPy, pipelines are constructed from Python func-
tions with strict call semantics. Most general-purpose
functions to support input/output, databases, inter-
process communication (IPC), serialization, topology,
and mathematics are already a part of PaPy. Domain-
specific functions (e.g. parsing a specific file-format)
must be user-provided, but have no limitations as to

41 M. Cieślik, C. Murain Proc. SciPy 2009, G. Varoquaux, S. van der Walt, J. Millman (Eds), pp. 41–48

mpc4p@virginia.edu
cmura@virginia.edu

PaPy: Parallel and distributed data-processing pipelines in Python

functional complexity, used libraries, called binaries or
web-services, etc. Therefore, as a general pipeline con-
struction tool, PaPy is intentionally lightweight, and
is entirely agnostic of specific application domains.

Our approach with PaPy is a highly modular workflow-
engine, which neither enforces a particular data-
exchange or restricted programming model, nor is tied
to a single, specific application domain. This level
of abstraction enables existing code-bases to be eas-
ily wrapped into a PaPy pipeline and benefit from its
robustness to exceptions, logging, and parallelism.

Architecture and design

PaPy is a Python module “papy” written to enable
the logical design and deployment of efficient data-
processing pipelines. Central design goals were to
make the framework (i) natively parallel, (ii) flexible,
(iii) robust, (iv) free of idiosyncrasies and dependen-
cies, and (v) easily usable. Therefore, PaPy’s modular,
object-oriented architecture utilizes familiar concepts
such as map constructs from functional programming,
and directed acyclic graphs. Parallelism is achieved
through the shared worker-pool model [Sunderam90].

The architecture of PaPy is remarkably simple, yet
flexible. It consists of only four core component classes
to enable construction of a data-processing pipeline.
Each class provides an isolated subset of the func-
tionality [Table1], which together includes facilities for
arbitrary flow-chart topology, execution (serial, par-
allel, distributed), user function wrapping, and run-
time interactions (e.g. logging). The pipeline is a way
of expressing what (functions), where (toplogy) and
how (parallelism) a collection of (potentially interde-
pendent) calculations should be performed.

Table 1: Components (classes) and their roles.

Compo-
nent

Description and function

IMap1 Implements a process/thread pool. Eval-
uates multiple, nested map functions in
parallel, using a mixture of threads or
processes (locally) and, optionally, remote
RPyC servers.

Piper
Worker

Processing nodes of the pipeline created
by wrapping user-defined functions; also,
exception handling, logging, and scatter-
gather functionality.

Dagger Defines the data-flow and the pipeline in the
form of a directed acyclic graph (DAG); al-
lows one to add, remove, connect pipers,
and validate topology. Coordinates the
starting/stopping of IMaps.

Plumber Interface to monitor and run a pipeline; pro-
vides methods to save/load pipelines, mon-
itor state, save results.

Pipelines (see Figure 1) are constructed by connecting
functional units (Piper instances) by directed pipes,
and are represented as a directed acyclic graph data
structure (Dagger instance). The pipers correspond
to nodes and the pipes to edges in a graph. The
topological sort of this graph reflects the input/output
dependencies of the pipers, and it is worth noting
that any valid DAG is a valid PaPy pipeline topology
(e.g., pipers can have multiple incoming and outgo-
ing pipes, and the pipeline can have multiple inputs
and outputs). A pipeline input consists of an iter-
able collection of data items, e.g. a list. PaPy does
not utilize a custom file format to store a pipeline;
instead, pipelines are constructed and saved as exe-
cutable Python code. The PaPy module can be ar-
bitrarily used within a Python script, although some
helpful and relevant conventions to construct a work-
flow script are described in the online documentation.

The functionality of a piper is defined by user-written
functions, which are Python functions with strict call
semantics. There are no limits as to what a function
does, apart from the requirement that any modules
it utilizes must be available on the remote execution
hosts (if utilizing RPyC). A function can be used by
multiple pipers, and multiple functions can be com-
posed within a single piper. CPU-intensive tasks with
little input data (e.g., MD simulations, collision de-
tection, graph matching) are preferred because of the
high speed-up through parallel execution.

Within a PaPy pipeline, data are shared as Python
objects; this is in contrast to workflow management
solutions (e.g., Taverna) that typically enforce a spe-
cific data exchange scheme. The user has the choice to
use any or none of the structured data-exchange for-
mats, provided the tools for using them are available
for Python. Communicated Python objects need to
be serializable, by default using the standard Pickle
protocol.

Synchronization and data communication between
pipers within a pipeline is achieved by virtue of queues
and locked pipes. No outputs or intermediate results
are implicitly stored, in contrast to usage of temporary
files by Make-like software. Data can be saved any-
where within the pipeline by using pipers for data se-
rialization (e.g. JSON) and archiving (e.g. file-based).
PaPy maintains data integrity in the sense that an
executing pipeline stopped by the user will have no
pending (lost) results.

Parallelism

Parallel execution is a major issue for workflows,
particularly (i) those involving highly CPU-intensive
methods like MD simulations or Monte Carlo sam-
pling, or (ii) those dealing with large datasets (such as
arise in astrophysics, genomics, etc.). PaPy provides

1Note that the IMap class is available as a separate Python
module.

c©2009, M. Cieślik, C. Mura 42

Proceedings of the 8th Python in Science Conference (SciPy 2009)

Figure 1. (A) PaPy pipeline and its (B) computa-
tional resources. The directed graph illustrates the
Dagger object as a container of Piper objects (nodes),
connected by pipes (black arrows; in the upstream
/ downstream sense) or, equivalently, dependency
edges (gray arrows). Pipers are assigned to vari-
ous compute resources as indicated by different col-
ors. The sets of pipes connecting the two processing
streams illustrate the flexible construction of work-
flows. Encapsulation and composition of user-written
functions e.g., f, g into a Worker and Piper object
is represented as P(W(f,g,...)). Resources used by
the sample pipeline are shown in B. Each virtual re-
source is an IMap object, which utilizes a worker pool
to evaluate the Worker on a data item. IMaps are
shared by pipers and might share resources. The re-
sources are: a local pool of 20 threads used by a sin-
gle piper in the pipeline (green); four CPU-cores, of
which at most three are used concurrently (red) and
one dedicated to handle the input/output functions
(yellow); and a pool of Python processes utilizing re-
mote resources exposedby RPyC servers (blue cloud).
Parallelism is achieved by pulling data through the
pipeline in adjustable batches.

support for two levels of parallelism, which adress both
of these scenarios: (1) parallel processing of indepen-
dent input data items, (2) multiple parallel jobs for
a single input item. The first type of parallelism is
achieved by creating parallel pipers - i.e. providing
an IMap instance to the constructor. Pipers within
a pipeline can share an IMap instance or have dedi-
cated computational resources (Fig. 1). The mixing
of serial and parallel pipers is supported; this flexi-
bility permits intelligent pipeline load-balancing and
optimization. Per-item parallel jobs are made possi-
ble by the produce / spawn / consume (Fig. 2) id-
iom within a workflow. This idiom consists of at least
three pipers. The role of the first piper is to produce a
list of N subitems for each input item. Each of those
subitems is processed by the next piper, which needs
to be spawned N times; finally, the N results are con-
sumed by the last piper, which returns a single result.
Multiple spawning pipers are supported. The subitems
are typically independent fragments of the input item
or parameter sets. Per-item parallelism is similar to
the MapReduce model of distributed computing, but
is not restricted to handling only data structured as
(key, value) pairs.

Figure 2. The produce / spawn / consume idiom al-
lows for parallel processing of a single input item in
addition to parallel processing of items (explanation
in text).

The parallelism of an IMap instance is defined by
the number of local and remote worker processes or
threads, and the “stride” argument (Fig. 3), if it pro-
cesses multiple tasks. The “stride” is the number of
input items of task N processed before task N+1 com-
mences. Tasks are cycled until all input items have
been processed. In a PaPy pipeline pipers can share
a computational resource; they are different tasks of a
single IMap instance. The “stride” can also be con-
sidered as the number of input items processed by
pipers in consecutive rounds, with the order defined
by a topological sort of the graph. Therefore, the data
traverses the pipeline in batches of “stride” size. A
larger “stride” means that potentially more temporary
results will have to be held in memory, while a smaller
value may result in idle CPUs, as a new task cannot
start until the previous one finishes its “stride”. This
adjustable memory/parallelism trade-off allows PaPy
pipelines to process data sets with temporary results

43 http://conference.scipy.org/proceedings/SciPy2009/paper_6

http://conference.scipy.org/proceedings/SciPy2009/paper_6

PaPy: Parallel and distributed data-processing pipelines in Python

too large to fit into memory (or to be stored as files),
and to cope with highly variable execution times for in-
put items (a common scenario on a heterogenous grid,
and which would arise for certain types of tasks, such
as replica-exchange MD simulations).

Figure 3. The stride as a trade-off between memory
consumption and parallelism of execution. Rectan-
gular boxes represent graph traversal in batches. The
pipers involved (N-1, N, N+2) are shown on the right
(explanation in text).

Inter-process communication

A major aspect - and often bottleneck - of parallel
computing is inter-process communication (IPC; Fig.
4) [LiYa00]. In PaPy, IPC occurs between parallel
pipers connected in a workflow. The communication
process is two-stage and involves a manager process
- i.e, the local Python interpreter used to start the
workflow (Fig. 4). A coordinating process is neces-
sary because the connected nodes might evaluate func-
tions in processes with no parent/child relationship. If
communication occurs between processes on different
hosts, an additional step of IPC (involving a local and
a remote RPyC process) is present. Inter-process com-
munication involves data serialization (i.e. representa-
tion in a form which can be sent or stored), the actual
data-transmission (e.g. over a network socket) and,
finally, de-serialization on the recipient end. Because
the local manager process is involved in serializing (de-
serializing) data to (from) each parallel process, it can
clearly limit pipeline performance if large amounts of
data are to be communicated.

Figure 4. Inter-process communication (IPC) between
pipers (p1, p2). The dashed arrow illustrates possible
direct IPC. Communication between the local and
remote processes utilizes RPyC (explanation in text).

PaPy provides functionality for direct communication

of producer and consumer processes, thereby mostly
eliminating the manager process from IPC and allevi-
ating the bottleneck described above. Multiple serial-
ization and transmission media are supported. In gen-
eral, the producer makes data available (e.g. by serial-
izing it and opening a network socket) and sends only
information needed by the consumer end to locate the
data (e.g. the host and port of the network socket) via
the manager process. The consumer end receives this
information and reads the data. Direct communication
comes at the cost of losing platform-independence, as
the operating system(s) have to properly support the
chosen transmission medium (e.g. Unix pipes). Table
2 summarizes PaPy’s currently available options.

Table 2: Direct inter-process communication meth-
ods.2

Method
OS Remarks

socket all Communication between hosts con-
nected by a network.

pipe UNIX-
like

Communication between processes on
a single host.

file all The storage location needs to be ac-
cessible by all processes - e.g over NFS
or a SAMBA share.

shm POSIX Shared memory support is provided by
the posix_shm library; it is an alter-
native to communication by pipes.

database all Serialized data can be stored as (key,
value) pairs in a database. The keys
are semi-random. Currently SQLite
and MySQL are supported, as pro-
vided by mysql-python and sqlite3.

Note that it is possible to avoid some IPC by logically
grouping processing steps within a single piper. This
is done by constructing a single piper instance from a
worker instance created from a tuple of user-written
functions, instead of constructing multiple piper in-
stances from single function worker instances. A
worker instance is a callable object passed to the con-
structor of the Piper class. Also, note that any linear,
non-branching segment of a pipeline can be collapsed
into a single piper. This has the performance advan-
tage that no IPC occurs between functions within a
single piper, as they are executed in the same process.

Additional features and notes

Workflow logging

PaPy provides support for detailed workflow logging
and is robust to exceptions (errors) within user-written

2Currently supported serialization algorithms: pickle, mar-
shall, JSON

c©2009, M. Cieślik, C. Mura 44

Proceedings of the 8th Python in Science Conference (SciPy 2009)

functions. These two features have been a major de-
sign goal. Robustness is achieved by embedding calls
to user functions in a try ... except clause. If an
exception is raised, it is caught and does not stop the
execution of the workflow (rather, it is wrapped and
passed as a placeholder). Subsequent pipers ignore
and propagate such objects. Logging is supported via
the logging module from the Python standard library.
The papy and IMap packages emit logging statements
at several levels of detail, i.e. DEBUG, INFO, ER-
ROR; additionally, a function to easily setup and save
or display logs is included. The log is written real-
time, and can be used to monitor the execution of a
workflow.

Usage notes

A started parallel piper consumes a sequence of N in-
put items (where N is defined by the “stride” argu-
ment), and produces a sequence of N resultant items.
Pipers are by default “ordered”, meaning that an in-
put item and its corresponding result item have the
same index in both sequences. The order in which re-
sult items become available may differ from the order
input items are submitted for parallel processing. In a
pipeline, result items of an upstream piper are input
items for a downstream piper. The downstream piper
can process input items only as fast as result items are
produced by the upstream piper. Thus, an inefficency
arises if the upstream piper does not return an avail-
able result because it is out of order. This results in
idle processes, and the problem can be addressed by
using a “stride” larger then the number of processes,
or by allowing the upstream piper to return results in
the order they become available. The first solution re-
sults in higher memory consumption, while the second
irreversibly abolishes the original order of input data.

Figure 5. A screenshot of the PaPy GUI written in
Tkinter. Includes an interactive Python console and
an intuitive canvas to construct workflows.

Graphical interface

As a Python package, PaPy’s main purpose is to sup-
ply and expose an API for the abstraction of a par-
allel workflow. This has the advantage of flexibility
(e.g. usage within other Python programs), but re-
quires that the programmer learn the API. A graphical
user interface (GUI) is currently being actively devel-
oped (Fig. 5). The motivation for this functionality
is to allow a user to interactively construct, execute
(e.g. pause execution), and monitor (e.g. view logs)
a workflow. While custom functions will still have to
be written in Python, the GUI liberates the user from
knowing the specifics of the PaPy API; instead, the
user explores the construction of PaPy workflows by
connecting objects via navigation in the GUI.

Workflow construction example

The following code listing illustrates steps in the con-
struction of a distributed PaPy pipeline. The first of
the two nodes evaluates a function (which simply de-
termines the host on which it is run), and the second
prints the result locally. The first piper is assigned
to a virtual resource combining local and remote pro-
cesses. The scripts take two command line arguments:
a definition of the available remote hosts and a switch
for using TCP sockets for direct inter-process commu-
nication between the pipers. The source code uses
the imports decorator. This construct allows import
statements to be attached to the code of a function. As
noted earlier, the imported modules must be available
on all hosts on which this function is run.

The pipeline is started, for example, via:
$ python pipeline.py \

--workers=HOST1:PORT1#2,HOST2:PORT1#4

which uses 2 processes on HOST1 and 4 on HOST2,
and all locally-available CPUs. Remote hosts can be
started (assuming appropriate firewall settings) by:

$ python RPYC_PATH/servers/classic_server.py \

-m forking -p PORT

This starts a RPyC server listening on the specified
PORT, which forks whenever a client connects. A fork-
ing server is capable of utilizing multiple CPU cores.

The following example (in expanded form) is provided
as part of PaPy’s online documentation.:

45 http://conference.scipy.org/proceedings/SciPy2009/paper_6

http://conference.scipy.org/proceedings/SciPy2009/paper_6

PaPy: Parallel and distributed data-processing pipelines in Python

#!/usr/bin/env python

Part 0: import the PaPy infrastructure.

papy and IMap are separate modules

from papy import Plumber, Piper, Worker

from IMap import IMap, imports

from papy import workers

Part 1: Define user functions

@imports([’socket’, ’os’, ’threading’])

def where(inbox):

result = "input: %s, host:%s, parent %s, \

process:%s, thread:%s" % \

(inbox[0], \

socket.gethostname(), \

the host name as reported by the OS

os.getppid(), \ # get parent process id

os.getpid(), \ # get process id

threading._get_ident())

unique python thread identifier

return result

Part 2: Define the topology

def pipeline(remote, use_tcp):

this creates a IMap instance which uses

#’remote’ hosts.

imap_ = IMap(worker_num=0, worker_remote=remote)

this defines the communication protocol i.e.

it creates worker instances with or without

explicit load_item functions.

if not use_tcp:

w_where = Worker(where)

w_print = Worker(workers.io.print_)

else:

w_where = Worker((where, workers.io.dump_item), \

kwargs=({}, {’type’:’tcp’}))

w_print = Worker((workers.io.load_item, \

workers.io.print_))

the instances are combined into a piper instance

p_where = Piper(w_where, parallel=imap_)

p_print = Piper(w_print, debug=True)

piper instances are assembled into a workflow

(nodes of the graph)

pipes = Plumber()

pipes.add_pipe((p_where, p_print))

return pipes

Part 3: execute the pipeline

if __name__ == ’__main__’:

get command-line arguments using getopt

following part of the code is not PaPy specific

and has the purpose of interpreting commandline

arguments.

import sys

from getopt import getopt

args = dict(getopt(sys.argv[1:], ’’, [’use_tcp=’, \

’workers=’])[0])

parse arguments

use_tcp = eval(args[’--use_tcp’]) # bool

remote = args[’--workers’]

remote = worker_remote.split(’,’)

remote = [hn.split(’#’) for hn in remote]

remote = [(h, int(n)) for h, n in remote]

create pipeline (see comments in function)

pipes = pipeline(remote, use_tcp)

execution

the input to the function is a list of 100

integers.

pipes.start([range(100)])

this starts the pipeline execution

pipes.run()

wait until all input items are processed

pipes.wait()

pause and stop (a running pipeline cannot

be stopped)

pipes.pause()

pipes.stop()

print execution statistics

print pipes.stats

Discussion and conclusions

In the context of PaPy, the factors dictating the com-
putational efficiency of a user’s pipeline are the nature
of the individual functions (nodes, pipers), and the na-
ture of the data linkages between the constituent nodes
in the graph (edges, pipes). Although distributed
and parallel computing methods are becoming ubiq-
uitous in many scientific domains (e.g., biologically
meaningful usec-scale MD simulations [KlLiDrSh09]),
data post-processing and analysis are not keeping pace,
and will become only increasingly difficult on desktop
workstations.

It is expected that the intrinsic flexibility underly-
ing PaPy’s design, and its easy resource distribution,
could make it a useful component in the scientist’s
data-reduction toolkit. It should be noted that some
data-generation workflows might also be expressible as
pipelines. For instance, parallel tempering / replica-
exchange MD [EaDe05] and multiple-walker metady-
namics [Raiteri06] are examples of intrinsically par-
allelizable algorithms for exploration and reconstruc-
tion of free energy surfaces of sufficient granularity. In
those computational contexts, PaPy could be used to
orchestrate data generation as well as data aggregation
/ reduction / analysis.

In conclusion, we have designed and implemented
PaPy, a workflow-engine for the Python programming
language. PaPy’s features and capabilities include: (1)
construction of arbitrarily complex pipelines; (2) flex-
ible tuning of local and remote parallelism; (3) specifi-
cation of shared local and remote resources; (4) versa-
tile handling of inter-process communication; and (5)
an adjustable laziness/parallelism/memory trade-off.
In terms of usability and other strengths, we note that
PaPy exhibits (1) robustness to exceptions; (2) grace-
ful support for time-outs; (3) real-time logging func-
tionality; (4) cross-platform interoperability; (5) ex-
tensive testing and documentation (a 60+ page man-
ual); and (6) a simple, object-oriented API accompa-
nied by a preliminary version of a GUI.

Availability

PaPy is distributed as an open-source, platform- in-
dependent Python (CPython 2.6) module at http:

//muralab.org/PaPy, where extensive documenta-
tion also can be found. It is easily installed
via the Python Package Index (PyPI) at http://

pypi.python.org/pypi/papy/ using setuptools by
easy_install papy.

Acknowledgements

We thank the University of Virginia for start-up funds
in support of this research.

c©2009, M. Cieślik, C. Mura 46

http://muralab.org/PaPy
http://muralab.org/PaPy
http://muralab.org/PaPy
http://muralab.org/PaPy
http://pypi.python.org/pypi/papy/
http://pypi.python.org/pypi/papy/
http://pypi.python.org/pypi/papy/
http://pypi.python.org/pypi/papy/

Proceedings of the 8th Python in Science Conference (SciPy 2009)

References

[TeStYo09] Terwilliger TC, Stuart D, Yokoyama
S “Lessons from structural genomics”
Ann.Rev. Biophys. (2009), 38, 371-83.

[KlLiDr09] Klepeis JL, Lindorff-Larsen K, Dror RO,
Shaw DE “Long-timescale molecular dy-
namics simulations of protein structure
and function” Current Opinions in Struc-
tural Biology (2009), 19(2), 120-7.

[CoAnCh09] Cock PJ, Antao T, Chang JT, et al.
“Biopython: freely available Python tools
for computational molecular biology and
bioinformatics” Bioinformatics (2009),
25(11), 1422-3.

[Knight07] Knight, R et al. “PyCogent: a toolkit for
making sense from sequence” Genome Bi-
ology (2007), 8(8), R171

[OBHu08] O’Boyle NM, Hutchison GR “Cinfony -
combining Open Source cheminformat-
ics toolkits behind a common interface”
Chemistry Central Journal (2008), 2, 24.

[Hinsen00] Hinsen K “The Molecular Modeling
Toolkit: A New Approach to Molecu-
lar Simulations” Journal of Computational
Chemistry (2000), 21, 79-85.

[GrNiLe07] Grünberg R, Nilges M, Leckner J “Biskit-
-a software platform for structural bioin-
formatics” Bioinformatics (2007), 23(6),
769-70.

[OiAdFe04] Oinn T, Addis M, Ferris J, et al. “Taverna:
a tool for the composition and enactment
of bioinformatics workflows” Bioinformat-
ics (2004), 20(17), 3045-54.

[ThTaLi05] Thain D, Tannenbaum T, Livny M, “Dis-
tributed Computing in Practice: The Con-
dor Experience” Concurrency and Compu-
tation: Practice and Experience (2005),

17, 2-4, 323-356.
[Ham08] Fiers MW, van der Burgt A, Datema E, de

Groot JC, van Ham RC “High-throughput
bioinformatics with the Cyrille2 pipeline
system” BMC Bioinformatics (2008), 9,
96.

[DeGh08] Dean J, Ghemawat S “MapReduce: Sim-
plified Data Processing on Large Clusters”
Comm. of the ACM (2008), 51, 107-113.

[EaDe05] Earl, D. J. and M. W. Deem “Parallel tem-
pering: Theory, applications, and new per-
spectives” Phys. Chem. Chem. Phys.
(2005) 7(23), 3910-3916.

[Raiteri06] Raiteri P, Laio A, Gervasio FL, Micheletti
C, Parrinello M. J J Phys Chem B. (2006),
110(8), 3533-9.

[LiYa00] Liu, P., Yang, C. “Locality-Preserving Dy-
namic Load Balancing for Data-Parallel
Applications on Distributed-Memory Mul-
tiprocessors.”“ (2000)

[SkHiMc96] Skillicorn, D. B., Hill, J. M. D. & Mccoll,
W. F. ”Questions and answers about BSP“
(1996).

[Knight05] Knight S, ”Building Software with SCons,“
Computing in Science and Engineering
(2005), 7(1), 79-88.

[Lloyd94] Lloyd JW, ”Practical advantages of declar-
ative programming“ (1994)

[Sunderam90] Sunderam V.S. ”PVM: A framework for
parallel distributed computing“ Concur-
rency: Practice and Experience (1990), 2,
4, 315-339

[KlLiDrSh09] Klepeis JL, Lindorff-Larsen K, Dror RO,
Shaw DE ”Long-timescale molecular dy-
namics simulations of protein structure
and function“ Curr. Opin. Struc. Biol.
(2009), 19(2), 120-7.

47 http://conference.scipy.org/proceedings/SciPy2009/paper_6

http://conference.scipy.org/proceedings/SciPy2009/paper_6

Proceedings of the 8th Python in Science Conference (SciPy 2009)

PMI - Parallel Method Invocation

Olaf Lenz (lenzo@mpip-mainz.mpg.de) – Max Planck Institute for Polymer Research, Postfach 3148, D-55021 Mainz

Germany

The Python module “pmi“ (Parallel Method Invo-
cation) is presented. It allows users to write simple,
non-parallel Python scripts that use functions and
classes that are executed in parallel.

The module is well suited to be employed by other
modules and packages that want to provide func-
tions that are executed in parallel. The user of such
a module does not have to write a parallel script,
but can still profit from parallel execution.

Introduction

All modern CPUs provide more than one core, so that
they can execute several tasks in parallel. Still, most
software, and in particular self-written scripts, do not
exploit this capability. The reason for this is mainly,
that parallel programming is significantly harder than
writing serials programs.

In particular in a scientific environment, one often has
to use computationally intensive functions that could
greatly benefit from parallelism. Still, scientific pack-
ages (like SciPy) usually provide only serial implemen-
tations of these functions, as providing a parallel func-
tion would mean that the user would have to call it
from a parallel program.

When parallelizing a program, one usually has the
choice between two fundamental models: the shared-
memory thread model and the distributed-memory
message-passing model [Bar07] .

In the shared-memory thread model, the different par-
allel threads have access to shared variables that they
can use to exchange information. Programming in the
world of threads is relatively simple, however, it is
also relatively simple to produce problems like dead-
locks and race conditions, or to create highly inefficient
code, as all communication between the threads hap-
pens implicitly via the shared variables. Furthermore,
the model can only be employed efficiently on machines
that provide shared memory that can be accessed by
all threads.

In the distributed-memory message-passing model, the
parallel tasks (or processes) all have an independent
data space. To exchange information, the tasks have
to use explicit message-passing functions. Writing
message-passing programs is more tedious than writ-
ing threaded programs, as all communication has to
be made explicit. On the other hand, message-passing
programs are less error-prone, as each task has its own,
independent data space, so that certain kinds of dead-
locks and race conditions can not happen. Another
advantage of using message-passing parallelization is
that it can be used on distributed-memory machines,
but that it can also be easily and efficiently mapped

to shared-memory platforms, while it is not possible
to map threaded programs onto distributed-memory
machines.

Therefore, when using a shared-memory machine, the
choice between the models is mostly a choice of the
programming style, but it does not influence how an
algorithm is parallelized. Many algorithms, in partic-
ular in scientific computing where large datasets are
processed, are algorithms that can profit from data
parallelism. In data-parallel programs, the different
tasks do not execute completely independent opera-
tions, instead each task does the same operation, but
on a different piece of data. In particular, most con-
trol structures and the program logic is the same in
all tasks. This can greatly simplify writing parallel
programs [Boy08].

Data-parallel programming can be used in both par-
allelization models. In the world of C/C++ and
FORTRAN, data-parallel programming in the shared-
memory thread model is supported by the fork-join
programming model of OpenMP [OpenMP] [CDK01]
. In this model, the programmer marks regions of the
program to be executed in parallel, while the rest of
the program is running in a serial fashion. At the be-
ginning of this region, the flow of control is forked, and
the code of the region is executed on all threads in par-
allel. If not marked otherwise, all variables are shared,
so that all threads can access the same data, and can
work on their piece of data. At the end of the parallel
region, all threads are joined back, and it returns to
a single flow of control. Using OpenMP is relatively
simple and has a few nice properties. In particular, it
is easy to synchronize the threads and to implement
control structures and the program logic, as these can
be implemented in serial fashion, so that only the time-
consuming parts have to be parallelized. On the other
hand, in the parallel regions, the programmer is ex-
posed to all dangers of threaded programming, like
race conditions, deadlocks and inefficient access to the
shared memory.

Data-parallel programming in the message-passing
model is supported by the standardized library MPI
(Message Passing Interface) [MPI] [MPIF09]. Each
parallel task runs completely independent, however
MPI provides advanced communication operations
that allows the tasks to explicitly communicate. Writ-
ing data-parallel algorithms in this framework is some-
what more tedious, as it requires a lot of explicit com-
munication, in particular when it comes to implement-
ing the program logic and control structures. On the
other hand, it is not so easy to fall into the traps of
parallel programming, like producing inefficient code
or race conditions.

O. Lenzin Proc. SciPy 2009, G. Varoquaux, S. van der Walt, J. Millman (Eds), pp. 48–51 48

lenzo@mpip-mainz.mpg.de

Proceedings of the 8th Python in Science Conference (SciPy 2009)

When writing data-parallel programs, it would be good
if one could combine at least some of the advanta-
geous features of both programming models. To this
end, it helps to understand that the fork-join model of
OpenMP makes it simple to implement control struc-
tures and the program logic is independent of the
underlying parallel programming model. The notion
of parallel regions could be used in both the shared-
memory thread model, where the threads have ac-
cess to shared variables, as well as in the distributed-
memory message-passing model, where the different
tasks can exchange messages. However, to the au-
thor’s best knowledge, combining the fork-join model
with message-passing for data-parallel programming
has not been done so far.

The PMI module

In the course of the ESPResSo++ [ESPResSo] project,
the module pmi (Parallel Method Invocation) [PMI]
has been developed. It is a pure Python module that
tries to combine the fork-join model with message-
passing. Like this, it allows the user to write the
program logic and control structures in the fashion of
OpenMP, while it still uses the less error-prone MPI
for the actual parallelization. The only requirement
of the module is a working MPI module (for example
mpi4py [mpi4py] or boostmpi [boostmpi].

PMI does not go so far to allow a programmer to sim-
ply mark certain regions of the program to be run in
parallel. Instead, it allows users to call - from a se-
rial script - arbitrary Python functions to be executed
in parallel (e.g. on multicore CPUs or on large par-
allel machines). Once called, the different invocations
of the function can communicate via MPI. When the
function returns, the flow of control is returned to the
serial script. Furthermore, PMI allows to create paral-
lel object instances, that have a corresponding instance
in all parallel tasks, and to call arbitrary methods in
these objects.

PMI has two possible areas of use: on the one hand,
it allows modules or packages to provide parallel func-
tions and classes. A user can call these from a sim-
ple, apparently serial Python script, that in fact runs
parallel code, without the user having to care about
parallelization issues. On the other hand, PMI could
be used within a GUI that is used to control parallel
code.

Other than modules that base on thread paralleliza-
tion, scripts using PMI and MPI can be used on mul-
ticore machines as well as on convenience clusters with
fast interconnects and big high-performance parallel
machines.

When comparing PMI to the standard multithread-
ing or multiprocessing modules, it must be stressed
that PMI has all the advantages that message-passing
parallelization has over thread-parallelization: it can
work on both shared-memory as well as on distributed

memory-machines, and it provides the less error-prone
parallelization approach.

When comparing PMI to using the pure MPI mod-
ules or other message-passing solutions (like PyPar
[PyPar]), it has the advantage that it doesn’t require
the programmer to write a whole parallel script to use
a parallel function. Instead, only those functions that
actually can use parallelism have to be parallelized.
PMI allows a user to hide the parallelism in those func-
tions that need it.

To the best knowledge of the author, the only other
solution that provides functionality comparable to
PMI are the parallel computing facilities of IPython
[IPython]. Using these, it would be possible to write
parallel functions that can be called from a serial
script. Note, however, that IPython is a significantly
larger package and the parallel facilities have a num-
ber of strong dependencies. These dependencies make
it hard to run it on some more exotic high-performance
platforms like the IBM Blue Gene, and prohibit its use
within simple libraries.

Parallel function calls

Within PMI, the task executing the main script is
called the controller. On the controller, the pmi com-
mands call(), invoke() or reduce() can be called,
which will execute the given function on all workers
(including the task running the controller itself). The
three commands differ only in the way they handle
return values of the called parallel functions. Further-
more, the command exec_() allows to execute arbi-
trary Python code on all workers.

In the following example, we provide the outline of the
module mandelbrot_pmi that contains a function to
compute the Mandelbrot fractal in parallel:

import pmi

import the module on all workers

pmi.exec_(’import mandelbrot_pmi’)

This is the parallel function that is

called from mandelbrot()

def mandelbrot_parallel((x1, y1), (x2, y2),

(w, h), maxit):

’’’Compute the local slice of the

mandelbrot fractal in parallel.’’’

Here we can use any MPI function.

.

.

.

This is the serial function that can be

called from a (serial) user script

def mandelbrot(c1, c2, size, maxit):

return pmi.call(

’mandelbrot_pmi.mandelbrot_parallel’,

c1, c2, size, maxit)

A user can now easily write a serial script that calls
the parallelized function mandelbrot:

49 http://conference.scipy.org/proceedings/SciPy2009/paper_7

http://conference.scipy.org/proceedings/SciPy2009/paper_7

PMI - Parallel Method Invocation

import pmi, mandelbrot_pmi

Setup pmi

pmi.setup()

Call the parallel function

M = mandelbrot_pmi.mandelbrot(

(-2.0, -1.0), (1.0, 1.0),

(300, 200), 127)

Parallel class instances

pmi.create() will create and return a parallel in-
stance of a class. The methods of the class can be
invoked via call(), invoke() or reduce(), and when
the parallel instance on the controller is used as an ar-
gument to one of these calls, it is automatically trans-
lated into the corresponding instance on the worker.

Taking the following definition of the class Hello in
the module hello:

from mpi4py import MPI

class Hello(object):

def __init__(self, name):

self.name = name

get the number of the parallel task

self.rank = MPI.COMM_WORLD.rank

def printmsg(self):

print("Hello %s, I’m task %d!" %

(self.name, self.rank))

Now, one could write the following script that creates
a parallel instance of the class and call its method:

import pmi

pmi.setup()

pmi.exec_(’import hello’)

hw = pmi.create(’hello.Hello’, ’Olaf’)

pmi.call(hw, ’printmsg’)

This in itself is not very useful, but it demonstrates
how parallel instances can be created and used.

Parallel class instance proxies

To make it easier to use parallel instances of a class,
PMI provides a metaclass Proxy, that can be used
to create a serial frontend class to a parallel instance
of the given class. Using the metaclass, the module
hello_pmi would be defined as follows:

import pmi

from mpi4py import MPI

pmi.exec_(’import hello_pmi’)

This is the class to be used in parallel

class HelloParallel(object):

def __init__(self, name):

self.name = name

self.rank = MPI.COMM_WORLD.rank

def printmsg(self):

print("Hello %s, I’m task %d!" %

(self.name, self.rank))

This is the proxy of the parallel class,

to be used in the serial script

class Hello(object):

__metaclass__ = pmi.Proxy

pmiproxydefs = \

dict(cls = ’HelloParallel’,

pmicall = [’printmsg’])

Given these definitions, the parallel class could be used
in a script:

import pmi, hello_pmi

pmi.setup()

hello = hello_pmi.Hello(’Olaf’)

hello.printmsg()

Summary

The PMI module provides a way to call arbitrary func-
tions and to invoke methods in parallel. Using it, mod-
ules and packages can provide parallelized functions
and classes to their users, without requiring the users
to write error-prone parallel script code.

References

[PMI] http://www.espresso-pp.de/projects/

pmi/

[Bar07] B. Barney, Introduction to Parallel Com-
puting, Lawrence Livermore National
Laboratory, 2007, http://www.llnl.gov/

computing/tutorials/parallel_comp/

[Boy08] C. Boyd, Data-parallel computing, ACM New
York, NY, USA, 2008, http://doi.acm.org/

10.1145/1365490.1365499

[OpenMP] http://openmp.org/wp/

[CDK01] R. Chandra, L. Dagum, D. Kohr, D. Maydan,
J. McDonald, R. Menon, Parallel Program-
ming in OpenMP, Morgan Kaufmann Pub-
lishers Inc. San Francisco, CA, USA, 2001

[MPI] http://www.mcs.anl.gov/research/

projects/mpi/

[MPIF09] Message Passing Interface Forum, MPI: A
Message-Passing Interface Standard, Ver-
sion 2.2, High Performance Computing Cen-
ter Stuttgart, Germany, 2009, http://www.

mpi-forum.org/docs/docs.html

[ESPResSo] http://www.espresso-pp.de

[mpi4py] http://mpi4py.scipy.org/

[boostmpi] http://mathema.tician.de/software/

boostmpi

[PyPar] M. Cieślik and C. Mura, PaPy: Parallel
and distributed data-processing pipelines in
Python, in Proc. SciPy 2009, G. Varoquaux,
S. van der Walt, J. Millman (Eds), pp.
17–24, http://sourceforge.net/projects/

pypar/

[IPython] F. Perez and B. Granger: Ipython, a system
for interactive scientific computing, Com-
puting in Science & Engineering, 9(3), 21-
29, 2007 http://ipython.scipy.org/doc/

stable/html/parallel/index.html

c©2009, O. Lenz 50

http://www.espresso-pp.de/projects/pmi/
http://www.espresso-pp.de/projects/pmi/
http://www.espresso-pp.de/projects/pmi/
http://www.espresso-pp.de/projects/pmi/
http://www.llnl.gov/computing/tutorials/parallel_comp/
http://www.llnl.gov/computing/tutorials/parallel_comp/
http://www.llnl.gov/computing/tutorials/parallel_comp/
http://www.llnl.gov/computing/tutorials/parallel_comp/
http://doi.acm.org/10.1145/1365490.1365499
http://doi.acm.org/10.1145/1365490.1365499
http://doi.acm.org/10.1145/1365490.1365499
http://doi.acm.org/10.1145/1365490.1365499
http://openmp.org/wp/
http://openmp.org/wp/
http://www.mcs.anl.gov/research/projects/mpi/
http://www.mcs.anl.gov/research/projects/mpi/
http://www.mcs.anl.gov/research/projects/mpi/
http://www.mcs.anl.gov/research/projects/mpi/
http://www.mpi-forum.org/docs/docs.html
http://www.mpi-forum.org/docs/docs.html
http://www.mpi-forum.org/docs/docs.html
http://www.mpi-forum.org/docs/docs.html
http://www.espresso-pp.de
http://www.espresso-pp.de
http://mpi4py.scipy.org/
http://mpi4py.scipy.org/
http://mathema.tician.de/software/boostmpi
http://mathema.tician.de/software/boostmpi
http://mathema.tician.de/software/boostmpi
http://mathema.tician.de/software/boostmpi
http://sourceforge.net/projects/pypar/
http://sourceforge.net/projects/pypar/
http://sourceforge.net/projects/pypar/
http://sourceforge.net/projects/pypar/
http://ipython.scipy.org/doc/stable/html/parallel/index.html
http://ipython.scipy.org/doc/stable/html/parallel/index.html
http://ipython.scipy.org/doc/stable/html/parallel/index.html
http://ipython.scipy.org/doc/stable/html/parallel/index.html

Proceedings of the 8th Python in Science Conference (SciPy 2009)

Sherpa: 1D/2D modeling and fitting in Python

Brian L. Refsdal (brefsdal@head.cfa.harvard.edu) – Harvard-Smithsonian Center for Astrophysics, USA

Stephen M. Doe (sdoe@head.cfa.harvard.edu) – Harvard-Smithsonian Center for Astrophysics, USA

Dan T. Nguyen (dtn@head.cfa.harvard.edu) – Harvard-Smithsonian Center for Astrophysics, USA

Aneta L. Siemiginowska (aneta@head.cfa.harvard.edu) – Harvard-Smithsonian Center for Astrophysics, USA

Nina R. Bonaventura (nina@head.cfa.harvard.edu) – Harvard-Smithsonian Center for Astrophysics, USA

Douglas Burke (dburke@cfa.harvard.edu) – Harvard-Smithsonian Center for Astrophysics, USA

Ian N. Evans (evans_i@head.cfa.harvard.edu) – Harvard-Smithsonian Center for Astrophysics, USA

Janet D. Evans (janet@head.cfa.harvard.edu) – Harvard-Smithsonian Center for Astrophysics, USA

Antonella Fruscione (antonell@head.cfa.harvard.edu) – Harvard-Smithsonian Center for Astrophysics, USA

Elizabeth C. Galle (egalle@head.cfa.harvard.edu) – Harvard-Smithsonian Center for Astrophysics, USA

John C. Houck (houck@space.mit.edu) – MIT Kavli Institute, USA

Margarita Karovska (karovska@head.cfa.harvard.edu) – Harvard-Smithsonian Center for Astrophysics, USA

Nicholas P. Lee (nlee@head.cfa.harvard.edu) – Harvard-Smithsonian Center for Astrophysics, USA

Michael A. Nowak (mnowak@space.mit.edu) – MIT Kavli Institute, USA

Sherpa is a modern, general purpose fitting and
modeling application available in Python. It con-
tains a set of robust optimization methods that are
critical to the forward fitting technique used in para-
metric data modeling. The Python implementation
provides a powerful software package that is flexible
and extensible with direct access to all internal data
objects. Sherpa affords a highly proficient scientific
working environment required by the challenges of
modern data analysis. It is implemented as a set
of Python modules with computationally-intensive
portions written in C++/FORTRAN as extension
modules using the Python C-API. It also provides a
high level user interface with command-like func-
tions in addition to the classes and functions at
the API level. Sherpa is being developed by the
Chandra X-ray Center (CXC) and is packaged with
the Chandra data analysis software package (CIAO).
Sherpa can also be built as a standalone applica-
tion; it can be extended by the user, or embed-
ded in other applications. It allows for analysis spe-
cific to astronomy, but also supports generic mod-
eling and fitting tasks. The ’astro’ module includes
additional astronomy model functions, FITS image
support, instrument models, and utilities. Sherpa’s
model library includes some commonly used 1D and
2D functions and most of the X-ray spectral mod-
els found in the High Energy Astrophysics Science
Archive Research Center (HEASARC) XSPEC ap-
plication. Sherpa also supports user-defined models
written in Python, C++, and FORTRAN, allowing
users to extend Sherpa with models not included in
our model library. Sherpa has a set of optimization
methods including LMDIF, implementations of Dif-
ferential Evolution (Monte Carlo) and Nelder-Mead
simplex. These functions minimize differences be-
tween data points and model values (as measured by
a fit statistic such as the chi-squared, maximum like-
lihood, or a user-defined statistic). The generic I/O
module includes back-end interfaces to read ASCII
files using NumPy and astronomy image files (FITS)
using PyFITS or CIAO Crates (CXC Data Model li-

brary in C++). Sherpa is general enough to fit and
model data from a variety of astronomical obser-
vatories (e.g., Chandra, ROSAT, Hubble) and over
many wavebands (e.g., X-ray, optical, radio). In
fact, Sherpa can fit and model any data set that can
be represented as collections of 1D or 2D arrays (and
can be extended for data of higher dimensionality).
Data sets can also be simulated with noise using
any model. The visualization module also allows for
multiple back-ends. An interface to Matplotlib and
CIAO ChIPS (CXC plotting package layered on VTK
in C++) are provided for line and histogram plot-
ting. 2D visualization is supported by the Smithso-
nian Astrophysical Observatory (SAO) imager, DS9.
The Sherpa command line uses a configured version
of IPython to provide a high level shell with IPython
’magic’ and readline support.

Introduction

Chandra is one of NASA’s great observatories and as-
tronomers from all over the world continue to use it for
X-ray astronomy since its launch in 1999. Sherpa is
one of many tools included in the Chandra Interactive
Analysis of Observations (CIAO) [ciao] software pack-
age. Sherpa is a multi-dimensional, robust Python ap-
plication that handles the task of modeling and fitting
in Chandra data analysis. It is developed by a team of
programmers and scientists in the Chandra X-ray Cen-
ter (CXC) and many of the algorithms and numerical
methods have been updated and optimized for the lat-
est computing architectures. In past releases, Sherpa
was comprised of a rigid YACC parser and much legacy
C++ code and recently has been re-implemented into
a cleaner, modular form.

Fitting and modeling

Fitting a model to data in Sherpa is done by modify-
ing one or more model parameters until the differences
are minimized between the predicted data points and

51 B. Refsdal, S. Doe, D. Nguyen, et al.in Proc. SciPy 2009, G. Varoquaux, S. van der Walt, J. Millman (Eds), pp. 51–58

brefsdal@head.cfa.harvard.edu
sdoe@head.cfa.harvard.edu
dtn@head.cfa.harvard.edu
aneta@head.cfa.harvard.edu
nina@head.cfa.harvard.edu
dburke@cfa.harvard.edu
evans_i@head.cfa.harvard.edu
janet@head.cfa.harvard.edu
antonell@head.cfa.harvard.edu
egalle@head.cfa.harvard.edu
houck@space.mit.edu
karovska@head.cfa.harvard.edu
nlee@head.cfa.harvard.edu
mnowak@space.mit.edu

Sherpa: 1D/2D modeling and fitting in Python

the raw data. Scientists model data to find values that
map to physical quantities, such as temperature, that
cannot easily be measured from the data set alone.
The analysis is not complete until the model expres-
sion contains the appropriate number of parameters,
that the parameter values are known to some degree
of confidence, and the probability of attaining such a
fit by chance is acceptably low.

Use

Sherpa is primarily used for Chandra X-ray data anal-
ysis. Many X-ray astronomers have used it for years
to analyze their data, and have published the results
based on Sherpa fitting and modeling. Sherpa is also
used in the data pipeline of the Chandra Source Cat-
alog (CSC) [csc] to estimate source sizes and spectral
properties.

Design

To achieve an extensible, general purpose fitting and
modeling application, we chose to implement a series
of Python modules that we later joined to form the
fitting application. At the object layer, many of these
modules include C++ extensions for computationally
intensive routines.

Figure 1. Sherpa Module Design

Sherpa can read data from a variety of astronomi-
cal observatories (e.g., Chandra, ROSAT, Hubble), as
they all publish their data in the Flexible Image Trans-
port System (FITS) format; Sherpa can deal with data
in any waveband (X-ray, optical, or radio). Even other
scientific or tabular data in ASCII format are sup-
ported. Data sets can even be simulated using a de-
fined model and added noise.

Sherpa provides a set of 1D and 2D models, as well
as an interface to the XSPEC model library (an X-ray
spectral package published by the High Energy Astro-
physics Science Archive Research Center (HEASARC)
[xspec]. Users can also extend Sherpa by writing mod-
els of their own in Python, C++, or FORTRAN. An
interface to a Fast Fourier Transform (FFT) library is
available for convolutions to model the effects of point
spread functions (PSFs), as well as some physical ef-
fects (e.g., spectral line broadening).

Sherpa provides robust optimization functions to han-
dle the low signal-to-noise often found in X-ray data.
They include Levenberg-Marquardt (LMDIF) [lm] and
in-house implementations of Differential Evolution
(Monte Carlo) [mc] and Nelder-Mead simplex [nm].
To complement the optimization functions, Sherpa in-
cludes native chi-squared and maximum likelihood fit
statistics. The interface is generic enough that users
can also define their own fit statistic functions.
Confidence limits for fitted parameter values can be
calculated with the function, projection. To accurately
estimate confidence limits for a given parameter, a
multidimensional confidence region needs to be pro-
jected onto the parameter’s associated axis in parame-
ter space. For a given parameter, the projection func-
tion searches for the locations on that axis where the
confidence region is projected. A new function, confi-
dence, is a pure Python implementation that takes the
same approach, but is much more efficient in search-
ing parameter space and generally is both more robust
and efficient than the projection function. Both meth-
ods compute confidence limits for each parameter in-
dependently and are currently computed in parallel on
multi-core CPUs.

I/O interface

The I/O interface provides a middle layer where mul-
tiple back-ends can be used to support multiple file
readers. Basic ASCII file reading is available using
NumPy. More complicated astronomy file formats, like
FITS, are standard. For example, Crates is a CXC
FITS reader that supports the Chandra Data Model.
Crates is the default I/O back-end and comes bundled
with the CIAO software package. Alternatively, Py-
FITS [pyfits] can be used in a standalone installation
of Sherpa. Each back-end (for Crates and PyFITS) in-
terfaces to the same front-end that exposes I/O func-
tions to other parts of Sherpa. Top-level I/O functions
such as load_data() are written to use that front-end,
so the choice of a particular back-end for I/O remains
hidden from the rest of the application.

Figure 2. Sherpa I/O Interface

Visualization interface

Similarly, the visualization interface supports multiple
back-ends for line and contour plotting and 2D imag-

c©2009, B. Refsdal, S. Doe, D. Nguyen, et al. 52

Proceedings of the 8th Python in Science Conference (SciPy 2009)

ing. ChIPS is a CIAO package available for line and
contour plotting written in C++ on top of VTK.

Figure 3. ChIPS line plot of X-ray data with fitted
model

Sherpa includes a back-end to matplotlib [mpl] as an
alternative for standalone installations. DS9 [ds9], the
SAO imager, is the primary back-end for image visu-
alization.

Figure 4. DS9 image of X-ray source

With generic interfaces, Sherpa offers users the free-
dom to add their own back-ends as needed.

API

The Sherpa UI that developers can build upon comes
in two levels, the basic API and a set of procedural
functions. The API includes all the additional func-
tionality for X-ray analysis, imported like a normal

Figure 5. Sherpa Visualization Interface

Python package. A typical example of an X-ray spec-
tral fit, such as modeling the redshifted photo-electric
absorption of a quasar, is shown below.

Import the base and astronomy modules
>>> from sherpa.all import *

>>> from sherpa.astro.all import *

Read in a data set from file and setup a filter from
0.3-7.5 keV.

>>> pha = read_pha(’q1127_src1.pi’)

>>> pha.notice(0.3, 7.5)

Instantiate individual model classes and setup initial
parameter values, freezing and thawing parameters as
necessary.

>>> abs1 = XSphabs(’abs1’)

>>> abs1.nH = 0.041

>>> abs1.nH.freeze()

>>> zabs1 = XSzphabs(’zabs1’)

>>> zabs1.redshift=0.312

>>> p1 = PowLaw1D(’p1’)

Inspection of the source data set can provide clues to
the initial parameter values. Some simple Sherpa mod-
els include functions to estimate the initial parameter
values, based on the data. The algorithms for such
“guess” functions are basic (e.g., maximum value, av-
erage, determining full-width half max) and do not
necessarily perform well for composite models.

>>> p1.guess(*pha.to_guess(), limits=True, values=True)

A scripting language like Python allows users to de-
fine their composite models at run time. Here, the
composite model is defined as a product of the three
and convolved with the instrument response.

>>> model = standard_fold(pha, abs1*zabs1*p1)

The Fit object is initialized with class instances of
data, model, statistic, optimization method, and con-
fidence limit method.

>>> f = Fit(pha, model, Chi2DataVar(), LevMar(),

Projection())

>>> results = f.fit()

The fit results object includes the fitted parameter val-
ues and the additional information calculated during
the fit. They include the initial, final, and change
in statistic values, the number of function evaluations

53 http://conference.scipy.org/proceedings/SciPy2009/paper_8

http://conference.scipy.org/proceedings/SciPy2009/paper_8

Sherpa: 1D/2D modeling and fitting in Python

used by the optimization method, the number of data
points, the degrees of freedom, the null hypothesis
probability (Q-value), and the reduced statistic value.

>>> print(results.format())

Method = levmar

Statistic = chi2datavar

Initial fit statistic = 17917.4

Final fit statistic = 686.013 at function evaluation 22

Data points = 494

Degrees of freedom = 491

Probability [Q-value] = 1.27275e-08

Reduced statistic = 1.39717

Change in statistic = 17231.4

zabs1.nH 0.094812

p1.gamma 1.28615

p1.ampl 0.000705228

In determining if the model suitably represents the
data, the maximum likelihood ratio (MLR) can be
computed. Given two models, the MLR can deter-
mine which model better describes a particular data
set. The more complex model should be picked when
the ratio is less than 0.05. Once a fit has been run
and the model selected that best describes the data
set, Sherpa can estimate the confidence limits using
the projection algorithm.

Estimate 1 sigma confidence limits using projection.
The projection results object displays the upper and
lower parameter bounds with the best-fit values.

>>> results = f.est_errors()

>>> print(results.format())

Confidence Method = projection

Fitting Method = levmar

Statistic = chi2datavar

projection 1-sigma (68.2689%) bounds:

Param Best-Fit Lower Bound Upper Bound

----- -------- ----------- -----------

zabs1.nH 0.094812 -0.00432843 0.00436733

p1.gamma 1.28615 -0.00968215 0.00970885

p1.ampl 0.000705228 -6.63203e-06 6.68319e-06

Procedural UI

The same script can be run in a more compact form
using the procedural UI. Users can perform common
operations --such as reading files, defining models, and
fitting --by calling predefined fuctions, without having
to write their own code in Python.

Import all astronomy procedural functions

>>> from sherpa.astro.ui import *

Read data set from file and setup a filter
>>> load_data(’q1127_src1.pi’)

>>> notice(0.3, 7.5)

Model instantiation uses a unique syntax of the form
’modeltype.identifier’ to create a model and label it in
a single line. xsphabs is a model class with abs1 as
the identifier and the expression xsphabs.abs1 returns
an instance of the class with rich comparison methods.
Model parameter values are initialized similarly to the
API.

>>> set_model(xsphabs.abs1*xszphabs.zabs1*powlaw1d.p1)

>>> abs1.nH = 0.041

>>> freeze(abs1.nH)

>>> zabs1.redshift=0.312

>>> guess(p1)

The statistic can be set as an instance of a Sherpa
statistic class or a string identifier to native Sherpa
statistics.

>>> set_stat(’chi2datavar’)

Execute the fit and display the results using a logger.
>>> fit()

...<fit output>

Compute the confidence limits and display the results
using a logger.

>>> proj()

...<confidence limit output>

Confidence

Projection estimates the confidence limits for each pa-
rameter independently (currently this can be done in
parallel). Projection searches for the N-sigma limits,
where N-sigma corresponds to a given change in the
fit statistic from the best-fit value.

For the chi-squared fit statistic, the relation between
sigma and chi-squared is σ =

√

∆χ2. For our maxi-
mum likelihood fit statistics, the relation has the form
σ =

√

2 ∗∆ logL. Projection has the added feature
that if a new minimum is found in the boundary search,
the process will restart using the new found best-fit val-
ues. The accuracy of the confidence limits using the
projection and confidence methods is based on the as-
sumption that the parameter space is quadratic, where
in, the fit statistic function for a given parameter can
be expanded using a Taylor series. Also, Sherpa as-
sumes that the best-fit point is sufficiently far (≈ 3σ)
from the parameter space boundaries. Cases where
these assumptions do not hold, users should use an al-
ternative approach such as Markov Chain Monte Carlo
(MCMC) to map the parameter space using specific
criteria. MCMC support within Sherpa is currently in
research and development and should be available in
future releases.

Fit Statistics

Sherpa has a number of χ2 statistics with different
variances. The χ2 fit statistic is represented as

χ2 ≡
∑

i

(Di −Mi)
2

σ2

i

,

where Di represents the observed data, Mi represents
the predicted model counts, and σ2

i represents the vari-
ance of the sampling distribution for Di.

c©2009, B. Refsdal, S. Doe, D. Nguyen, et al. 54

Proceedings of the 8th Python in Science Conference (SciPy 2009)

Sherpa defines many flavors of the χ2 statistic with
different variances. The native flavors of the variance
include leastsq

σ2 ≡ 1,

chi2constvar

σ2 ≡

∑N

i=1
Di

N
,

chi2modvar
σ2 ≡Mi,

chi2gehrels

σ2 ≡ [1 +
√

Di + 0.75]2,

chi2datavar

σ2 ≡ Di for Di > 0,

and chi2xspecvar

σ2 ≡

{

Di if Di > 0

1 if Di = 0
.

Sherpa likelihood statistics include Cash

C ≡ 2
∑

i

[Mi −Di log Mi] ∝ −2 log L,

and the C-statistic

C ≡ 2
∑

i

[Mi −Di +Di(log Di − log Mi)],

where Di represents the observed data, Mi represents
the predicted model counts, and L, the log-likelihood

L ≡
∏

i

MDii
Di!

exp(−Mi).

Visualization

Visualizing the parameter space can help determine
if the assumptions of projection hold or not. 1D line
plots of the statistic against parameter values are avail-
able with the interval projection function. For a given
parameter, the function steps away from the best-fit
value, and refits to find the statistic value at a number
of points in parameter space. Then a curve showing
how the statistic varies with parameter value is drawn.

>>> int_proj(p1.gamma)

2D confidence contours can be drawn with the region
projection function. For any two parameters, a grid is
constructed, such that the function refits at each point
to find the fit statistic. This maps out parameter space
around the best-fit parameter values.

Confidence contours can then be drawn (corresponding
to 1σ, 2σ, 3σ confidence by default. The plot bound-
aries are set to be 4σ by default (assuming that param-
eter space boundaries are no closer than ≈ 4σ from the
best-fit values).

Figure 6. Interval projection line plots typically look
parabolic in a well behaved parameter space.

Figure 7. 2D confidence contours, shown here using
matplotlib, are a typical product of a Sherpa session.
Contours provide the parameter value expectation to
some degree of confidence. The smaller the contour,
the more constrained the best-fit values are.

55 http://conference.scipy.org/proceedings/SciPy2009/paper_8

http://conference.scipy.org/proceedings/SciPy2009/paper_8

Sherpa: 1D/2D modeling and fitting in Python

>>> reg_proj(p1.gamma, p1.ampl)

Once parameter space has been mapped out, then the
line or contour plots can provide users with a visual
of parameter space around the best-fit parameter val-
ues. For 1D line and contour plotting the Sherpa high-
level UI includes many convenience functions that hide
much of the API boiler-plate in the plot module.

>>> plot_fit_delchi()

Figure 8. ChIPS line plot of source data set and error
bars, fitted model, and delta chi-squared residuals

Convenience functions are also available for 2D imag-
ing using an interface to DS9 with the XPA messaging
system [xpa].

>>> image_fit()

User Models

Users who wish to use their own models in Sherpa can
follow the user model interface. User defined models
can be written in Python, C++ or FORTRAN. An
example of a user-defined model in Python using the
Sherpa high-level UI is shown below.

>>> def calc(pars, x, **kwargs):

"""

y = m*x + b

"""

return pars[0]*x + b

>>> load_user_model(calc, "mymodel")

>>> add_user_pars("mymodel", ["m", "b"], [-3, 5])

In the function signature for calc, pars is a list of user
defined parameter values and x is a NumPy array rep-
resenting the model’s grid.

Conclusion

Sherpa is a mature, robust fitting and modeling ap-
plication, with continuing development. The Python

Figure 9. DS9 displays source image with fitted model
and residuals.

code is modular and extensible with plug-in back-ends,
and is flexible enough for general use.

Users can download a source tarball and install Sherpa
standalone [alone] or download it with the many tools
included in the CIAO software package [bundle]. Doc-
umentation is available with Python help, CIAO ahelp
files, and web pages that detail each function [ahelp]
and that show scripting threads [threads].

Users creating standalone installations using distu-
tils are required to install dependencies like Python,
NumPy, and Fastest Fourier Transform in the West
(FFTW) [fftw].

Future plans for Sherpa include an implementation of
MCMC for complicated parameter spaces (provided by
the CHASC astro-statistics group [chasc]); speed and
performance improvements using parallel techniques
for model evaluation; improved documentation (pos-
sibly using Sphinx [sphinx]); and a web-based version
control system that allows users to download the latest
stable version of Sherpa.

Support of the development of Sherpa is provided
by National Aeronautics and Space Administration
through the Chandra X-ray Center, which is operated
by the Smithsonian Astrophysical Observatory for and
on behalf of the National Aeronautics and Space Ad-
ministration contract NAS8-03060.

References

[ahelp] http://cxc.harvard.edu/sherpa/ahelp/

index_python.html

c©2009, B. Refsdal, S. Doe, D. Nguyen, et al. 56

http://cxc.harvard.edu/sherpa/ahelp/index_python.html
http://cxc.harvard.edu/sherpa/ahelp/index_python.html
http://cxc.harvard.edu/sherpa/ahelp/index_python.html
http://cxc.harvard.edu/sherpa/ahelp/index_python.html

Proceedings of the 8th Python in Science Conference (SciPy 2009)

[alone] http://hea-www.harvard.edu/uinfra/

sherpa/Documentation/download/index.

html

[bundle] http://cxc.harvard.edu/ciao/download

[chasc] http://hea-www.harvard.edu/AstroStat/

[ciao] http://cxc.harvard.edu/ciao

[csc] http://cxc.harvard.edu/csc

[ds9] http://hea-www.harvard.edu/RD/ds9/

[fftw] M. Frigo and S.G. Johnson, The Design and
Implementation of FFTW3, Proceedings of the
IEEE 93 (2), 216–231 (2005). Special Issue on
Program Generation, Optimization, and Plat-
form Adaptation. http://www.fftw.org/

[lm] Lecture Notes in Mathematics 630: Numerical
Analysis, G.A. Watson (Ed.), Springer-Verlag:
Berlin, 1978, pp. 105-116

[mc] R. Storn, and K. Price, Differential Evolution: A
Simple and Efficient Adaptive Scheme for Global
Optimization over Continuous Spaces, J. Global
Optimization 11, 1997, pp. 341-359 http://

www.icsi.berkeley.edu/~storn/code.html

[mpl] J.D. Hunter, Matplotlib: A 2D graphics envi-
ronment. Computing in Science and Engineer-
ing. 9: 90-95 (2007). http://matplotlib.

sourceforge.net.

[nm] J.A. Nelder and R. Mead, Computer Journal,
1965, vol 7, pp. 308-313. Jeffrey C. La-
garias, James A. Reeds, Margaret H. Wright,
Paul E. Wright Convergence Properties of the
Nelder-Mead Simplex Algorithm in Low Dimen-
sions, SIAM Journal on Optimization, Vol. 9,
No. 1 (1998), pp. 112-147. http://citeseer.

ist.psu.edu/3996.html. Wright, M. H. (1996)
Direct Search Methods: Once Scorned, Now
Respectable in Numerical Analysis 1995 (Pro-
ceedings of the 1995 Dundee Biennial Confer-
ence in Numerical Analysis) (D.F. Griffiths and
G.A. Watson, eds.), 191-208, Addison Wesley
Longman, Harlow, United Kingdom. http://

citeseer.ist.psu.edu/155516.html

[pyfits] http://www.stsci.edu/resources/software_

hardware/pyfits

[sphinx] G. Brandl, Sphinx, Python documentation gen-
erator, http://sphinx.pocoo.org/

[threads] http://cxc.harvard.edu/sherpa/threads/

all.html

[xpa] http://hea-www.harvard.edu/saord/xpa/

[xspec] http://heasarc.gsfc.nasa.gov/docs/

xanadu/xspec/

57 http://conference.scipy.org/proceedings/SciPy2009/paper_8

http://hea-www.harvard.edu/uinfra/sherpa/Documentation/download/index.html
http://hea-www.harvard.edu/uinfra/sherpa/Documentation/download/index.html
http://hea-www.harvard.edu/uinfra/sherpa/Documentation/download/index.html
http://hea-www.harvard.edu/uinfra/sherpa/Documentation/download/index.html
http://hea-www.harvard.edu/uinfra/sherpa/Documentation/download/index.html
http://hea-www.harvard.edu/uinfra/sherpa/Documentation/download/index.html
http://cxc.harvard.edu/ciao/download
http://cxc.harvard.edu/ciao/download
http://hea-www.harvard.edu/AstroStat/
http://hea-www.harvard.edu/AstroStat/
http://cxc.harvard.edu/ciao
http://cxc.harvard.edu/ciao
http://cxc.harvard.edu/csc
http://cxc.harvard.edu/csc
http://hea-www.harvard.edu/RD/ds9/
http://hea-www.harvard.edu/RD/ds9/
http://www.fftw.org/
http://www.fftw.org/
http://www.icsi.berkeley.edu/~storn/code.html
http://www.icsi.berkeley.edu/~storn/code.html
http://www.icsi.berkeley.edu/~storn/code.html
http://www.icsi.berkeley.edu/~storn/code.html
http://matplotlib.sourceforge.net
http://matplotlib.sourceforge.net
http://matplotlib.sourceforge.net
http://matplotlib.sourceforge.net
http://citeseer.ist.psu.edu/3996.html
http://citeseer.ist.psu.edu/3996.html
http://citeseer.ist.psu.edu/3996.html
http://citeseer.ist.psu.edu/3996.html
http://citeseer.ist.psu.edu/155516.html
http://citeseer.ist.psu.edu/155516.html
http://citeseer.ist.psu.edu/155516.html
http://citeseer.ist.psu.edu/155516.html
http://www.stsci.edu/resources/software_hardware/pyfits
http://www.stsci.edu/resources/software_hardware/pyfits
http://www.stsci.edu/resources/software_hardware/pyfits
http://www.stsci.edu/resources/software_hardware/pyfits
http://sphinx.pocoo.org/
http://sphinx.pocoo.org/
http://cxc.harvard.edu/sherpa/threads/all.html
http://cxc.harvard.edu/sherpa/threads/all.html
http://cxc.harvard.edu/sherpa/threads/all.html
http://cxc.harvard.edu/sherpa/threads/all.html
http://hea-www.harvard.edu/saord/xpa/
http://hea-www.harvard.edu/saord/xpa/
http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/
http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/
http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/
http://heasarc.gsfc.nasa.gov/docs/xanadu/xspec/
http://conference.scipy.org/proceedings/SciPy2009/paper_8

Proceedings of the 8th Python in Science Conference (SciPy 2009)

The FEMhub Project and Classroom Teaching of Numerical Methods

Pavel Solin (solin@unr.edu) – University of Nevada, Reno„ USA

Ondrej Certik (ondrej@certik.cz) – University of Nevada, Reno„ USA

Sameer Regmi (sregmi@unr.edu) – University of Nevada, Reno„ USA

We introduce briefly the open source project FEMhub
and focus on describing how it can be used for live
demonstrations of elementary numerical methods in
daily classroom teaching.

The FEMhub Project

FEMhub [femhub] is an open source distribution of
finite element (FEM) codes with unified Python inter-
face, developed by the hp-FEM group at the University
of Nevada, Reno [hpfemorg]. The aim of FEMhub is
to establish common standards in the development of
open source FEM codes, allow for accuracy and per-
formance comparisons of different codes, and provide
a common platform for collaboration and exchange of
modules.

Currently, FEMhub contains the open source codes
FiPy, Hermes [hermes], Phaml and SfePy as FEM
engines, tools to ease visualisation (matplotlib [mpl],
mayavi [mayavi], pyglet [pgl]), standard Python li-
braries Scipy [scipy], Numpy [numpy] and Sympy, and
a web notebook which is based on the Sage notebook.

Interactive Web Notebook

The goal of the FEMhub web notebook [femhub-nb] is
to make all FEM codes in FEMhub available remotely
through any web browser. Inside the web notebook,
one will be able to define geometry, generate a mesh,
specify boundary and initial conditions, define arbi-
trary partial differential equations (PDE) to be solved,
package the components and send them for processing
to a remote high-performance computing facility (cur-
rently UNR Research Grid), and visualize the results
once they are received.

Teaching Numerical Methods

We have found students’ understanding of the funda-
mentals of numerical methods to be an obstacle to
learning hp-FEM algorithms efficiently. As a result,
we decided to use the web notebook to implement a
series of elementary numerical methods that the stu-
dents can work with interactively and thus gain a much
better understanding of the material. The notebook
does not employ the CPU of the machine where it is
executed, and therefore one can use it to compute on
desktop PCs, laptops, netbooks and even iphones. In
particular, one can use it in every classroom that has
Internet access.

The response of the students was very positive, there-
fore we started to add new worksheets systematically

and to utilize the notebook in the classroom regularly.
We found that by running the methods in real time, we
can get much more across about their strengths, weak-
nesses and typical behavior than ever before. Last but
not least, the students stopped grumbling about pro-
gramming homework assignments.

Through this paper, we would like to share our pos-
itive experience with anyone who teaches elementary
numerical methods. All worksheets described below
are freely available at http://nb.femhub.org. Right
now (as of November 2009) you still need to create
an account to access them, but we are working cur-
rently on eliminating this and making the notebook
even more open.

Taylor Polynomial

The Taylor polynomial T(x) is an approximation to a
function f(x) in the vicinity of a given point a, based on
the knowledge of the function value f(a), first deriva-
tive f’(a), second derivative f”(a), etc. In the web
notebook, one has two ways of defining T(x): Via the
point a, list [f(a), f’(a), f”(a), ...], and the endpoints:

taylor_1(0, [0, 1, 0, -1, 0, 1, 0, -1], -3*pi/2, 3*pi/2)

or by entering the point a, the function f(x), x for
independent variable, degree n, and the endpoints:

taylor_2(0, sin(x), x, 7, -3*pi/2, 3*pi/2).

Both these commands generate the same T(x) but the
latter also plots the error:

f(x) = sin(x)
T(x) = x - x**3/6 + x**5/120 - x**7/5040

P. Solin, O. Certik, S. Regmiin Proc. SciPy 2009, G. Varoquaux, S. van der Walt, J. Millman (Eds), pp. 58–62 58

solin@unr.edu
ondrej@certik.cz
sregmi@unr.edu
http://nb.femhub.org
http://nb.femhub.org

Proceedings of the 8th Python in Science Conference (SciPy 2009)

Using the notebook, one can demonstrate obvious facts
such as that with increasing n the polynomial T(x) gets
closer to f(x) in the vicinity of the point a, but also
that the textbook recipe may overestimate the error
|f(x) - T(x)| substantially, that T(x) usually diverges
from f(x) quickly once |x-a| exceeds some threshold,
that T(x) has a special form at a=0 if f(x) is even
or odd, etc. See the Taylor Polynomial worksheet at
[femhub-nb] for more details.

Rootfinding Techniques

The three most-widely used methods (interval bisec-
tion, Newton’s method, and fixed-point iteration) are
called as one would expect:

bisection(1/(1+x*x) - x, x, 0, 1, 1e-8)

newton(1/(1+x**2) - x, x, 1, 1e-8)

fixed_point(1/(1+x**2), x, 1, 1e-8)

For the bisection method, we like to illustrate the text-
book formula for the number of steps needed to ob-
tain the root with a given accuracy. For the Newton’s
method we show how extremely fast it usually is com-
pared to the other two techniques but also that it can
fail miserably when the initial guess is far from the
root. For the fixed-point iteration we like to show how
slow it typically is compared to the other two meth-
ods, but also that it may work in situations where the
Newton’s does not. And of course, that it can fail if
the derivative of the underlying function exceeds the
interval (-1,1).

The previous image illustrates the history of interval
subdivisions produced by the bisection method.

Lagrange Interpolation Polynomial

The Lagrange interpolation polynomial L(x) is a sin-
gle polynomial of degree n passing through n+1 given
points of the form [x, y] with distinct x-coordinates.
The worksheet offers four different problem types:

1. Given is an arbitrary array of x-coordinates and
an arbitrary array of y-coordinates.

2. Given is an arbitrary array of x-coordinates and
a function f(x) for y-coordinates.

3. Given is an array of equally-spaced x-coordinates
and a function f(x) for y-coordinates.

4. Given are Chebyshev points for x-coordinates and
a function f(x) for y-coordinates.

We like to use option #1 to show the elementary in-
terpolation functions that are equal to one at one of
the points and zero at the remaining ones. Option #2
is useful for showing the difference between the La-
grange and Taylor polynomials. Options #3 and #4
can be used to demonstrate the notoriously bad perfor-
mance of equally-spaced interpolation points and that
one should use the Chebyshev points instead. The
following two figures illustrate interpolation of the fa-
mous function 1/(1+x**2) in the interval (-5, 5) on 11
equidistant points and the huge error that one ends up
with:

59 http://conference.scipy.org/proceedings/SciPy2009/paper_9

http://conference.scipy.org/proceedings/SciPy2009/paper_9

The FEMhub Project and Classroom Teaching of Numerical Methods

The following pair of figures shows the same situation,
only the equidistant points are replaced with Cheby-
shev points. The reader can see that the error E(x) =
f(x) - L(x) drops about 13 times in magnitude:

In option #4, one can demonstrate nicely the optimal-
ity of the Chebyshev points by moving slightly some of
them to the left or right (in the part of the code where
they are actually defined) and observing that the in-
terpolation error always goes up. See the Lagrange
Polynomial worksheet at [femhub-nb] for more details.

Cubic Splines

Interpolation via cubic splines is more popular than
the Lagrange interpolation because the results do not
contain wiggles and look much more natural. The ba-
sic setting is the same as in Lagrange interpolation -
one has n+1 points of the form [x,y] with distinct x-
coordinates. These points divide the interval into n
subintervals. In each of them, we seek a cubic polyno-
mial via four unknown coefficients. This means that
we have 4n unknowns. The corresponding 4n equa-
tions are obtained by requiring the splines to match
the end point values in every subinterval (2n equa-
tions), requiring the first derivatives from the left and
right to be the same at all interior points (n-1 equa-
tions), and the same for second derivatives (another
n-1 equations). At this point, two conditions are left
to be specified and there is some freedom in them.
For example, one can require the second derivatives

to vanish at interval endpoints, which results into the
so-called natural cubic spline. But one can also set
the first derivatives (slopes) at interval endpoints, etc.
The following pair of images illustrates the interpola-
tion of the function 1/(1+x*x) in the interval (-5, 5)
on 11 equidistant points as above, but now with cubic
splines. Compared to the Chebyshev interpolant, the
error drops 6 times in magnitude.

The following figure shows the sparsity structure of the
4n times 4n matrix (zeros in white, nonzeros in black).
We like to highlight the underlying matrix problems
because in our experience the students usually do not
know that matrices can be used outside of a linear
algebra course.

c©2009, P. Solin, O. Certik, S. Regmi 60

Proceedings of the 8th Python in Science Conference (SciPy 2009)

See the Cubic Splines worksheet at [femhub-nb] for
more details.

Least-Squares Approximation

The least-squares approximation technique is very dif-
ferent from interpolation - it finds in a given set of
polynomials an element that is closest to the approxi-
mated function f(x). (There is nothing about matching
the function values of f(x) exactly.) Typically, the set
of polynomials is chosen to be the Legendre polyno-
mials because of their orthogonality, and the distance
between is measured in the so-called L2-norm. The
following commands are used to define a function f(x)
and calculate its least-squares polynomial approxima-
tion of degree n in an interval (a,b):

Define function f(x)

def f(x): return -sin(x)

Calculate and plot in interval (a, b) the

least-squares polynomial approximation P(x) of f(x)

least_squares(-pi, pi, f, x, 3)

The output for these parameters looks as follows:

This worksheet also plots the underlying basis func-
tions (Legendre polynomials). One can use elemen-
tary integration functions to show the students that
indeed the Legendre polynomials are orthogonal in the
L2-product. We also like to use this opportunity to
explain the importance of numerical quadrature by

projecting a complicated function that cannot be in-
tegrated analytically. For more details see the Least
Squares worksheet at [femhub-nb].

Fourier Expansion

This is an excellent opportunity to show the students
that the Fourier expansion is nothing else than the
least-squares approximation. One just replaces the
Legendre polynomials with the functions 1, cos(x),
sin(x), cos(2x), sin(2x), ..., and considers the peri-
odicity interval (-pi, pi) instead of a general interval
(a, b). Otherwise everything is the same. It is use-
ful to demonstrate to the students that the Fourier
basis above indeed is orthogonal in the L2-product.
The following figure shows the approximation of a
piecewise-constant discontinuous signal. The work-
sheet also plots the error as usual, not shown here for
space limitations.

See the Fourier Expansion worksheet at [femhub-nb]
for more details.

References

[femhub] http://femhub.org/.
[femhub-nb] http://nb.femhub.org/.
[hermes] http://hpfem.org/main/hermes.php.
[hpfemorg] http://hpfem.org/.
[mpl] J.D. Hunter (2007). Matplotlib: A 2D graph-

ics environment. Computing in Science and
Engineering. 9: 90-95. http://matplotlib.

sourceforge.net/.
[mayavi] P. Ramachandran, G. Varoquaux, Mayavi:

Making 3D Data Visualization Reusable,
in Proceedings of the 7th Python in Sci-
ence conference (SciPy 2008) http://code.

enthought.com/projects/mayavi/.
[numpy] T. Oliphant et al., NumPy, http://numpy.

scipy.org/.
[pgl] http://www.pyglet.org/.
[scipy] E. Jones, T. Oliphant, P. Peterson, SciPy:

Open source scientific tools for Python http:

//www.scipy.org/.

61 http://conference.scipy.org/proceedings/SciPy2009/paper_9

http://femhub.org/
http://femhub.org/
http://nb.femhub.org/
http://nb.femhub.org/
http://hpfem.org/main/hermes.php
http://hpfem.org/main/hermes.php
http://hpfem.org/
http://hpfem.org/
http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/
http://matplotlib.sourceforge.net/
http://code.enthought.com/projects/mayavi/
http://code.enthought.com/projects/mayavi/
http://code.enthought.com/projects/mayavi/
http://code.enthought.com/projects/mayavi/
http://numpy.scipy.org/
http://numpy.scipy.org/
http://numpy.scipy.org/
http://numpy.scipy.org/
http://www.pyglet.org/
http://www.pyglet.org/
http://www.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://conference.scipy.org/proceedings/SciPy2009/paper_9

Proceedings of the 8th Python in Science Conference (SciPy 2009)

Exploring the future of bioinformatics data sharing and mining with Pygr
and Worldbase

Christopher Lee (leec@chem.ucla.edu) – Department of Chemistry Biochemistry, UCLA, 611 Charles Young Dr.

East, Los Angeles, CA 90095 USA

Alexander Alekseyenko (alexander.alekseyenko@nyumc.org) – Center for Health Informatics and Bioinformatics,

Department of Medicine, New York University School of Medicine, New York, NY 10016 USA

C. Titus Brown (ctb@msu.edu) – Dept. of Computer Science and Engineering, Dept. of Microbiology and Molecular

Genetics, Michigan State University, East Lansing, Michigan 48824 USA

Worldbase is a virtual namespace for scientific data
sharing that can be accessed via “from pygr import
worldbase“. Worldbase enables users to access, save
and share complex datasets as easily as simply giv-
ing a specific name for a commonly-used dataset
(e.g. Bio.Seq.Genome.HUMAN.hg17 for draft 17 of
the human genome). Worldbase transparently takes
care of all issues of how to access the dataset, what
code must be imported to use it, what dependencies
on other datasets it may have, and how to make use
of its relations with other datasets as specified by
its schema. Worldbase works with a wide variety of
“back-end” storage, including data stored on local
file systems, relational databases such as MySQL,
remote services via XMLRPC, and “downloadable”
resources that can be obtained from the network but
automatically installed locally by Worldbase.

Introduction

One of the most important challenges in bioinformat-
ics is a pure Computer Science problem: making it
easy for different research groups to access, mine and
integrate each other’s datasets, in ways that go beyond
simple web browsing. The problems of bioinformatics
data sharing have grown enormously as the scale and
complexity of datasets have increased. Even expert
bioinformaticians often find it difficult to work with
datasets from outside their specialization; non-expert
users often find it impossible. Such difficulties are one
of the main barriers to delivering the full value of ge-
nomics to all researchers who could benefit from it.
Even when good analysis tools are available, the diffi-
culties of accessing and integrating large datasets often
limit who can do interesting analyses [LI01].

It doesn’t have to be this way. Enabling datasets to
“flow” automatically from one place to another, to
inter-connect through cross-references that work au-
tomatically, and to always bring along the code mod-
ules necessary for working with them - these are all in-
frastructural principles that computer scientists have
solved for other domains [DK76]. Good infrastructure
should be transparent. Like the Domain Name Service
and other technologies that power the web, it should
just work, without being visible to the user.

The need for both computational and human scala-
bility

One major obstacle to easy sharing of bioinformatics
datasets is their sheer scale and complex interdepen-
dencies. Some aspects of this are very simple; for ex-
ample, many prospective users just don’t have enough
disk space on their computer to load their desired data.
In that case, they should be able to access the data
over network protocols transparently; that is, with the
exact same interfaces used if the data were stored lo-
cally. But a deeper problem is the fact that existing
systems for accessing data from other scientists rely on
expertise: “if the user is an expert in how to use this
particular kind of data, s/he’ll figure out how to find,
download, install, and use this dataset”. Since most ex-
perts are inexpert at most things, this approach does
not scale [BITL]. We have therefore developed a simple
but general data-sharing mechanism called worldbase

[Pygr]:

• To use any public dataset, all the user needs to know
is its name.

• Asking for a dataset by name yields a full Python
interface to it, enabling the user to mine it in all the
ways that the original producer of the data could.

• All datasets should be accessible by name from any
networked computer, using the closest available re-
sources, or if the user requests, by automatically
downloading and installing it locally. Just like the
World Wide Web, worldbase seeks to create a fa-
cade of fully integrated data, not just from the user’s
computer or LAN but from the whole world.

• The interface for using that data should be exactly
the same no matter how or where it is actually being
accessed from.

• To use a dataset’s relationships to other datasets,
again all the user needs to know is the name of one of
its attributes that links it to another dataset. If the
user requests such an attribute, the linked dataset(s)
will again be accessed automatically.

In this paper we first describe the current version of
worldbase (Pygr v.0.8.0, Sept. 2009) by illustrating
typical ways of using it. We then discuss some prin-
ciples of scalable data integration that we believe will
prove to be general across many domains of scientific
computing.

C. Lee, A. Alekseyenko, C. Brownin Proc. SciPy 2009, G. Varoquaux, S. van der Walt, J. Millman (Eds), pp. 62–68 62

leec@chem.ucla.edu
alexander.alekseyenko@nyumc.org
ctb@msu.edu

Proceedings of the 8th Python in Science Conference (SciPy 2009)

Using Worldbase

Retrieving a dataset from Worldbase

Say you want to work with human genome draft 18.
Start Python and type the following:

>>> from pygr import worldbase

>>> hg18 = worldbase.Bio.Seq.Genome.HUMAN.hg18()

That’s it: you now have the human genome dataset,
and can start working. Let’s see how many contigs
it contains, pull out one chromosome, and print a
sequence interval of interest, using standard Python
methods:

>>> len(hg18)

49

>>> chr1 = hg18[’chr1’]

>>> len(chr1)

247249719

>>> ival = chr1[20000000:20000500]

>>> print ival

cctcggcctcccaaagtgctgggattacaggcgtgagccaccgcgcagcc...

worldbase establishes a one-step model for accessing
data: ask for it by name:

• worldbase is an importable namespace for all the
world’s scientific datasets. You simply import the
namespace (in the usual Python way), and ask it to
construct an instance of the dataset that you want
(in the usual Python way).

• Of course, this is a virtual namespace - you don’t ac-
tually have all the world’s datasets sitting on your
computer in a file called worldbase.py! worldbase

connects to a wide variety of data sources (some of
which may be on your computer, and some which
may be on the Internet) to find out the set of avail-
able resources, and then serves them to you.

• worldbase takes advantage of Pygr’s scalable de-
sign. Pygr is first and foremost a a system of rep-
resentation not tied to any fixed assumptions about
storage. Pygr is built around the notion of delayed
and incremental execution, whereby pieces of a com-
plex and large dataset are loaded only as needed,
and in an automatic way that makes this interface
transparent. For example, chr1 represents human
chromosome 1, but does not necessarily mean that
the human chromosome 1 sequence (245 Mb) was
loaded into a Python object). Thus it can work
very naturally with huge datasets, even over a net-
work connection where the actual data is stored on
a remote server. In this case, worldbase is access-
ing hg18 from UCLA’s data server, which is included
by default in worldbase searches (of course, you can
change that).

• To get a dataset, all you need to know is its name in
worldbase. Note that we did not even have to know
what code is required to work with that data, let
alone explicitly import those modules. worldbase

takes care of that for you.

• The call syntax (hg18()) emphasizes that this
acts like a Python constructor: it constructs
a Python object for us (in this case, the de-
sired seqdb.SequenceFileDB object representing
this genome database).

• Note that we did not even have to know how to
construct the hg18 object, e.g. what Python class
to use (seqdb.SequenceFileDB), or even to import
the necessary modules for constructing it.

• Where did this data actually come from? Since
your computer presumably does not contain a lo-
cal copy of this dataset, worldbase accessed it from
UCLA’s public worldbase server over XMLRPC.
Currently, our server provides over 460 standard
datasets for comparative genomics (such as whole
genome sequences, and multigenome alignments),
both for client-server access and automated down-
load and installation of datasets (see below).

Storing data in Worldbase

worldbase saves not just a data file but a complete
Python interface to a dataset, i.e. the capability to
use and mine the data in whatever ways are possible
programmatically. One way of thinking about world-
base is that retrieving data from it is like returning to
the moment in time when those data were originally
saved to worldbase. Anything you could do with the
original data, you can do with the retrieved data.

There are only a few requirements:

• you have your dataset loaded in Python as an object.
When retrieved from worldbase, this dataset will be
usable by the exact same interface as the original
object.

• your object must be picklable. Worldbase can store
any object that is compatible with standard Python
pickling methods. Thus, worldbase is not restricted
to Pygr data - but most Pygr classes are of course
designed to be stored in worldbase.

• your object must have a docstring, i.e. a __doc__

attribute. This should give a simple explanatory de-
scription so people can understand what this dataset
is.

For example, say we want to add the hg17
(release 17 of the human genome sequence) as
“Bio.Seq.Genome.HUMAN.hg17” (the choice of name
is arbitrary, but it’s best to choose a good convention
and follow it consistently):

from pygr import seqdb, worldbase

Open the human genome sequence

hg17 = seqdb.SequenceFileDB(’hg17’)

Documentation is required to store in worldbase

hg17.__doc__ = ’human genome sequence draft 17’

Store in worldbase as this name

worldbase.Bio.Seq.Genome.HUMAN.hg17 = hg17

worldbase.commit()

63 http://conference.scipy.org/proceedings/SciPy2009/paper_10

http://conference.scipy.org/proceedings/SciPy2009/paper_10

Exploring the future of bioinformatics data sharing and mining with Pygr and Worldbase

Note that you must call the function
worldbase.commit() to complete the transac-
tion and save all pending data resources (i.e. all
those added since your last worldbase.commit()

or worldbase.rollback()). In particular, if
you have added data to worldbase during a given
Python interpreter session, you should always call
worldbase.commit() or worldbase.rollback()

prior to exiting from that session.

In any subsequent Python session, we can now access
it directly by its worldbase name:

from pygr import worldbase

hg17 = worldbase.Bio.Seq.Genome.HUMAN.hg17()

You should think of worldbase not as a conventional
database (a container for storing a large set of a spe-
cific kind of data) but rather as a metadata database,
i.e. a container for storing metadata describing vari-
ous datasets (which are typically stored in other, stan-
dard databases). By “metadata” we mean information
about the content of a particular dataset (this is what
allows worldbase to reload it automatically for the
user, without the user having to know what classes to
import or how to construct the object correctly), and
about its relations with other datasets. Throughout
this paper, we will use the term “metabase” to refer
to this concept of a “metadata database”. Whereas a
database actually stores an entire dataset, a metabase
merely stores a small amount of metadata pointing to
that database and describing its relations with other
datasets.

Worldbase automatically captures dataset depen-
dencies

What if you wanted to save a dataset that in
turn requires many other datasets? For example,
a multigenome alignment dataset is only useful if
you also have the genome datasets that it aligns.
worldbase is smart about figuring out data resource
dependencies. For example, you could just save a 17-
genome alignment in a single step as follows:

from pygr import cnestedlist, worldbase

nlmsa = cnestedlist.NLMSA(’/loaner/ucsc17’)

nlmsa.__doc__ = ’UCSC 17way multiz alignment, on hg17’

worldbase.Bio.MSA.UCSC.hg17_multiz17way = nlmsa

worldbase.commit()

This works, even though using this 17-genome align-
ment (behind the scenes) involves accessing 17 seqdb.

SequenceFileDB sequence databases (one for each of
the genomes in the alignment). Because the alignment
object (NLMSA) references the 17 seqdb.Sequence

FileDB databases, worldbase automatically saves in-
formation about how to access them too.

However, it would be a lot smarter to give those
databases worldbase resource names too:

from pygr import cnestedlist, worldbase

nlmsa = cnestedlist.NLMSA(’/loaner/ucsc17’)

for resID, genome in nlmsa.seqDict.prefixDict.items():

1st save the genomes

genome.__doc__ = ’genome sequence ’ + resID

worldbase.add_resource(’Bio.Seq.Genome.’ + resID,

genome)

nlmsa.__doc__ = ’UCSC 17way multiz alignment, on hg17’

now save the alignment

worldbase.MSA.Bio.UCSC.hg17_multiz17way = nlmsa

worldbase.commit()

This has several advantages. First, we can now access
other genome databases using worldbase too:

from pygr import worldbase

get the mouse genome

mm7 = worldbase.Bio.Seq.Genome.mm7()

But more importantly, when we try to load the
ucsc17 alignment on another machine, if the genome
databases are not in the same directory as on our
original machine, the first method above would fail,
whereas in the second approach worldbase now will au-
tomatically figure out how to load each of the genomes
on that machine.

Worldbase schema automatically connects datasets
for you

One major advantage of worldbase is that it explic-
itly captures and automatically applies schema infor-
mation about relationships and interconnections be-
tween different datasets. By “schema” we mean the
precise connections between two or more collections of
data. Such inter-relations are vital for understand-
ing and mining scientific datasets. For example “a
genome has genes, and genes have exons”, or “an exon
is connected to another exon by a splice”. Let’s say
we have two databases from worldbase, exons and
splices, representing exons in a genome, and splices
that connect them, and a mapping splicegraph that
stores the many-to-many connections between exons
(via splices). We can add splicegraph to worldbase

and more importantly save its schema information:
splicegraph.__doc__ = ’graph of exon:splice:exon links’

worldbase.Bio.Genomics.ASAP2.hg17.splicegraph = splicegraph

worldbase.schema.Bio.Genomics.ASAP2.hg17.splicegraph = \

metabase.ManyToManyRelation(exons, exons, splices,

bindAttrs=(’next’,’previous’,’exons’))

worldbase.commit()

This tells worldbase that splicegraph is a many-
to-many mapping from the exons database onto it-
self, with “edge” information about each such map-
ping stored in the splices database. Concretely,
this means that for each exon1 to exon2 connection
splice, then splicegraph[exon1][exon2]=splice.
Furthermore, the bindAttrs option says that we wish
to bind this schema as named attributes to all items
in those databases. Concretely, for any object exon1

from the exons database, it makes exon1.next equiv-
alent to splicegraph[exon1]. That means a user can
find all the exons that exon1 splices to, by simply typ-
ing:

c©2009, C. Lee, A. Alekseyenko, C. Brown 64

Proceedings of the 8th Python in Science Conference (SciPy 2009)

for exon2,splice in exon1.next.items():

do something...

Note how much this simplifies the user’s task. The
user doesn’t even need to know about (or understand)
the splicegraph database, nor indeed do anything
to load splicegraph or its dependency splices. Con-
sistent with the general philosophy of worldbase, to
use all this, the user only needs to know the name
of the relevant attribute (i.e. exons have a next at-
tribute that shows you their splicing to downstream
exons). Because worldbase knows the explicit schema
of splicegraph, it can automatically load splicegraph
and correctly apply it, whenever the user attempts
to access the next attribute. Note also that neither
splicegraph nor splices will actually be loaded (nor
will the Python module(s) need to construct them be
loaded), unless the user specifically accesses the next

attribute.

Controlling where Worldbase searches and saves
data

worldbase checks the environment variable
WORLDBASEPATH for a list of locations to search;
but if it’s not set, worldbase defaults to the following
path:

~,.,http://biodb2.bioinformatics.ucla.edu:5000

which specifies three locations to be searched (in or-
der): your home directory; your current directory; the
UCLA public XMLRPC server. Worldbase currently
supports three ways of storing metabases: in a Python
shelve file stored on-disk; in a MySQL database table
(this is used for any metabase path that begins with
“mysql:”); in an XMLRPC server (this is used for any
metabase path that begins with “http:”).

Worldbase can install datasets for you locally

What if you want to make worldbase download the
data locally, so that you could perform heavy-duty
analysis on them? The examples above all accessed the
data via a client-server (XMLRPC) connection, with-
out downloading all the data to our computer. But if
you want the data downloaded to your computer, all
you have to do is add the flag download=True. For ex-
ample, to download and install the entire yeast genome
in one step:

yeast = \

worldbase.Bio.Seq.Genome.YEAST.sacCer1(download=True)

We can start using it right away, because worldbase

automates several steps:

• worldbase first checked your local resource lists to
see if this resource was available locally. Failing that,
it obtained the resource from the remote server,
which basically tells it how to download the data.

• worldbase unpickled the Bio.Seq.Genome.YEAST.

sacCer1 seqdb.SequenceFileDB ob-
ject, which in turn requested the
Bio.Seq.Genome.YEAST.sacCer1.fasta text
file (again with download=True).

• this is a general principle. If you request a re-
source with download=True, and it in turn depends
on other resources, they will also be requested with
download=True. I.e. they will each either be ob-
tained locally, or downloaded automatically. So if
you requested the 44 genome alignment dataset, this
could result in up to 45 downloads (the alignment
itself plus the 44 genome sequence datasets).

• the compressed file was downloaded and unzipped.

• the seqdb.SequenceFileDB object initialized itself,
building its indexes on disk.

• worldbase then saved this local resource to your
local worldbase index (on disk), so that when you
request this resource in the future, it will simply use
the local resource instead of either accessing it over
a network (the slow client-server model) or down-
loading it over again.

Some scalability principles of data Integra-
tion

We and many others have used worldbase heavily
since its release (in Pygr 0.7, Sept. 2007). For some
examples of large-scale analyses based on worldbase

and Pygr, see [AKL07] [Kim07] [ALS08].

We have found worldbase to be a work pattern that
scales easily, because it enables any number of people,
anywhere, to use with zero effort a dataset constructed
by an expert via a one-time effort. Furthermore, it
provides an easy way (using worldbase schema bind-
ings) to integrate many such datasets each contributed
by different individuals; these schema relations can be
contributed by yet other individuals. In the same way
that many software distribution and dependency sys-
tems (such as CRAN or fink) package code, worldbase

manages data and their schema. Attempts to encap-
sulate data into a global distribution system are made
in CRAN [CRAN], but limited to example datasets
for demonstrating the packaged code. Unlike CRAN,
worldbase’s focus is primarily on data sharing and in-
tegration.

Based on these experiences we identify several princi-
ples that we believe are generally important for scal-
able data integration and sharing in scientific comput-
ing:

• Encapsulated persistence: we coin this term to
mean that saving or retrieving a dataset requires
nothing more than its name in a virtual names-
pace. Moreover, its dependencies should be saved
/ retrieved automatically by the same principle, i.e.
simply by using their names. This simple principle

65 http://conference.scipy.org/proceedings/SciPy2009/paper_10

http://conference.scipy.org/proceedings/SciPy2009/paper_10

Exploring the future of bioinformatics data sharing and mining with Pygr and Worldbase

makes possible innumerable additional layers of au-
tomation, because they can all rely on obtaining a
given dataset simply requesting its name.

• Interface means representation, not storage:
the public interface for working with worldbase

datasets must provide a powerful representation of
its data types, that can work transparently with
many different back-end storage protocols. For ex-
ample, the back-end might be an XMLRPC client-
server connection across a network, or a MySQL
database, or specially indexed files on local disk.
By using this transparent interface, user applica-
tion code will work with any back-end; moreover,
users should be able to request the kind of back-end
scalability they want trivially (e.g. by specifying
download=True).

• Scalability is paramount: in all of our work,
scalability has been a primary driving concern -
both computational scalability and human scalabil-
ity. Scientists will only mine massive datasets using
a high-level language like Python (whose high-level
capabilities made worldbase possible) when this re-
tains high performance. Fortunately, elegant solu-
tions such as Pyrex [Pyrex] and Cython [Cython]
make this entirely feasible, by enabling those com-
ponents that are truly crucial for performance to be
coded in optimized C.

• Metabases are the glue: we coin the
term “metabase” to mean a metadata database.
worldbase is not intended to be a database in which
you actually store data. Instead it is only intended
to store metadata about data that is stored else-
where (in disk files; in SQL databases; in network
servers, etc.). Broadly speaking these metadata for
each resource include: what kind of data it is; how
to access it; its relations with other data (schema
and dependencies). Metabases are the heart of
worldbase.

• Provide multiple back-ends for 3 standard
scalability patterns: Users most often face three
different types of scalability needs: I/O-bound,
data should be worked with in-memory to the extent
possible; memory-bound, data should be kept on-
disk to the extent possible; CPU-bound or disk-
space bound, data should be accessed remotely via
a client-server protocol, as there is either no benefit
or no space for storing them locally. As an example,
worldbase has been used so far mainly with Pygr,
a framework of bioinformatics interfaces and back-
ends. For each of its application categories (e.g. se-
quences; alignments; annotations), Pygr provides all
three kinds of back-ends, with identical interfaces.

• Standard data models: containers and map-
pings. In Pygr and worldbase, data divide into two
categories: containers (a dictionary interface whose
keys are identifiers and whose values are the data ob-
jects) and mappings that map items from one con-

tainer (dataset) onto another. In particular, Pygr
(the Python Graph database framework) generalizes
from simple Python mappings (which store a one-to-
one relation) to graphs (many-to-many relations).
By following completely standard Python interfaces
[Python] for containers, mappings and graphs (and
again providing three different kinds of back-ends
for each, to cover all the usual scalability patterns),
Pygr makes worldbase’s simple schema and de-
pendency capabilities quite general and powerful.
For example, since Pygr’s mapping classes support
Python __invert__() [Python], worldbase can au-
tomatically bind schema relations both forwards and
backwards.

• Schema is explicit and dynamic: We have de-
fined schema as the metadata that describe the con-
nections between different datasets. When schema
information is not available as data that can be
searched, transmitted, and analyzed at run-time,
programmers are forced either to hard-wire schema
assumptions into their code, or write complex rules
for attempting to guess the schema of data at run-
time. These are one-way tickets to Coding Hell.
worldbase is able to solve many data-sharing prob-
lems automatically, because it stores and uses the
schema as a dynamic graph structure. For exam-
ple, new schema relations can be added between ex-
isting datasets at any time, simply by adding new
mappings.

• The web of data interconnects transparently:
These schema bindings make it possible for data
to appear to interconnect as one seamless “virtual
database” (in which all relevant connections are
available simply by asking for the named attributes
that connect to them), when in reality the datasets
are stored separately, accessed via many different
protocols, and only retrieved when user code specif-
ically requests one of these linked attributes. This
can give us the best of both worlds: an interface that
looks transparent, built on top of back-ends that are
modular. In fact, one could argue that this princi-
ple is the programmatic interface analogue of the
hyperlink principle that drove the success of the hy-
pertext web: a facade of completely inter-connected
data, thanks to a transparent interface to indepen-
dent back-ends. From this point of view one might
consider worldbase to be a logical extension of the
“semantic web” [BHL01], but reoriented towards the
scalability challenges of massive scientific computing
datasets. We think this transparent interconnection
of data is gradually becoming a general principle in
scientific computing. For example, the Comprehen-
sive R Archive Network like worldbase provides a
uniform environment for accessing packages of code
+ data that can be installed with automatic links to
their dependencies, albeit with a very different in-
terface reflecting the limitations of its language en-
vironment (R instead of Python).

c©2009, C. Lee, A. Alekseyenko, C. Brown 66

Proceedings of the 8th Python in Science Conference (SciPy 2009)

Current limitations and plan for future de-
velopment

• Currently, worldbase supplies no mechanism for
global “name resolution” analogous to the DNS. In-
stead, the user simply designates a list of worldbase

servers to query via the WORLDBASEPATH environ-
ment variable; if not specified it defaults to include
the main (UCLA) worldbase server. This simple
approach lets users easily control where they will
access data from; for example, a user will typically
give higher precedence to local data sources, so that
worldbase requests will be obtained locally if possi-
ble (rather than from a remote server). This lack of
centralization is both a vice and a virtue. On the one
hand users are free to develop and utilize resources
that best suit their research needs. On the other
hand, such lack of centralization may often result in
duplication of effort, where two research would work
on the same data transformation without knowing
of each other’s efforts. We believe that these prob-
lems should be solved by a centralized mechanism
similar to the DNS, i.e. that enables data producers
to publish data within “domains” in the name space
that they “own”, and transparently resolves name
requests to the “closest” location that provides it.

• Since worldbase uses Python pickling, the well-
known security concerns about Python unpickling
also apply to worldbase. These must be resolved
prior to expanding worldbase from a user-supplied
“access list” to a DNS-like global service. We be-
lieve that in a public setting, pickle data should be
authenticated by secure digital signatures and net-
works of trust using widely deployed standards such
as GnuPG [GnuPG].

Future developments:

• Support for novel and emerging data types, for ex-
ample:

– Genome-wide association study (GWAS) data.

– Next-generation sequencing datasets, such as
RNA-seq, allele specific variation, ChIP-seq, and
microbiomic diversity data.

• Increased support for using worldbase within com-
mon cluster computing systems. This seems like a
natural way of being able to seamlessly scale up an
analysis from initial prototyping to large-scale clus-
ter computations (very different environments where
often data resources cannot be accessed in exactly
the same way), by pushing all data access issues into
a highly modular solution such as worldbase.

• Optimized graph queries.

• Data visualization techniques.
• Ability to push code objects along with the data, so

that class hierarchy and appropriate access methods

may be installed on the fly. In the context of dig-
itally signed code and networks of trust, this could
greatly increase the convenience and ease with which
scientists can explore common public datasets.

Acknowledgments

We wish to thank the Pygr Development team, in-
cluding Marek Szuba, Namshin Kim, Istvan Alberts,
Jenny Qian and others, as well as the many valuable
contributions of the Pygr user community. We are
grateful to the SciPy09 organizers, and to the Google
Summer of Code, which has supported 3 summer stu-
dents working on the Pygr project. This work was also
supported from grants from the National Institutes of
Health (U54 RR021813; SIB training grant GM008185
from NIGMS), and the Department of Energy (DE-
FC02-02ER63421).

References

[LI01] C. Lee, K. Irizarry, The GeneMine system for
genome/proteome annotation and collaborative
data-mining. IBM Systems Journal 40: 592-603,
2001.

[DK76] F. Deremer and H.H. Kron, Programming In the
Large Versus Programming In the Small. IEEE
Transactions On Software Engineering, 2(2), pp.
80-86, June 1976.

[BITL] D.S. Parker, M.M. Gorlick, C. Lee, Evolving
from Bioinformatics in the Small to Bioinfor-
matics in the Large. OMICS, 7, 34-48, 2003.

[Pygr] The Pygr Consortium, Pygr: the Python Graph
Database Framework, 2009, http://pygr.org.

[AKL07] A.V. Alekseyenko, N. Kim, C.J. Lee, Global
analysis of exon creation vs. loss, and the role
of alternative splicing, in 17 vertebrate genomes.
RNA 13:661-670, 2007.

[Kim07] N. Kim, A.V. Alekseyenko, M. Roy, C.J. Lee,
The ASAP II database: analysis and compara-
tive genomics of alternative splicing in 15 an-
imal species. Nucl. Acids Res. 35: D93-D98,
2007.

[ALS08] A.V. Alekseyenko, C.J. Lee, M.A. Suchard,
Wagner and Dollo: a stochastic duet by compos-
ing two parsimonious solos. Systematic Biology
57: 772-784, 2008.

[CRAN] The Comprehensive R Archive Network, from
http://cran.r-project.org/.

[Pyrex] G. Ewing, Pyrex - a Language for Writing
Python Extension Modules. http://www.cosc.

canterbury.ac.nz/greg.ewing/python/Pyrex.
[Cython] S. Behnel, R. Bradshaw, D.S. Seljebotn, Cython:

C Extensions for Python. http://www.cython.

org.
[Python] G. van Rossum and F.L. Drake, Jr., Python Tu-

torial, 2009, http://www.python.org.
[BHL01] T. Berners-Lee, J. Hendler, O. Lassila, The Se-

mantic Web. Sci. Am. May 2001.
[GnuPG] GNU Privacy Guard, http://www.gnupg.org/

67 http://conference.scipy.org/proceedings/SciPy2009/paper_10

http://pygr.org
http://pygr.org
http://cran.r-project.org/
http://cran.r-project.org/
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex
http://www.cosc.canterbury.ac.nz/greg.ewing/python/Pyrex
http://www.cython.org
http://www.cython.org
http://www.cython.org
http://www.cython.org
http://www.python.org
http://www.python.org
http://www.gnupg.org/
http://www.gnupg.org/
http://conference.scipy.org/proceedings/SciPy2009/paper_10

Proceedings of the 8th Python in Science Conference (SciPy 2009)

Nitime: time-series analysis for neuroimaging data

Ariel Rokem (arokem@berkeley.edu) – University of California, Berkeley, Berkeley, CA USA

Michael Trumpis (mtrumpis@berkeley.edu) – University of California, Berkeley, Berkeley, CA USA

Fernando Pérez (Fernando.Perez@berkeley.edu) – University of California, Berkeley, Berkeley, CA USA

Nitime is a library for the analysis of time-series
developed as part of the Nipy project, an effort
to build open-source libraries for neuroimaging re-
search. While nitime is developed primarily with
neuroimaging data in mind (espespecially functional
Magnetic Resonance Imaging data), its design is
generic enough that it should be useful to other
fields with experimental time-series. The package
starts from a purely functional set of algorithms for
time-series analysis, including spectral transforms,
event-related analysis and coherency. An object-
oriented layer is separated into lightweight data con-
tainer objects for the representation of time-series
data and high-level analyzer objects that couple data
storage and algorithms. Each analyzer is designed to
deal with a particular family of analysis methods and
exposes a high-level object oriented interface to the
underlying numerical algorithms. We briefly describe
functional neuroimaging and some of the unique
considerations applicable to time-series analysis of
data acquired using these techniques, and provide
examples of using nitime to analyze both synthetic
data and real-world neuroimaging time-series.

Introduction

Nitime (http://nipy.sourceforge.net/nitime) is
a library for time-series analysis of data from neu-
roimaging experiments, with a design generic enough
that it should be useful for a wide wide array of
tasks involving experimental time-series data from any
source.

Nitime is one of the components of the NiPy [NiPy]
project, an effort to develop a set of open-source li-
braries for the analysis and visualization of data from
neuroimaging experiments.

Functional MRI: imaging brain activity

One of the major goals of neuroscience is to understand
the correspondence between human behavior and ac-
tivity occurring in the brain. For centuries, physicians
and scientists have been able to identify brain areas
participating in various cognitive functions, by observ-
ing the behavioral effects of damage to those areas.
Within the last ∼ 25 years, imaging technology has
advanced enough to permit the observation of brain
activity in-vivo. Among these methods, collectively
known as functional imaging, fMRI (functional Mag-
netic Resonance Imaging) has gained popularity due
to its combination of low invasiveness, relatively high
spatial resolution with whole brain acquisition, and the

development of sophisticated experimental analysis ap-
proaches. fMRI measures changes in the concentration
of oxygenated blood in different locations in the brain,
denoted as the BOLD (Blood Oxygenation Level De-
pendent) signal [Huettel04]. The cellular processes oc-
curring when neural impulses are transmitted between
nerve cells require energy derived from reactions where
oxygen participates as a metabolite, thus the delivery
of oxygen to particular locations in the brain follows
neural activity in that location. This fact is used to
infer neural activity in a region of the brain from mea-
surements of the BOLD signal therein. In a typical
fMRI experiment this measurement is repeated many
times, providing a spatio-temporal profile of the BOLD
signal inside the subject’s brain. The minimal spatial
unit of measurement is a volumetric pixel, or “voxel”,
typically of the order of a few mm3.

The temporal profile of the acquired BOLD signal is
limited by the fact that blood flow into neurally active
tissue is a much slower process than the changes in the
activity of neurons. From a signal processing perspec-
tive, this measured profile can be seen as the convolu-
tion of a rapid oscillation at rates of O(10 − 1000)Hz
(neuronal activity) with a much slower function that
varies at rates of ∼ 0.15Hz (changes in blood flow due
to neighboring blood vessels dilating and contracting).
This slowly varying blood flow profile is known as the
hemodynamic response function (HRF), and it acts
as a low-pass filter on the underlying brain activity
[Aguirre97].

Figure 1. Signals measured by fMRI are time-series,
illustrated from areas in the human visual cortex
(adapted from Silver et al., 2005; with permission).

A. Rokem, M. Trumpis, F. Pérezin Proc. SciPy 2009, G. Varoquaux, S. van der Walt, J. Millman (Eds), pp. 68–76 68

arokem@berkeley.edu
mtrumpis@berkeley.edu
Fernando.Perez@berkeley.edu
http://nipy.sourceforge.net/nitime
http://nipy.sourceforge.net/nitime

Proceedings of the 8th Python in Science Conference (SciPy 2009)

fMRI data analysis and time-series analysis

The interpretation of fMRI data usually focuses on the
analysis of the relationship between the BOLD time-
series in each voxel and the occurrence of events of
behavioral significance, such as the presentation of a
stimulus to the subject or the production of a motor
response by the subject.

Figure 1 presents a rendered image of the brain, pre-
sented with the anterior part of the brain turning left-
wards. Visual areas of the cerebral cortex are located
in the posterior part of the brain. The colored patches
represent different functional regions in the visual cor-
tex: these areas labeled V1-V7 respond to visual stim-
ulation. Each contains a representation of the visual
field such that adjacent locations on the brain surface
respond to stimuli appearing in adjacent locations in
the visual field. The areas IPS1 and IPS2 (named after
their anatomical location in the intraparietal sulcus)
contain an ordered representation of the visual field,
but respond to the allocation of attention instead of
direct visual stimulation [Silver05]. By averaging the
measured BOLD signal over all the voxels in each area,
we obtain time-series representative of the activity in
the region; this is illustrated in the insets for V1 and
IPS2.

Typically, univariate analyses calculate a statistical
measure of the correlation between the actual activ-
ity in each voxel and the activity expected, if the voxel
contains neurons which respond to the behaviorally
relevant events. Clusters of voxels that significantly
correlate with this model are then considered to con-
tain neurons participating in the cognitive function as-
sociated with the behavior in question. Sometimes,
this approach is sufficient in order to answer interest-
ing questions about functional specialization of various
parts of the brain. However, in most cases it is bene-
ficial to further study the time-series measured in the
fMRI with approaches that go beyond univariate anal-
ysis.

One important aspect in further analysis of the time-
series is the definition of regions of interest (ROI)
and the targeting of the analysis to those regions
[Poldrack06]. ROIs are defined based on criteria such
as the known functional specialization of a region in
the brain or the anatomical location of that region.
In an ROI-based analysis, the time-series from all the
voxels in this ROI are extracted and averaged and the
average time-series is then subject to further analysis.
This approach is readily adopted in areas of the brain
where functionally distinct areas can be spatially de-
fined. For example, the areas of the cortex which par-
ticipate in processing of visual information (often re-
ferred to as “visual areas” and denoted by V1, for “pri-
mary visual cortex”, V2, for “secondary visual cortex”,
etc.) each contain an ordered representation of the en-
tire visual field (Figure 1) [Wandell07]. These neigh-
boring regions can thus be spatially separated based
on the layout of their respective visual field “maps”
relative to each other.

One extension of the univariate approach mentioned
above, is to examine the functional relations between
different time-series, extracted from different locations
in the brain. One of the major advantages of fMRI is
that measurements are performed simultaneously from
many different regions of the brain. Therefore, this
method allows us to define not only the correspondence
between the time-series of BOLD in one particular re-
gion and the events that occurred in the environment
while this data was collected, but also the correspon-
dence between time-series collected from one region
and the time-series simultaneously collected in another
region of the brain. This approach is often referred to
as “functional connectivity analysis” [Friston94], where
bivariate and multivariate measures of covariance be-
tween two or more time-series, taken from different ar-
eas in the brain, are calculated. This kind of analysis
allows us to infer not only about the participation of a
particular brain region in a cognitive process of inter-
est, but also about the functional network of regions
and the interplay between activity in these different re-
gions. These analysis techniques can be done using an
ROI based approach (see example, below). However,
they can also be utilized as exploratory data analysis
techniques, in which the connectivity between every
pair of voxels in the brain is calculated and the vox-
els are clustered into functional modules according to
their connectivity.

Nitime

The nitime package tries to provide scientists con-
ducting brain-imaging research with a clean and easy-
to-use interface to algorithms that calculate quanti-
ties derived from the time-series acquired in fMRI ex-
periments. It contains implementations both of meth-
ods previously used in neuroimaging and of time-series
analysis techniques that have yet to be widely used in
neuroimaging. We also aim to develop new and orig-
inal ways of analyzing fMRI data and to make these
methods available to the community of scientists con-
ducting brain-imaging research through nitime. The
algorithms are built to allow calculation of some uni-
variate quantities pertaining to the time-series in ques-
tion, as well as bivariate and multivariate quantities.
They are meant to allow an ROI based approach, as
well as analyses done at the single-voxel level. Many
of the algorithms could be used in the analysis of other
kinds of time-series, whether taken from other modal-
ities of neuroscientific research or even in other fields
of science. Therefore, we have decoupled the parts of
the implementation that are directly related to neu-
roimaging data (functions for reading data from stan-
dard neuroimaging formats, for example), from our
object-oriented design and from the implementation
of algorithms.

Nitime fits within the broader context of other re-
lated Python projects: The TimeSeries SciPy scikit
[TimeSeries] focuses on the analysis of calendar-based
time-series (such as those used in finance), while the

69 http://conference.scipy.org/proceedings/SciPy2009/paper_11

http://conference.scipy.org/proceedings/SciPy2009/paper_11

Nitime: time-series analysis for neuroimaging data

design of nitime is more directly geared towards ex-
perimental data analysis. BrainVISA [Favre09], is a
package that focuses on fMRI data and provides a
complete array of analysis facilities, including prepro-
cessing, visualization and batch workflows. In con-
trast, nitime is a developer-oriented library that fo-
cuses on implementation of algorithms and generic
data-management objects. Pyhrf [Makni08] is a li-
brary which implements a joint detection-estimation
approach to brain activity. Future development will
hopefully lead to tighter integration of nitime with
this library. Finally, Nitime time-series objects can use
the newly introduced datetime data type in NumPy
but do not depend on it, and can thus be used to ma-
nipulate any data set that fits into an n-dimensional
NumPy array.

Importantly, analysis of fMRI data requires several
steps of pre-processing, such as motion correction and
file-format conversion to occur before this kind of anal-
ysis can proceed. Several software packages, such
as BrainVISA, FSL [Smith04] , AFNI [Cox97] and
SPM [Friston95] implement algorithms which can be
used in order to perform these steps. Furthermore,
the nipype library (http://nipy.sourceforge.net/

nipype/), which is also part of the NiPy project, pro-
vides a Python programming interface to some of these
packages. The design of nitime assumes that the data
has been pre-processed and can be read in either as a
NumPy ndarray or in the standard NIfTI file-format.

Next, we will describe the design of nitime and the
decision-making process leading to this implementa-
tion. Then, we will demonstrate how nitime can be
used to analyze real-world data.

Software design

Today, most high-level software uses object oriented
(OO) design ideas to some extent. The Python lan-
guage offers a full complement of syntactic support to
implement OO constructs, from simple one-line classes
to complex hierarchies. Previous experience has shown
us that designing good OO interfaces is far, far harder
than it appears at first. Most of us who have come to
write software as part of our scientific work but with-
out much formal training in the matter, often prove
surprisingly poor performers at this task.

The simplest description of what an object is in com-
puter science, presents it as the coupling of data and
functions that operate on said data. The problem we
have seen in the past with a literal interpretation of
this description, however, is that it is very easy to build
object hierarchies where the data and the algorithms
are more tightly coupled than necessary, with numer-
ical implementation details living inside the methods
of the resulting objects, and the objects holding too
much state that is freely reused by all methods. This
effectively buries the algorithms inside of objects and
makes it difficult to reuse them in a different design
without carrying the containing objects.

To a good extent, this is the problem that the C++
Standard Template Library tries to address by sepa-
rating containers from algorithms and establishing in-
terfaces for generically coupling both at use time. For
nitime, we have tried to follow this spirit by separat-
ing our implementation into three distinct parts:

1. A purely functional library, nitime.algorithms,
that implements only the numerical part of time-
series analysis algorithms. These functions manip-
ulate NumPy arrays and standard Python types
(integers, floats, etc.), which makes their calling
signatures necessarily somewhat long, in the clas-
sical style of well known libraries such as LAPACK.

2. A set of “dumb” data container objects for time-
series data, that do as little as possible. By forcing
them to have a very minimal interface, we hope
to reduce the chances of making significant de-
sign mistakes to a minimum, or of creating objects
whose interface ’over-fits’ to our needs and is thus
not useful for others. In this respect, we try to
follow the excellent example laid out by Python
itself, whose core objects have small but remark-
ably general and useful interfaces.

3. A set of “smart” objects, which we have called ana-
lyzers, that provide access to the algorithms library
via easy to use, high-level interfaces. These objects
also assist in bookkeeping of state, and possibly
caching information that may be needed in differ-
ent computations (such as the Fourier Transform
of a signal).

Our analyzer objects are a lightweight binding of #1
and #2 above, and thus represent a minimal invest-
ment of effort and code. If they prove to be a poor
fit for a new user of nitime (or for us in the future),
there is no significant loss of functionality and no ma-
jor investment of time has been made for naught. The
real value of the library lies in its algorithms and con-
tainers, and users should be free to adapt those to the
task at hand in any way they see fit. We now provide a
brief overview of these three components, whose use we
will illustrate in the next section with a more detailed
example.

Algorithms

The nitime.algorithms module currently imple-
ments the following algorithms:

Spectral transforms

Transforms of time-series data to the frequency-
domain underlie many methods of time-series analy-
sis. We expose previous implementations of spectral
transforms taken from mlab, Matplotlib’s library of
numerical algorithms [Matplotlib]. In addition, we
have written algorithms for the calculation of a stan-
dard periodogram and cross-spectral density estimates

c©2009, A. Rokem, M. Trumpis, F. Pérez 70

http://nipy.sourceforge.net/nipype/
http://nipy.sourceforge.net/nipype/
http://nipy.sourceforge.net/nipype/
http://nipy.sourceforge.net/nipype/

Proceedings of the 8th Python in Science Conference (SciPy 2009)

based both on regular and multi-taper periodograms.
The multi-taper periodogram was implemented here
using discrete prolate spheroidal (Slepian) sequences
([NR07], [Percival93], [Slepian78]).

Coherency

Coherency is an analog of cross-correlation between
two time-series calculated in the frequency domain,
which can be used to study signals whose underly-
ing spectral structure is similar despite containing sub-
stantial differences in the time domain. In fMRI analy-
sis, this technique is used in order to calculate the func-
tional connectivity between time-series derived from
different voxels in the brain, or different ROIs and
in order to infer the temporal relations them [Sun05].
One of the inherent problems in the analysis of func-
tional connectivity of fMRI signals is that the temporal
characteristics of the hemodynamic response in differ-
ent areas of the brain may differ due to variations in
the structure of the local vasculature in the different
regions. Consequently, the delay between neural ac-
tivity in a voxel and the peak of the ensuing influx
of oxygenated blood may differ quite significantly be-
tween different voxels, even if the neural activity which
is the root cause of the BOLD response and the quan-
tity of interest, were identical. Thus, the correlation
between the two time-series derived from the BOLD
response in two different regions may be quite low,
only because the hemodynamic response in one area
begins much later than the hemodynamic response in
the other area.

This limitation can be overcome to some degree, by
conducting the analysis in the frequency domain, in-
stead of the time domain. One type of analysis tech-
nique which examines the correspondence between two
or more time-series in the frequency domain is co-
herency analysis. Coherency is defined as:

Coherencyxy(ν) =
fxy(ν)

√

fxx(ν)fyy(ν)
, (1)

where fxy(ν) is the cross-spectral density between
time-series x and time-series y in the frequency band
centered on the frequency ν; fxx(ν) and fyy(ν) are the
frequency-dependent power-spectral densities of time-
series x and y respectively.

The squared magnitude of the coherency, known as
coherence, is a measure of the strength of the func-
tional coupling between x and y. It varies between
0 and 1 and will be high for two time-series which
are functionally coupled even if the delays in their re-
spective hemodynamic responses differ substantially.
The phase φ(ν) of the coherency can relay the tempo-
ral delay between the two time-series, via the relation
∆t(ν) = φ(ν)/(2πν).

Importantly, the temporal resolution at which the de-
lay can be faithfully reproduced in this method does
not depend on the sampling rate (which is rather

slow in fMRI), but rather depends on the reliabil-
ity with which the hemodynamic response is pro-
duced given a particular activity. Though the hemo-
dynamic response may vary between different subjects
and between different areas in the same subject, it is
rather reproducible for a given area in a given subject
[Aguirre98].

In our implementation, these quantities can be com-
puted with various methods to extract the cross-
spectral density fxy and the spectral densities fxx and
fyy.

Regularized coherency

In addition to the standard algorithm for computing
coherency, we have implemented a regularized version,
which permits robust computation of coherence in the
presence of small denominators (that occur for fre-
quency bands where fxx or fyy is very small). Omit-
ting the frequency ν for notational brevity, we replace
eq. (1) with:

CohRxy,αǫ =
|αfxy + ǫ|2

α2(fxx + ǫ)(fyy + ǫ)
, (2)

where α and ǫ are real numbers. This expression tends
to Cohxy when ǫ→ 0, but is less sensitive to numerical
error if either fxx or fyy is very small. Specifically, if
|f | ≫ ǫ then CohRxy,αǫ → Cohxy (where f is any of
fxx, fyy or fxy), and if f ≈ ǫ then:

CohRxy,αǫ →
(α+ 1)2

4α2
Cohxy ≈

1

4
Cohxy (3)

for α ≫ 1. We note that this is only an order-of-
magnitude estimate, not an exact limit, as it requires
replacing ǫ by fxx, fyy and fxy in different parts of eq.
(1) to factor out the Cohxy term.

For the case where |f | ≪ ǫ ≪ α, CohRxy,αǫ →
1

α2 . In
this regime, which is where small denominators can
dominate the normal formula returning spurious large
coherence values, this approach suppresses them with
a smooth decay (quadratic in α).

Event-related analysis

A set of algorithms for the calculation of the corre-
spondence between fMRI time-series and experimen-
tal events is available in nitime. These are univari-
ate statistics calculated separately for the time-series
in each voxel or each ROI. We have implemented a
standard least squares estimate of the hemodynamic
response function in response to a series of different
events [Dale00].

In addition, we have implemented a fast algorithm for
calculation of the cross-correlation between a series
of events and a time-series and comparison of the re-
sulting event-related response functions to the baseline
variance of the time-series.

71 http://conference.scipy.org/proceedings/SciPy2009/paper_11

http://conference.scipy.org/proceedings/SciPy2009/paper_11

Nitime: time-series analysis for neuroimaging data

Containers

A TimeSeries object is a container for an arbitrary
n-dimensional array of data (a NumPy ndarray ob-
ject), along with a single one-dimensional array of time
points. In the data array, the first n − 1 dimensions
are considered to describe the data elements (if n = 1,
the elements are simply scalars) and the last dimen-
sion is the time axis. Since the native storage order of
NumPy arrays is C-style (last index varies fastest), our
choice gives greater data locality for algorithms that
require taking elements of the data array and iterating
over their time index. For example, a set of recordings
from a multichannel sensor can be stored as a 2-d ar-
ray A, with the first index selecting the channel and
the second selecting the time point. In C-order stor-
age, the data for channel i, A[i] will be contiguous in
memory and operations like an FFT on it will benefit
from cache locality.

The signature of the UniformTimeSeries constructor
is:

def __init__(self, data, t0=None,

sampling_interval=None,

sampling_rate=None,

time=None, time_unit=’s’)

Any attribute not given at initialization time is com-
puted at run time from the others (the constructor
checks to ensure that sufficient information is provided,
and raises an error otherwise). The standard Python
approach for such problems is to use properties, but
properties suffer from the problem that they involve
a call to a getter function on every access, as well as
requiring explicit cache management to be done in the
getter. Instead, we take advantage of the dynamic
nature of Python to find a balance of property-like de-
layed evaluation with attribute-like static storage.

We have defined a class called OneTimeProperty that
exposes the descriptor protocol and acts like a property
but, on first access, computes a value and then sets it
statically as an instance attribute. The function is
then called only once, and any further access to the
name requires only a normal, static attribute lookup
with no overhead. The code that implements this idea,
stripped of comments and docstrings for the sake of
brevity but otherwise complete, is:

class OneTimeProperty(object):

def __init__(self,func):

self.getter = func

self.name = func.func_name

def __get__(self,obj,type=None):

if obj is None:

return self.getter

val = self.getter(obj)

setattr(obj, self.name, val)

return val

When writing a class such as UniformTimeSeries, one
then declares any property whose first computation
should be done via a function call using this class as
a decorator. As long as no circular dependencies are
introduced in the call chain, multiple such properties

can depend on one another. This provides for an im-
plicit and transparent caching mechanism. Only those
attributes accessed, either by user code or by the com-
putation of other attributes, will be computed. We il-
lustrate this with the implementation of the time, t0,
sampling_interval and sampling_rate attributes of
the UniformTimeSeries class:

@OneTimeProperty

def time(self):

npts = self.data.shape[-1]

t0 = self.t0

t1 = t0+(npts-1)*self.sampling_interval

return np.linspace(t0,t1,npts)

@OneTimeProperty

def t0(self):

return self.time[0]

@OneTimeProperty

def sampling_interval(self):

return self.time[1]-self.time[0]

@OneTimeProperty

def sampling_rate(self):

return 1.0/self.sampling_interval

We have found that this approach leads to very read-
able code, that lets us delay computation where de-
sired without introducing layers of management code
(caching, private variables for getters, etc.) that ob-
scure the main intent.

We have so far overlooked one important point in our
discussion of “automatic attributes”: the case where
the quantities depend on mutable data, so that their
previously computed values become invalid. This is a
problem that all caching mechanisms need to address,
and in its full generality it requires complex machinery
for cache state control. Since we rely on an implicit
caching mechanism and our properties become regu-
lar attributes once computed, we can not use regular
cache dirtying procedures. Instead, we have provided
a ResetMixin class that can be used for objects whose
automatic attributes may become invalid. This class
provides only one method, reset(), that resets all at-
tributes that have been computed back to their initial,
unevaluated state. The next time any of them is re-
quested, its accessor function will fire again.

Analyzers

We now describe our approach to exposing a high-
level interface to the analysis functions. We have con-
structed a set of lightweight objects called analyzers,
that group together a set of conceptually related anal-
ysis algorithms and apply them to a specific time-series
object. These objects have a compact implementation
and no significant numerical code; their purpose is to
do simple book-keeping and to allow for end-user code
that is readable and compact. Their very simplicity
also means that they shouldn’t be judged too severely
if they don’t fit a particular application’s needs: it
is easy enough to implement new analysis objects as
needed. We do hope that the ones provided by nitime

will serve many common cases, and will also be useful

c©2009, A. Rokem, M. Trumpis, F. Pérez 72

Proceedings of the 8th Python in Science Conference (SciPy 2009)

reference implementations for cases that require writ-
ing new ones.

All analyzers follow a similar pattern: they are in-
stantiated with a TimeSeries object of interest, which
they keep an internal reference to, and they expose a
series of attributes and methods that compute specific
algorithms from the library for this time series. For
all the main quantities of interest that have a static
meaning, the analyzer exposes an attribute accessor
that, via the OneTimeProperty class, calls the under-
lying algorithm with all required parameters and stores
the result in the attribute for further use. In addition
to these automatic attributes, analyzers may also ex-
pose normal methods that provide simplified interfaces
(with less parameters) to algorithms. If any of these
methods requires one of the automatic attributes, it
will be naturally computed by the accessor on first ac-
cess and this result will be then stored in the instance.
We will now present examples showing how to analyze
both synthetic and real fMRI data with these objects.

Examples: coherency analysis

Analysis of synthetic time-series

The first example we present is a simple analysis
stream on a pair of synthetic time-series (Figure 2),
of the form

x(t) = sin(αt) + sin(βt) + ǫx (4)

y(t) = sin(αt+ φ1) + sin(βt− φ2) + ǫy (5)

where ǫx,y are random Gaussian noise terms and φi >
0 for i = 1, 2, such that each is a superposition of two
sinusoidal functions with two different frequencies and
some additional uncorrelated Gaussian white noise and
the relative phases between the time-series have been
set such that in one frequency, one series leads the
other and in the other frequency the relationship is
reversed.

We sample these time series into an array data from
which a UniformTimeSeries object is initialized:

In [3]: TS = UniformTimeSeries(data,sampling_rate=1)

A correlation analyzer object is initialized, using the
time-series object as input:

In [4]: Corr = CorrelationAnalyzer(TS)

Corr.correlation now contains the full correlation
matrix, we extract the position [0,1], which is the
correlation coefficient between the first and the second
series in the object:

In [5]: Corr.correlation[0,1]

Out[5]: 0.28727768

The correlation is rather low, but there is a strong co-
herence between the time-series (Figure 2B) and in
particular in the two common frequencies. We see

this by initializing a coherence analyzer with the time-
series object as input:

In [6]: Coh = CoherenceAnalyzer(TS)

Figure 2. Coherency analysis - an example: A:
two synthetic time-series are displayed. B: The co-
herence is displayed as a function of frequency. C:
The coherency phase-delay between the time-series
is presented, as a function of frequency.

We examine specifically the coherence in the frequency
bands of interest with indices 2 and 6:

In [7]: Coh.coherence[0,1,2]

Out[7]: 0.9893900459215027

In [8]: Coh.coherence[0,1,6]

Out[8]: 0.97800470864819844

These two high coherence values are what gives rise
to the two prominent peaks in the coherence in Figure
2B. In addition, the relative phases are reversed in the
two frequencies composing these time series. This is
reflected in the relative phase between the time-series
(Figure 2C), which can be calculated in a similar way.

Analysis of fMRI data

Our second example (Figure 3) demonstrates the anal-
ysis of actual experimental fMRI data, acquired by
David Bressler and Michael Silver. In this experiment,
subjects fixated their gaze on a dot at the center of
the visual field and viewed a wedge-shaped section of
a circle (like a pizza slice), which slowly rotated around
the fixation dot at a rate of one full cycle every 32 sec-
onds. The wedge contained a flickering checker-board

73 http://conference.scipy.org/proceedings/SciPy2009/paper_11

http://conference.scipy.org/proceedings/SciPy2009/paper_11

Nitime: time-series analysis for neuroimaging data

pattern. This pattern of stimulation is known to stim-
ulate activity in visual areas, which can be measured
with fMRI. In half of the scans, the subject was in-
structed to detect the appearance of targets inside the
checker-board pattern. In the other half of the scans,
the subject was instructed to detect targets appear-
ing in the fixation point at the center of gaze. Thus,
in both cases, the subject’s attention was engaged in
a difficult detection task (tasks were adjusted so that
the difficulty in both cases was similar). The only dif-
ference between the two conditions was whether atten-
tion was directed into the area covered by the checker-
board wedge or out of this area. Previous research
[Lauritzen09] has shown that allocation of attention
tends to increase coherence between areas in early vi-
sual cortex and between areas in visual cortex and IPS
areas (see Figure 1). Data was recorded from subjects’
brains in the scanner, while they were performing this
task. Visual ROIs were defined for each subject. These
ROIs contain the parts of cortex which represent the
areas of the visual field through which the checker-
board wedge passes in its rotation, but not the area of
the visual field close to the center of the focus of the
gaze, the area in which the fixation point is presented.
Thus, the activity measured in the experiment is in re-
sponse to the same visual stimulus of the checker-board
wedge; in half the scans, while attention is directed to
the wedge and in the other half, when attention is di-
rected away from the wedge.
In order to examine the functional connectivity be-
tween the ROIs, we start from data stored on disk in a
.npy file containing an array with time-series objects,
created from the raw fMRI data for a single subject:

In [1]: tseries_arr = np.load(’tseries.npy’)

Each TimeSeries object in this array corresponds to
the data for a separate scan, and it contains the mean
BOLD data for 7 separate ROIs (one per visual area of
interest, see Figure 3). Attention was directed to the
fixation point in the even scans and to the checker-
board wedge in the odd scans. We initialize coherence
analyzers for each of the scans and store those in which
attention was directed to the wedge separately from
those in which attention was directed to the fixation
point:

In [2]: C_fix = map(CoherenceAnalyzer,

....: tseries_arr[0::2]) # even scans

In [3]: C_wedge = map(CoherenceAnalyzer,

....: tseries_arr[1::2]) # odd scans

We extract the cross-coherence matrix for all the ROIs
in one frequency band (indexed by 1) and average over
the scans:

In [4]: mean_coh_wedge = array([C.coherence[:,:,1]

....: for C in C_wedge]).mean(0)

In [5]: mean_coh_fix = array([C.coherence[:,:,1]

....: for C in C_fix]).mean(0)

In order to characterize the increase in coherence with
attention to the wedge, we take the difference of the
resulting array:

In [6]: diff = mean_coh_wedge - mean_coh_fix

In Figure 3, we have constructed a graph (using Net-
workX [NetworkX]) in which the nodes are the visual
area ROIs, presented in Figure 1. The edges between
the nodes represent the increase in coherence in this
frequency band, when subjects are attending to the
wedge, relative to when they are attending to the ap-
pearance of targets in the fixation point. This graph
replicates previous findings [Lauritzen09]: an increase
in functional connectivity between visual areas, with
the allocation of voluntary visual attention to the stim-
ulus.

These examples demonstrate the relative simplicity
and brevity with which interactive data analysis can
be conducted using the interface provided by nitime,
resulting in potentially meaningful conclusions about
the nature of the process which produced the time-
series. This simplicity should facilitate the study of
complex data sets and should enable more sophisti-
cated methods to be developed and implemented.

Figure 3. Functional connectivity in the visual

cortex: In the graph presented, the nodes represent
the areas of the brain described in Figure 1 (node
colors and labels match those of Figure 1).

Summary and outlook

We have introduced nitime, a library for the analy-
sis of time-series data from neuroimaging experiments
and in particular from fMRI experiments, developed
as part of the NiPy project. Nitime provides imple-
mentations of several algorithms, including coherency
analysis, and a high-level interface for interaction with
time-series data. Its design emphasizes a decoupling
of algorithmic implementation and object-oriented fea-
tures. This is meant to facilitate use of the algorithms
in contexts other than neuroscience and contributions

c©2009, A. Rokem, M. Trumpis, F. Pérez 74

Proceedings of the 8th Python in Science Conference (SciPy 2009)

from developers in other fields. Future developments
will include implementations of additional algorithms
for calculation of bivariate and univariate quantities,
as well as tools for visualization of time-series.

Acknowledgments

We would like to thank the NiPy development team, in
particular Matthew Brett for many helpful discussions,
Gaël Varoquaux, for discussions on properties that led
to OneTimeProperty and Dav Clark for feedback on
the time-series object interface. We are thankful to
David Bressler and Michael Silver for providing us with
experimental data, and to all the members of Michael
Silver’s lab for comments and feedback on this work.
Felice Sun, Thomas Lauritzen, Emi Nomura, Caterina
Gratton, Andrew Kayser, Ayelet Landau and Lavi Se-
cundo contributed Matlab code that served as a ref-
erence for our implementation of several algorithms.
Finally, we’d like to thank Mark D’Esposito, director
of the NiPy project, for supporting the development of
nitime as part of the overall effort. NiPy is funded by
the NIH under grant #5R01MH081909-02.

References

[Aguirre97] Aguirre GK, Zarahn E, D’Esposito M
(1997). Empirical Analyses of BOLD fMRI
Statistics II. Spatially Smoothed Data Col-
lected under Null-Hypothesis and Experi-
mental Conditions. Neuroimage 5: 199-
212.

[Aguirre98] Aguirre GK, Zarahn E, D’esposito M
(1998). The variability of human, BOLD
hemodynamic responses. Neuroimage 8:
360-9.

[BSD] The BSD Software License. http://www.

opensource.org/licenses/bsd-license.

php.
[Cox97] Cox RW and Hyde JS (1997). Software

tools for analysis and visualization of FMRI
data. NMR in Biomedicine, 10: 171-178.

[Dale00] Dale, AM (2000). Optimal Experimen-
tal Design for Event-Related fMRI. Human
Brain Mapping 8: 109-114.

[Favre09] Favre L, Fouque A-L, et al. (2009) A
Comprehensive fMRI Processing Toolbox
for BrainVISA. Human Brain Mapping 47:
S55.

[Friston94] Friston, KJ (1994). Functional and Effec-
tive Connectivity in Neuroimaging: A Syn-
thesis. Human Brain Mapping 2: 56-78.

[Friston95] Friston KJ, Ashburner J, et al. (1995) Spa-
tial registration and normalization of im-
ages. Human Brain Mapping, 2: 165-189.

[Huettel04] Huettel, SA, Song, AW, McCarthy, G
(2004). Functional Magnetic Resonance
Imaging. Sinauer (Sunderland, MA).

[Kayser09] Kayser AS, Sun FT, D’Esposito M (2009).
A comparison of Granger causality and co-
herency in fMRI-based analysis of the mo-

tor system. Human Brain Mapping, in
press.

[Lauritzen09] Lauritzen TZ , D’Esposito M, et al. (2009)
Top-down Flow of Visual Spatial Attention
Signals from Parietal to Occipital Cortex.
Journal of Vision, in press.

[Makni08] Makni S, Idier J, et al. (2008). A
fully Bayesian approach to the parcel-based
detection-estimation of brain activity in
fMRI. Neuroimage 41: 941-969.

[Matplotlib] Hunter, JD (2007). Matplotlib: A 2D
graphics environment. Comp. Sci. Eng.
9: 90-95.

[NetworkX] Hagberg AA, Schult DA, Swart PJ (2008).
Exploring network structure, dynamics,
and function using NetworkX. in Proc. 7th
SciPy Conf., Varoquaux G, Vaught T, and
Millman J (Eds), pp. 11–15.

[NiPy] Millman KJ, Brett M (2007). Analysis of
functional Magnetic Resonance Imaging in
Python. Comp. Sci. Eng. 9: 52-55.

[NR07] Press, WH, Teukolsky, SA, Vetterling, WT,
Flannery, BP (2007). Numerical Recipes:
The Art of Scientific Computing. 3rd edi-
tion, Cambridge University Press (Cam-
bridge, UK).

[Percival93] Percival DB and Walden, AT (1993). Spec-
tral Analysis for Physical Applications:
Multitaper and Conventional Univariate
Techniques. Cambridge: Cambridge Uni-
versity Press.

[Poldrack06] Poldrack, R (2006). Region of interest anal-
ysis for fMRI. Soc. Cog. Aff. Neurosci., 2:
67-70.

[Silver05] Silver MA, Ress D ,Heeger DJ (2005). To-
pographic maps of visual spatial attention
in human parietal cortex. J Neurophysiol,
94: 1358-71.

[Slepian78] Slepian, D (1978). Prolate spheroidal wave
functions, Fourier analysis, and uncer-
tainty V: The discrete case. Bell System
Technical Journal, 57: 1371-1430.

[Smith04] Smith SM, Jenkinson M, et al. (2004). Ad-
vances in functional and structural MR im-
age analysis and implementation as FSL.
NeuroImage, 23: 208-219.

[Sun05] Sun FT, Miller LM, D’Esposito M (2005).
Measuring interregional functional connec-
tivity using coherence and partial coherence
analyses of fMRI data. Neuroimage 21:
647-658.

[TimeSeries] Gerard-Marchant P, Knox M (2008). Scik-
its.TimeSeries: Python time series analy-
sis. http://pytseries.sourceforge.net.

[Wandell07] Wandell BA, Dumoulin, SO, Brewer, AA
(2007). Visual field maps in human cortex.
Neuron 56: 366-83.

75 http://conference.scipy.org/proceedings/SciPy2009/paper_11

http://www.opensource.org/licenses/bsd-license.php
http://www.opensource.org/licenses/bsd-license.php
http://www.opensource.org/licenses/bsd-license.php
http://www.opensource.org/licenses/bsd-license.php
http://www.opensource.org/licenses/bsd-license.php
http://www.opensource.org/licenses/bsd-license.php
http://pytseries.sourceforge.net
http://pytseries.sourceforge.net
http://conference.scipy.org/proceedings/SciPy2009/paper_11

Proceedings of the 8th Python in Science Conference (SciPy 2009)

Multiprocess System for Virtual Instruments in Python

Brian D’Urso (dursobr@pitt.edu) – University of Pittsburgh, Department of Physics and Astronomy, 3941 O’Hara

St., Pittsburgh, PA 15260 US

Programs written for controlling laboratory equip-
ment and interfacing numerical calculations share
the need for a simple graphical user interface (GUI)
frontend and a multithreaded or multiprocess struc-
ture to allow control and data display to remain us-
able while other actions are performed. We intro-
duce Pythics, a system for running "virtual instru-
ments", which are simple programs typically used
for data acquisition and analysis. Pythics provides
a simple means of creating a virtual instrument and
customizing its appearance and functionality with-
out the need for toolkit specific knowledge. It uti-
lizes a robust, multiprocess structure which sepa-
rates the GUI and the back end of each instrument
to allow for effective usage of system resources with-
out sacrificing functionality.

Python is an attractive language for scientific program-
ming because of the simplicity of expressing mathe-
matical ideas and algorithms within it. However, it is
the broad range of open source libraries available that
enables scientific computing within Python. With the
capabilities of libraries such as Numpy [numpy] and
SciPy [scipy] for numerical processing, SymPy [sympy]
for symbolic manipulation, and Sage [sage] integrating
them together, Python is in a strong position to handle
a wide range of scientific computational problems.

However, in experimental sciences, where computer-
based data acquisition and control is dominated by
a small number of proprietary programming systems,
Python is not such an obvious choice. These pro-
prietary systems often make the task of simple ex-
periment control easy, however they often don’t scale
well to complex experiments because they lack a well-
designed, general purpose programming language. We
present a system starting with a complete program-
ming language, Python, rather than trying to develop
another special purpose language. There are existing,
mature Python libraries for supporting data acquisi-
tion and experiment control; perhaps most critically
PyVISA [pyvisa], which provides a robust bridge to
commercially-supported VISA libraries and the exper-
iment hardware they can control. In practice we also
make use of the Python Imaging Library (PIL) [pil] for
image manipulation, wxPython [wxpython] as a user
interface toolkit, and matplotlib [matplotlib] for plot-
ting.

In addition to being able to communicate with instru-
ments, modern software for data acquisition and con-
trol must be able to present a graphical user interface
(GUI) for display of data as well as providing a means
for the experimenter to interact with an experiment
in progress. GUI toolkits such as wxPython provide a
means to create a GUI, but are not tailored to the re-

quirements of data acquisition, where communication
with instruments often must be proceeding in parallel
with GUI operation. Furthermore, students working
on experiments may have little or no programming ex-
perience, so programming a multithreaded or multi-
process application may be beyond what they can or
want to pursue.

Here we introduce Pythics (PYTHon Instrument Con-
trol System), a multiprocess system designed to make
it straightforward to write software for data acquisi-
tion and control with Python. There are several im-
portant features which expedience has taught us are
needed to produce a successful system. First, the sys-
tem must be cross platform, at least supporting Linux
and Microsoft Windows XP. While many developers
prefer Linux, Windows XP is presently often the sim-
plest choice for interfacing instruments because of the
support provided by the instrument manufacturers.
Second, we want to avoid excessive dependencies that
could make it difficult to install the system and lead
to bloated code; instead we prefer to make modular,
optional, orthogonal features that can be used if the
supporting libraries are available. The system must
provide a simple means of specifying a GUI which does
not require knowledge of the underlying GUI toolkit
and must be easy to understand, even for an inexperi-
enced programmer. Critically, it must be possible for
the GUI to continue to function even when data ac-
quisition or any communication with instruments is in
progress. In most cases, this requires a multithreaded
or multiprocess system. Yet, we do not want to require
the user-programmer to have a thorough understand-
ing of multithreaded programming. So, the system
must handle the multithreaded or multiprocess struc-
ture transparently.

Similar to some commercial software, we call the code
that runs within Pythics a virtual instrument (VI),
and in general multiple VIs may be running within a
single Pythics application. We require that there be
a mechanism for sharing objects between VIs, for ex-
ample for sharing data between VIs or synchronizing
some operation. An additional requirement is that the
system must be robust. It should be possible to ter-
minate one VI without affecting the others, or at least
to continue without having to restart Pythics.

Features

We are willing to accept some loss in GUI design flex-
ibility for the simplicity of programming Pythics that
we require. We looked for a means of specifying a GUI
that would be simple, would layout in a usable manner
across a wide variety of screen and window sizes, and

B. D’Ursoin Proc. SciPy 2009, G. Varoquaux, S. van der Walt, J. Millman (Eds), pp. 76–81 76

dursobr@pitt.edu

Proceedings of the 8th Python in Science Conference (SciPy 2009)

would grow to handle a VI GUI which might gradually
increase in complexity over time as a VI evolves. We
found inspiration for a solution in the layout of hyper-
text markup language (HTML) used in web browsers,
which has proven to be remarkably flexible over time.
While HTML is primarily oriented towards the lay-
out of text, we primarily require the layout of GUI
elements. Fortunately, we found adequate flexibility
in extensible hypertext markup language (XHTML),
a markup language similar to HTML which also con-
forms to extensible markup language (XML) syntax
requirements. By following the stricter XHTML syn-
tax, the implementation of the Pythics layout engine
can be less forgiving and thus simpler than a modern
web browser. Furthermore, we only support a minimal
subset of XHTML as needed for layout of simple lines
or tables of GUI elements, and a small number of cas-
cading style sheets (CSS) attributes to customize the
appearance of the GUI. In practice, we make exten-
sive use of the object XHTML element to insert GUI
elements.

Using an XHTML-based system for GUI layout al-
ready constrains many features of our layout engine.
Elements (e.g. a button) are generally fixed in height
and may or may not expand in width as the enclos-
ing window is resized. As more elements are added,
the GUI will generally have to be scrolled vertically
for access to all the GUI elements, while horizontal
scrolling is avoided unless necessary to fit in the mini-
mum horizontal size of the GUI elements. It may seem
surprising that a layout system based on a system de-
signed for text (HTML) would be general enough to
specify a GUI, but the adaptability of the world wide
web to new functionality demonstrates the flexibility
of HTML.

In a large and evolving experiment, it is typical to have
an ever-growing number of VIs for data acquisition
and control. To organize multiple VIs running within
Pythics, we again borrow a feature from web browsers:
tabbed browsing. In Pythics, each VI runs within its
own tab, all contained within the same Pythics win-
dow. This help avoid confusion if many windows are
open, and in particular if multiple instances of Pythics
are running, a scenario which is both possible and, in
some cases, desirable.

Pythics maintains a strict separation between the GUI
layout specification and the VI functionality by sepa-
rating the code for a VI into two or more files. The
first file contains the XHTML specification of the GUI
and additional objects which trigger loading of the re-
maining files. These files are pure python, loading any
additional libraries which may be needed and defining
the functions triggered by GUI callbacks.

Multiprocess Structure

The multiprocess structure of Pythics is dictated by
the GUI structure and the requirements of the VIs.
First, many GUI toolkits (including wxPython) place

Figure 1: Screenshot of a Pythics session, showing a
chart recorder VI.

the GUI for all VIs within a single Pythics application
to reside in the same thread of the same process. Since
each VI may have its own tasks to work on while the
GUI is to remain functional, each VI must also have
its own worker thread or process. An early version
of Pythics used a separate thread for each VI, but we
found that the system was excessively fragile, with a
fault in a single VI sometimes ending in a abandoned,
but often still running thread, because of the limited
methods to safely kill a thread in Python. The need for
a more robust system and the appearance of the multi-
processing module in Python 2.6 lead us to a multipro-
cess design, where each VI has its own worker process
which handles data acquisition and data processing.
Furthermore, the use of multiple processes avoids the
Python global interpreter lock (GIL), which could limit
the benefits of using multiple threads alone.

For simplicity, we provide only a single thread in a
single process for the work of each VI, although each
VI is in principle free to use and manage multiple pro-
cesses or threads as needed. Since wxPython restricts
the GUI to a single process and thread, we are pushed
towards one particular process structure: each VI has
its own worker process which communicates with a sin-
gle shared GUI process. If multiple GUI processes are
desired, multiple instances of Pythics can be running
simultaneously, although there is no support for com-
munication between VIs in different Pythics instances.
For the rest of the description here, we assume there
is only a single running Pythics instance.

The multiprocess structure of Pythics is illustrated in

77 http://conference.scipy.org/proceedings/SciPy2009/paper_12

http://conference.scipy.org/proceedings/SciPy2009/paper_12

Multiprocess System for Virtual Instruments in Python

Figure 2: The multiprocess structure of Pythics.

Figure 2. Each VI worker process communicates back
and forth with the single GUI process by placing mes-
sages in queues. There are three routes for commu-
nication between the worker processes and the GUI
process. First, the GUI may want to trigger a call-
back function in response to an action, for example
a button being pressed. Each worker process has a
queue for callback requests, and each worker process
waits for a request on this queue when it is idle. Next,
a worker process, typically within a callback function,
may want the GUI to respond in some way or may want
to get some other information from the GUI, for exam-
ple reading the value of a parameter from within a box
in the GUI panel. The GUI process has a thread which
watches a single queue where requests from all worker
processes are funneled. This thread waits for a request
to be appear in the queue, and when one arrives, the
thread transfers the request to the wxPython main
thread with a call to wx.CallAfter. The GUI process
then answers the request by placing the response in
the response queue for the requesting worker process.
Finally, the worker process receives the response and
continues with its task.

In practice, the Pythics user-programmer does not
have to worry about the inter-process message pass-
ing and queue structure. The execution of callback
functions is handled automatically. Requests to and
responses from the GUI process are handled by GUI
control proxy objects, essentially encapsulating all of
the multiprocess and queue structure. We will go into
further details in later sections.

GUI Specification

The GUI layout engine, which allows the arrangement
of GUI elements within a VI GUI tab, was inspired by,
and originally based on, the wxPython HtmlWindow.

This wxPython widget can layout HTML text mixed
with GUI elements such as buttons. We eventually
wrote a replacement XHTML renderer for Pythics so
it could gracefully handle exceptions in the process of
creating controls. If a Python exception is encoun-
tered while creating a GUI element in our renderer,
the element is replaced by a red box which displays
the exception, making debugging much easier.

The GUI specification or markup language is XML,
and is essentially a subset of XHTML. The style of the
text elements, the background color, etc. are specified
with a simplified cascading style sheets (CSS) system,
also similar to typical XHTML or HTML files. Our
specification must have many GUI elements that are
not common for XHTML, so we make extensive use
of the XHTML object element. Within the object
element, we use the classid attribute to specify the
GUI element class (e.g. Button), and the id attribute
to specify a name for the GUI element which becomes
the name of the object in Python. Other parameters
for the GUI elements are specified with param elements
within the object element.

An example GUI, here for a “Hello World” VI in
Pythics, illustrates how a GUI is specified:

<html>

<head><title>Hello World</title></head>

<body>

<h1>Hello World</h1>

<object classid=’Button’ width=’200’>

<param name=’label’ value=’Run’/>

<param name=’action’ value=’hello_world.run’/>

</object>

<object classid=’TextBox’ id=’result’ width=’200’>

</object>

<object classid=’ScriptLoader’ width=’100%’>

<param name=’filename’ value=’hello_world’/>

</object>

</body>

</html>

In the <head> element, the <title> element gives a
title to the VI which appears on the tab containing the
VI in the Pythics GUI. There is then a printed title
within the <h1> element, followed by the primary GUI
elements, a button and a text box. Note the param

element with name=’action’ within the button object.
This specifies the callback function which is executed
when the button is pressed. We have also given the
text box a name, through its id attribute. We will use
this to access the text box for displaying a message
later.

Without the final object element, Pythics would not
know where to find the callback function specified by
the button object. The ScriptLoader object func-
tions similar to the Python import statement, loading
a file which typically contains callback functions. This
object can be used multiple times to import multiple
files. This object also shows up in the GUI as a line of

c©2009, B. D’Urso 78

Proceedings of the 8th Python in Science Conference (SciPy 2009)

text to show that it is there. The resulting GUI, which
appears within a tab in Pythics, is shown in Figure 3.

Figure 3: Screenshot of example GUI window for the
“Hello World” example.

Other GUI elements that are available within Pythics
include images, many kinds of buttons, file dialogs, nu-
meric input/output boxes, spreadsheets, sliders, em-
bedded Python shells, and plots (using wxPython or
matplotlib).

Callback Functions

Our “Hello World” example doesn’t yet have any func-
tionality. To make it respond to pressing the button,
we need to introduce callback functions within Pythics.
We want the structure of callback functions in Pythics
to be as unconstrained as possible, but they do need
some way to access the GUI elements. We do not intro-
duce a formal event object, since this adds complexity
that is unnecessary in most VIs. If a callback function
needs information about the event that triggered it, it
should get that information by addressing the appro-
priate GUI element.

In order give callback functions access to the GUI ele-
ments, we introduce a simple calling convention. The
callback function is called with all of the GUI elements
which have an id attribute in the XML specification
file, which we will call named elements, as keyword
arguments. There are no other arguments passed to
callback functions. Thus, a callback function could re-
ceive all the named elements as a dictionary using the
Python **kwargs syntax, or it can separate out the
named elements it will use as individual arguments
and group the unused named elements together with
the **kwargs syntax.

The completion of our “Hello World” example clarifies
the use of callback functions. Here is the entire Python
file for our example:

def run(result, **kwargs):

result.value = "Hello, world!"

Note that the callback function receives the one named
element, result, as a keyword argument, and any
other named elements (there are none in this case)
would be grouped into kwargs as a dictionary. Thus,

more GUI elements can be added without breaking
this callback function. We display the message “Hello,
world!” within the text box in the GUI with a sim-
ple call to to the GUI element proxy, by setting its
value attribute. Clearly, no knowledge of the multi-
process structure and message passing within Pythics
is needed. In most cases, these proxy objects have a
fairly high level interface within Pythics, so most ex-
changes with the GUI within the callback functions
require only a small number of commands using the
GUI element proxies.

Other than our callback function calling convention,
the files that contain the callback functions are stan-
dard, pure Python files. Additional functions can be
defined, and packages can be imported as needed.
Pythics itself does not require any imports within the
callback function files, making it easy to maintain a
clean namespace.

Additional Features

There are several other features of Pythics which make
it more useful for making functional VIs. Most of these
are implemented as additional or modified GUI con-
trols, so they fit easily into the framework described
above. These include:

• The values entered into a VI’s GUI controls can be
stored in a parameters file. This includes support for
default parameters, which are automatically loaded
when a VI is started. It also allows for alternative
sets of parameters which can be saved and recalled.

• Global namespaces are available for sharing data be-
tween VIs. This uses the Python multiprocessing
Namespace object, so almost arbitrary objects can
be shared.

• Optional display of images in the GUI with shared
memory instead of message passing. With one op-
tion in the GUI specification, the image display
proxy will pass data to its control using shared mem-
ory to allow for much more rapid updates. In the
current implementation, the maximum size of the
image must be given in the GUI specification if
shared memory is used.

• Timer elements are available for executing a func-
tion at regular intervals in time. To the user-
programmer, a timer looks like any other GUI el-
ement, such as a button, which calls its action call-
back at regular intervals. Timers actually oper-
ate completely in the worker process through their
proxy object, but within a separate thread from
the callback function execution. This structure
eliminates the overhead of message passing for fre-
quently executed callbacks when no GUI interaction
is needed. Timers are implemented with Python
threading Event objects, so they can be interrupted
at any time. A single VI may have many timers.

79 http://conference.scipy.org/proceedings/SciPy2009/paper_12

http://conference.scipy.org/proceedings/SciPy2009/paper_12

Multiprocess System for Virtual Instruments in Python

• There is a SubWindow element which can embed an
entire second VI within a box inside the GUI of the
first VI, allowing for modularization of GUIs as well
as functions. There are methods to pass data be-
tween the fist and second VI, although both run in
the same thread and process.

Future

Pythics is still evolving very quickly, and we antic-
ipate continuing to add features, primarily driven by
the needs of our laboratory or the needs of other groups
that may start to use Pythics. The highest priority
item is documentation, which will be necessary for
the Pythics community to grow. As a more tech-
nically challenging direction, we may pursue operat-
ing Pythics over a network, with the GUI and worker
processes on different machines communicating over
the network. There is already support for this in the
Python multiprocessing module.

We plan continued expansion and improvement in the
graphics display controls available within Pythics. One
significant required feature is the ability to plot data
in near real time, as it is being acquired. Simple,
fast, line plots are available now in Pythics, but more
complex plots require matplotlib, which is often too
slow for keeping up with incoming data when most
of the available processor time is used acquiring and
processing data. We are investigating alternative plot-
ting libraries which could be easily used within wx-
Python. Another graphics feature we would like to add
to Pythics is simple three-dimensional display capabil-
ity, similar to VPython [vpython]. This could make
Pythics an attractive system to use for teaching intro-
ductory computational physics classes, both for data
acquisition and for simple models and calculations.

We also plan to improve the GUI layout design tools
available for Pythics, to make it easier to write the
XML GUI specification. One possibility would be to
have a graphical editor for the GUI interfaces, and

perhaps a graphical HTML or XML editor could be
adapted to this purpose. An alternative possibility,
which is inspired by the reStructuredText format [rest]
commonly used for Python documentation, would be
to have an “ASCII art” layout description. In this
case, we would develop a more readable text format
for specifying and placing GUI elements, then trans-
late that format to the XML format actually used by
Pythics. In principle, there is no reason not to support
both of these options.

We currently release Pythics under the GNU Gen-
eral Public License (GPL), and it is free to download
[pythics]. We hope to attract the interest of other re-
searchers and students, and that they will contribute
to the success of Pythics. Ultimately, Pythics could
become a center for free exchange of code, instrument
drivers, and data analysis tools.
References

[numpy] T. Oliphant et al., NumPy, http://numpy.

scipy.org/

[scipy] E. Jones, T. Oliphant, P. Peterson, et al.
SciPy http://www.scipy.org/

[sympy] Development Team (2008). SymPy: Python
library for symbolic mathematics http://

code.google.com/p/sympy/

[sage] W. Stein et al., Sage Mathematics Software,
http://www.sagemath.org/

[pyvisa] http://pyvisa.sourceforge.net/

[pil] http://www.pythonware.com/products/

pil/

[wxpython] http://www.wxpython.org/

[matplotlib] J.D. Hunter. Matplotlib: A 2D graphics
environment. Computing in Science and
Engineering. (2007) 9: 90-95. http://

matplotlib.sourceforge.net

[vpython] http://vpython.org/

[rest] http://docutils.sourceforge.net/rst.

html

[pythics] http://code.google.com/p/pythics/

c©2009, B. D’Urso 80

http://numpy.scipy.org/
http://numpy.scipy.org/
http://numpy.scipy.org/
http://numpy.scipy.org/
http://www.scipy.org/
http://www.scipy.org/
http://code.google.com/p/sympy/
http://code.google.com/p/sympy/
http://code.google.com/p/sympy/
http://code.google.com/p/sympy/
http://www.sagemath.org/
http://www.sagemath.org/
http://pyvisa.sourceforge.net/
http://pyvisa.sourceforge.net/
http://www.pythonware.com/products/pil/
http://www.pythonware.com/products/pil/
http://www.pythonware.com/products/pil/
http://www.pythonware.com/products/pil/
http://www.wxpython.org/
http://www.wxpython.org/
http://matplotlib.sourceforge.net
http://matplotlib.sourceforge.net
http://matplotlib.sourceforge.net
http://matplotlib.sourceforge.net
http://vpython.org/
http://vpython.org/
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://code.google.com/p/pythics/
http://code.google.com/p/pythics/

Proceedings of the 8th Python in Science Conference (SciPy 2009)

Neutron-scattering data acquisition and experiment automation with Python

Piotr A. Zolnierczuk (zolnierczukp@ornl.gov) – Oak Ridge National Lab, USA

Richard E. Riedel (riedelra@ornl.gov) – Oak Ridge National Lab, USA

PyDas is a set of Python modules that are used to
integrate various components of the Data Acquisi-
tion System at Spallation Neutron Source (SNS).
PyDas enables customized automation of neutron
scattering experiments in a rapid and flexible man-
ner. It provides wxPython-based GUIs for routine
experiments as well as IPython command line script-
ing environment. Matplotlib and NumPy are used
for data presentation and simple analysis. PyDas is
currently used on a number of SNS instruments and
plans exist to deploy it on new ones as they come
on-line.

Introduction

The neutron is a useful probe of matter as the wave-
lengths of the so called cold neutrons1 are on the order
of inter-atomic distances in solids and liquids [SQU].
It has no charge and therefore it can interact with the
atomic nuclei, for example with the proton in hydro-
gen that is virtually transparent to the X-ray radiation.
Moreover, the energies of cold neutrons are on the same
order as many excitations in condensed matter. And
finally the neutron possesses a magnetic moment which
means that it can interact with the unpaired electrons
in magnetic atoms.

Using neutrons scientists can glean details about the
nature of materials ranging from liquid crystals to su-
perconducting ceramics, from proteins to plastics, and
from metals to micelles and metallic glass magnets
[PYN].

Figure 1. Layout of the Spallation Neutron Source

1Cold neutrons energies range from about 0.05 to about 25
meV, and their corresponding wavelengths range from 0.18 to
4.0 nm.

Basics of neutron scattering

Cold neutrons have to be produced either in a nuclear
reactor or with the help of particle accelerators. The
Spallation Neutron Source (SNS) at Oak Ridge Na-
tional Laboratory, Tennessee is an accelerator-based
neutron source that currently holds the Guinness
World Record as the world most powerful pulsed spal-
lation neutron source [ORN]. The neutrons are pro-
duced when a beam of very energetic protons (1GeV)
bombards a liquid mercury target and in the process
some neutrons are “spalled” or knocked out of mercury
nucleus. Other neutrons are evaporated from the bom-
barded nucleus as it heats up. For every proton strik-
ing the nucleus about 20 to 30 neutrons are expelled.
The neutrons emerging from the mercury target are
too fast to be useful to study properties of materials.
They need to be slowed down (or cooled) by passing
through the moderator material - for example liquid
hydrogen kept at the temperature of 20 K. The cold
neutrons are then guided by a set of beam lines to
specialized instruments.

The beam of neutrons then undergoes collimation, fo-
cusing and velocity selection (chopping) and is aimed
at a sample. While many neutrons will pass through
the sample, some will interact and bounce away at an
angle. This scattering of neutrons yields important in-
formation about the positions, motions and magnetic
properties of atoms in materials. Figure 2 shows a
schematic lay-out of a neutron scattering experiment.

n

Detectors

SampleBeam Optics Beam Dump

Figure 2. Basic Elements of a neutron scattering ex-
periment

A number of devices and controls is required for a suc-
cessful neutron scattering experiment. Such a set-up,
conventionally called a neutron scattering instrument,
needs first and foremost a neutron detector to record

81 P. Zolnierczuk, R. Riedelin Proc. SciPy 2009, G. Varoquaux, S. van der Walt, J. Millman (Eds), pp. 81–84

zolnierczukp@ornl.gov
riedelra@ornl.gov

Neutron-scattering data acquisition and experiment automation with Python

the scattered neutrons. In most cases gaseous lin-
ear position-sensitive tubes or scintillator detectors are
used [KNO]. In addition each instrument requires sam-
ple environment controls (temperature, pressure, and
magnetic field), neutron beam optics controls (slits for
collimation and choppers for velocity selection) and
motors for mechanical alignment. An example of a
real life neutron scattering instrument [CNC] is shown
Figure 3.

A typical neutron experimental technique is called
scanning. For example, a scientist chooses a set of
temperatures that spans a phase transition in a sam-
ple. The experimental procedure then involves col-
lection of a predefined amount of neutron data for
each temperature set-point as neutron scattering ex-
periments are often statistics limited, i.e. one has to
record enough scattered neutrons in order to obtain
useful results. Real-life experiments involve scanning
of multiple variables, e.g. temperature, pressure, neu-
tron polarization, etc.

Figure 3. Example neutron scattering instrument:
Cold Neutron Chopper Spectrometer [CNC] at SNS.

SNS Data Acquisition System

Such a complex instrumentation requires a very so-
phisticated data acquisition and control system that
is usually custom designed and matches specifics of
each neutron scattering facility. At SNS, the Data Ac-
quisition System (DAS) [RIE] is a collection of real-
time firmware running in FPGA-based boards, pro-
grams written in Microsoft Visual Studio C++ and
National Instruments LabView [LAB] virtual instru-
ments. Each piece of software typically performs one
single task such as detector read-out or motor control
and the programs communicate via TCP/IP networks.

The SNS DAS is composed of four subsystems (see
Figure 4):

• Real-Time System for detector electronics and read-
out

• Timing System provides crucial timing information

• Slow Controls for sample environment, motors and
ancillary equipment

• Control & Data for neutron data collection and main
control

The Control Computer (see Figure 4) brings together
information from each subsystem. It is designed to run
a number of control programs that interact with its
partners on the remote computers. For example mo-
tor control program communicates via TCP/IP with a
motor satellite program.

192.168.70.0

Timing PC

192.168.62.0

Satellite Computer(s)
192.168.63.0

GPIB ControllerEthernet 2 GPIB

Ethernet 2 Serial

Serial Controller

Instrument

Gateway

Detector

Electronics

192.168.71.0

ETC Computer

Preprocessor

Data File System

Control Computer

ORNL.GOV

Detectors

Real-Time System

Slow Controls

Timing System

Controls & Data

Figure 4. SNS DAS Network Architecture

PyDas - Python environment for SNS DAS

From the very start it was realized that the SNS DAS
system needed a robust and convenient scripting envi-
ronment. Python was chosen as a scripting language
for its simplicity, elegance, power and ease to write
extension modules. The SNS DAS scripting environ-
ment is called PyDas. It is designed to not only provide
scripting capabilities but also the ability to integrate
various experimental components into a single appli-
cation.

Figure 5. PyDas General Architecture

The general PyDas architecture is shown in Figure 5.
Shared memory and Win32 API provide the interface
to other DAS components. Two custom C++ mod-
ules (dasmapcq and memmap) and Mark Hammond’s
pywin32 [HAM] module are at the foundations of Py-
Das. Next layer contains SNSnake.py and mock.py
modules that “pythonize” the low-level interface. The

c©2009, P. Zolnierczuk, R. Riedel 82

Proceedings of the 8th Python in Science Conference (SciPy 2009)

former provides access to real hardware, while the lat-
ter delivers the essential simulation (mock) environ-
ment. PyDas also uses standard scientific Python
modules such as NumPy [NUM], Matplotlib [MAT]
and IPython [IPY]. The GUI environment is provided
by wxPython [WXP]. Above these base layers there
are modules that abstract hardware devices (such as
motors, choppers and temperature controllers), exper-
iment procedures (such as scan, experiment table, run
condition) and various GUI elements.

Figure 6. PyDas GUI example

PyDas can be run in two basic modes: with graphical
user interface (GUI) and via the command line. The
PyDas GUI interface (see Figure 6) is used to run pre-
defined experiments. Each instrument is provided with
a customized PyDas GUI to meet instrument individ-
ual needs. The command line interface, called IPyDas,
is based on the IPython shell embedded into a single
wxPython window and allows for custom experiment
scripting. Below, we present two short examples of
IPyDas scanning scripts:

scan_motor(’motor1’,arange(10.0,90.0,0.5),

scan.RUNTIME,30.0,go_back=True)

scan_plot()

for temp in [273.0,293.0,313.0,333.0]:

tempctrl.value = temp

scan_chopper(’Energy’,[25.,35.,50.],

scan.PCHARGE,1e10,

title=’The Nobel Prize Data at T=%s K’ % temp)

Summary

In summary, we presented the complexities and op-
portunities of modern neutron scattering experiments
and how PyDas helps to automate and integrate SNS

Data Acquisition System. The future challenges for
PyDas lie in the requirement to support 24 different
instruments with high level of customization. Based
on lessons learned so far we are in the process of refac-
toring PyDas to better meet these challenges, provide
live neutron data viewing (currently served by a C++
Measurement Studio application) and we are also ex-
ploring new Python technologies such as IronPython
[IRP].

The authors would like to thank Xiaodong Tao for ini-
tiating the PyDas GUI project and members of the
SNS DAS Group: Lloyd Clonts, Gayle Green, Andre
Parizzi, Mariano Ruiz-Rodriguez and Madhan Sun-
daram for collaboration and help during the develop-
ment. ORNL/SNS is managed by UT-Battelle, LLC,
for the U.S. Department of Energy under Contract No.
DE-AC05-00OR22725.

References

[SQU] G.L. Squires, Introduction to the Theory of Ther-
mal Neutron Scattering, Cambridge University
Press (1978)

[PYN] R. Pynn, Neutron Scattering, A Primer, http://

neutrons.ornl.gov/science/ns_primer.pdf

[ORN] ORNL Neutron Sciences, http://neutrons.ornl.

gov

[KNO] G.F. Knoll, Radiation Detection and Measurement,
J.Wiley & Sons (2000)

[CNC] Cold Neutron Chopper Spectrometer http:

//neutrons.ornl.gov/instrument_systems/

beamline_05_cncs

[RIE] R.E. Riedel, Overview of Data Acquisition at the
SNS, talk given at NOBUGS 2004 conference,
http://lns00.psi.ch/nobugs2004

[LAB] National Instruments Labview, http://www.ni.

com/labview

[HAM] M. Hammond, A. Robinson, Python Program-
ming On Win32, O’Reilly Media (2000), http://

pywin32.sourceforge.net

[NUM] T. Oliphant et al. NumPy, http://numpy.scipy.

org/

[MAT] J.D. Hunter, Matplotlib: A 2D graphics environ-
ment. Computing in Science and Engineering. 9:
90-95 (2007). http://matplotlib.sourceforge.

net.
[IPY] F. Perez and B. Granger: IPython: a system

for interactive scientific computing, Computing in
Science & Engineering 9(3) 21-29, 2007, http://

ipython.scipy.org

[WXP] WxPython, http://www.wxpython.org/

[IRP] J. Huginin et al. IronPython, http://www.

codeplex.com/IronPython

83 http://conference.scipy.org/proceedings/SciPy2009/paper_13

http://neutrons.ornl.gov/science/ns_primer.pdf
http://neutrons.ornl.gov/science/ns_primer.pdf
http://neutrons.ornl.gov/science/ns_primer.pdf
http://neutrons.ornl.gov/science/ns_primer.pdf
http://neutrons.ornl.gov
http://neutrons.ornl.gov
http://neutrons.ornl.gov
http://neutrons.ornl.gov
http://neutrons.ornl.gov/instrument_systems/beamline_05_cncs
http://neutrons.ornl.gov/instrument_systems/beamline_05_cncs
http://neutrons.ornl.gov/instrument_systems/beamline_05_cncs
http://neutrons.ornl.gov/instrument_systems/beamline_05_cncs
http://neutrons.ornl.gov/instrument_systems/beamline_05_cncs
http://neutrons.ornl.gov/instrument_systems/beamline_05_cncs
http://lns00.psi.ch/nobugs2004
http://lns00.psi.ch/nobugs2004
http://www.ni.com/labview
http://www.ni.com/labview
http://www.ni.com/labview
http://www.ni.com/labview
http://pywin32.sourceforge.net
http://pywin32.sourceforge.net
http://pywin32.sourceforge.net
http://pywin32.sourceforge.net
http://numpy.scipy.org/
http://numpy.scipy.org/
http://numpy.scipy.org/
http://numpy.scipy.org/
http://matplotlib.sourceforge.net
http://matplotlib.sourceforge.net
http://matplotlib.sourceforge.net
http://matplotlib.sourceforge.net
http://ipython.scipy.org
http://ipython.scipy.org
http://ipython.scipy.org
http://ipython.scipy.org
http://www.wxpython.org/
http://www.wxpython.org/
http://www.codeplex.com/IronPython
http://www.codeplex.com/IronPython
http://www.codeplex.com/IronPython
http://www.codeplex.com/IronPython
http://conference.scipy.org/proceedings/SciPy2009/paper_13

Proceedings of the 8th Python in Science Conference (SciPy 2009)

Progress Report: NumPy and SciPy Documentation in 2009

Joseph Harrington (jh@physics.ucf.edu) – U. Central Florida, Orlando, Florida USA

David Goldsmith (dgoldsmith_89@alumni.brown.edu) – U. Central Florida, Orlando, Florida USA

In the Spring of 2008, the SciPy Documentation
Project began to write documentation for NumPy
and SciPy. Starting from 8658 words, the NumPy
reference pages now have over 110,000 words, pro-
ducing an 884-page PDF document. These pages
need to undergo both presentation and technical re-
view. Our plans include SciPy documentation as
well as several user guides, tutorials, and pamphlets.
A critical need at this point is a stable funding stream
to support the Documentation Coordinators who
have been instrumental to the success of this project.

Abstract

In the Spring of 2008, the SciPy Documentation
Project began to write documentation for NumPy and
SciPy. Starting from 8658 words, the NumPy reference
pages now have over 110,000 words, producing an 884-
page PDF document. These pages need to undergo
both presentation and technical review. Our plans
include SciPy documentation as well as several user
guides, tutorials, and pamphlets. A critical need at
this point is a stable funding stream to support the
Documentation Coordinators who have been instru-
mental to the success of this project.

Introduction

We maintain that, under any good development model,
a software project’s reference documentation is written
approximately concurrently with code. In other words,
the software includes full reference documentation as
part of each release.

In our experience, many research codes do not follow
such a model. Research codes typically start as so-
lutions to specific needs and are written by the re-
searchers who will use them. Documentation is of-
ten brief and incomplete, as the small circle of users
is generally familiar with the code, having written it
or having received training from those who did. The
code may even be short enough and the users expert
enough that reading the source code is a viable doc-
umentation method for them. Most such codes reach
end-of-life when the original authors either move on or
can no longer maintain them, or when the efforts for
which they were written end.

However, some codes achieve a life of their own, with
new people taking on maintenance and development in
a community open-source effort. If the lack of docu-
mentation is not recognized and remedied at this stage,
and if the developers do not require documentation to

be written concurrently with any new code, the de-
ferred documentation effort can become larger than
any reasonable investment of the developers’ time.

This was the case with NumPy. Between its forks,
rewrites, and much organic growth, we are fortunate,
in the authors’ opinions, to have a single, stable pack-
age at all. It is perhaps not surprising that documen-
tation development has not kept pace. Yet with thou-
sands of users [Gen], some (perhaps many) of whom
are learning to program for the first time using NumPy,
we assert that documentation is important. As the
first author outlined at the SciPy 2008 Conference
[Har], he found himself, in the fall of 2007, teaching
data analysis with NumPy without much documenta-
tion, and resolved that, by the fall of 2008, his class
would have the documentation it needed. He then
founded the SciPy Documentation Project (SDP). The
following sections describe the SDP, its current state,
and our future needs and plans.

The Project

Before the start of the SDP, documentation entered
NumPy and SciPy as did any component of the code:
through the Subversion (SVN) repository. Only code
developers could enter documentation. Other commu-
nity members rarely made contributions, and if they
did, it was by emailing the developers or a relevant
mailing list. It was clear from the volume of unwritten
documentation that a much larger group would need
to be involved. We needed approved documentation
writers, reviewers, and proofers (the SDP’s three la-
bor catagories) to enter, edit, discuss, pass judgement
on, and proofread the documentation. We also needed
tools for organizing the effort and generating progress
statistics. Thus was born the SciPy Documentation
Wiki [Vir], now located at docs.scipy.org.

After independently but concurrently commencing
work on versions of the Wiki, Pauli Virtanen and
Emanuelle Guillart quickly combined efforts, with Vir-
tanen taking on the long-term management of the Wiki
and the tools behind it. Gael Varoquaux and Stefan
van der Walt also contributed. The Wiki interfaces
with the SVN repositories, allowing semi-automatic
commits into the NumPy and SciPy sources. Fully
automatic commits are not permitted because of the
risk of malicious code introduction. If code developers
modify documentation in the sources, that gets com-
municated to the Wiki so that it has the current ver-
sion.

The reference documentation appears as the Python
docstring [Goo] to each documented object in the
NumPy sources. These ASCII documents are written

J. Harrington, D. Goldsmithin Proc. SciPy 2009, G. Varoquaux, S. van der Walt, J. Millman (Eds), pp. 84–88 84

jh@physics.ucf.edu
dgoldsmith_89@alumni.brown.edu
http://docs.scipy.org

Proceedings of the 8th Python in Science Conference (SciPy 2009)

in a dialect of ReStructured Text [reST], which is quite
readable without processing; the user sees the raw doc-
ument in Python’s help() facility. Prior to our taking
the Wiki live, the community updated and refined the
NumPy/SciPy Docstring Standard, to allow for formu-
lae and figures. Because help() cannot display them,
figures are discouraged in the NumPy documentation,
but other packages adopting the template may permit
them. The application Sphinx [Bran] produces Hyper-
Text Markup Language (HTML) and Portable Doc-
ument Format (PDF) versions of the documentation,
with indices. These processed forms are available at
docs.scipy.org.

In addition to the public editing, commentary, and re-
view system, there are instructions for participants on
the front page, a recently-added Questions and An-
swers page, and a Milestones page that we use to
organize and motivate the community, among other
features. The system went live in the early Summer
of 2008; since then, over 75 contributors have signed
up for accounts. The Wiki generates weekly activ-
ity and participation statistics (http://docs.scipy.

org/numpy/stats). Based on an examination of this
page, we estimate that roughly 80% of the documen-
tation has been written by about 13% of the contrib-
utors, but that most registered participants have con-
tributed something.

Doc Coordinators

The SDP effort moves forward when the community
works on it. To keep the community working, the first
author has hired full-time Documentation Coordina-
tors. Stefan van der Walt was the Coordinator in sum-
mer 2008, and continues his involvement in the project
by handling documentation issues on the SciPy Steer-
ing Committee and working on issues related to SVN.
The second author has been the Coordinator since
June 2009. Among other duties, he has most recently
been focused on updating the review protocol in an-
ticipation of the NumPy doc review push (see below).
As one can see from the Wiki’s Status Page <http:

//docs.scipy.org/numpy/stats>‘_, very little work
was done between September 2008 and May 2009, dur-
ing which period there was no Coordinator. (The fall
2009 hiatus is due to a delay in implementing a new
dual-review protocol.)

The Coordinator keeps the community moving by
defining milestones, defining short-term goals (like a
weekly function category for everyone to work on),
holding a weekly open teleconference with the writing
community, and simply “talking it up” on the mailing
lists to keep documentation on people’s minds. The
Coordinator also tends to write the pages nobody else
wants to work on.

We also have motivators, in the form of T-shirts for
those writing more than 1000 words or doing equiv-
alent work such as reviewing, mention in NumPy’s
THANKS.txt file, and perhaps other incentives in the

future. We are now soliciting contributions such as
sponsored trips to the SciPy10 conference. Those in-
terested in contributing sponsorships or ideas for in-
centives should contact the first author.

State of the Docs

The Wiki Status Page <http://docs.scipy.org/

numpy/stats>‘_ shows that there are over 2000 doc-
umentable functions, classes, and modules in NumPy,
but that the sources contained just 8658 words of refer-
ence documentation when the SDP began, i.e., an aver-
age of a little more than four words per documentable
object. Stefan van der Walt, the 2008 Documenta-
tion Coordinator, triaged the documentable objects
into “Unimportant” and “Needs Editing” categories,
and writing began.

Date Needs
Review

Being
Edited

PDF
Pages

Jun ’08 6% 13% <100

SciPy ’08 24% 28% 309

SciPy ’09 72% 6% 884

As of the SciPy ’09 Conference (August 2009), the
NumPy reference documentation consisted of over
110,000 words. Because the initial object triage was
intentionally light, much of the final 15% of unedited
objects are actually “Unimportant”. This category
mainly includes under-the-hood items that are never
seen by normal users. With “submittable drafts” of the
vast majority of reference pages, we will next focus on
review.

Near Future: NumPy Review

The quality of the draft documentation is generally
high, but writing is rarely complete without some crit-
ical review. The Project’s original experiment with
a one-review protocol resulted in very inconsistent
documentation: some pages were approved by more
technically-minded reviewers (such as developers), but
had sections that were difficult to understand. Other
approved pages, reviewed by professional writers, were
missing important facts. We have thus defined and are
implementing a two-review protocol, where both tech-
nical and presentation reviewers must approve each
page. This requires changes to the Wiki (pending),
changes to the reviewer instructions (finished), and re-
cruitment of expert reviewers (we invite qualified read-
ers to participate).

Next Projects

At the SciPy ’09 Conference, the authors held a birds-
of-a-feather (BoF) session where we discussed priori-
ties for documentation after the NumPy and SciPy ref-
erence documentation is finished. The following ideas
emerged:

85 http://conference.scipy.org/proceedings/SciPy2009/paper_14

http://projects.scipy.org/numpy/wiki/CodingStyleGuidelines#docstring-standard
http://docs.scipy.org
http://docs.scipy.org/numpy/contributors
http://docs.scipy.org/numpy/stats
http://docs.scipy.org/numpy/stats
http://docs.scipy.org/numpy/stats
http://docs.scipy.org/numpy/stats
http://docs.scipy.org/numpy/stats
http://docs.scipy.org/numpy/stats
http://docs.scipy.org/numpy/stats
http://docs.scipy.org/numpy/stats
http://docs.scipy.org/numpy/stats
http://docs.scipy.org/numpy/stats
http://docs.scipy.org/numpy/stats
http://docs.scipy.org/numpy/stats
http://conference.scipy.org/proceedings/SciPy2009/paper_14

Progress Report: NumPy and SciPy Documentation in 2009

NumPy User Guide: There are several pieces of
text that a volunteer editor could integrate into a
NumPy User Guide. The first are the concept pages
in the numpy.doc module. These document NumPy
concepts that occur in neither Python nor the most
popular commercial scientific programming languages
(e.g., Matlab or Interactive Data Language), such as
broadcasting, indexing tricks, and other expediencies.
There is a great deal of additional text in NumPy lead
developer Travis Oliphant’s original book, “Guide to
NumPy.” [Oli] Much of that work is technical doc-
umentation (C-API docs, etc.) or is appropriate for
very expert users. This proposed User Guide would
thus require much additional writing, but a great deal
of excellent raw material already exists in the Wiki.

SciPyStack Test Drive (~10-pages): This document
would narrate a demonstration that would give a first
exposure to the power of NumPy. It would essentially
be a marketing document, something one could give
to colleagues to convince them it would be worth their
time to learn more.

Getting Started Tutorial (~250 pages): This tuto-
rial would teach a new user the basics of NumPy and
some related packages, including array math, file I/O,
basic plotting, some scientific methods packages, and
where to learn more in all of these categories. The
authors are aware of several such tutorials, but most
are either unpublished or have been labeled by their
authors as preliminary or unfinished. Others are out-
dated, having been written for one of NumPy’s prede-
cessor packages and not (yet) updated. Only a few are
on the scipy.org web site. We may opt for one “Gen-
eral Tutorial” and several discipline-specific tutorials,
such as the one for astronomy. [Gre]

Reading tools: The Python help() and NumPy
np.info() functions are convenient, but are limited to
ASCII text in the terminal. The numpy.info function
should be enhanced so that, at the user’s option, it
can interface with external doc readers. For example,
np.info(np.cos) might start a PDF reader and display
the page that describes the np.cos function; or it might
signal a Web browser to do the same using the HTML
documentation.

SciPy Reference Pages: Documenting SciPy will
be a monumental task. Though it starts from a much
healthier state than did NumPy (at the time of ar-
ticle submission it had 628 pages of documentation,
versus <100 for NumPy when the SDP began), the
Doc Wiki shows that it has nearly twice as many doc-
umentable objects. Its content is highly technical, so
writers with specialized knowledge will be required, ar-
guably to a much higher degree than was needed for
NumPy. Furthermore, much of the current documen-
tation employs graduate-level technical language that
many potential users may not understand. This work
will begin in earnest once NumPy has been reviewed,
but the SciPy portion of the Wiki is open, so those who
are motivated, and in particular module maintainers,
may begin this work at their convenience.

SciPyStack User Guide: This would be an integra-
tive document to teach the fundamentals of the entire
toolstack. We see it as covering basic (I)Python, giv-
ing pointers to introductory books on Python, teach-
ing array basics (essentially the current NumPy User
Guide content), presenting file I/O (including HDF,
FITS, etc.), and having chapters on numerical com-
putation, visualization, parallel computing, etc. To
produce it, we propose following the academic “edited
book” model. We would have a community discus-
sion to agree on a table of contents and book con-
ventions. A Request For Proposals would then solicit
author teams to write chapters. An editor (or editors)
would assemble and integrate the chapters, attending
to things like style uniformity, and cross references,
and indexing. We see as the final products a free e-
book and a paper edition for retail sale. Our vision
includes maintaining it to stay current.

What to Call It?

Readers will notice use of the term “SciPyStack”
above. The community thinks of “SciPy” in two con-
texts: as a specific package and as the loosely defined
collection (or stack) of packages used together for sci-
entific computing in Python. The dual use causes con-
fusion. For example, the authors have been involved
in many discussions where someone strongly objected
to a proposal, thinking that it was to add a major ca-
pability to the package when it was instead to produce
a freestanding capability of which the unaltered pack-
age would be a component. As the community works
on improving both the package and the stack, and as
documentation moves to a stage where we are writing
integrative material that must address both concepts
together, it is our opinion that having separate words
for the concepts will be beneficial. We offer here some
thoughts and a proposal to initiate discussion.

Capitalization (“scipy” for the package vs. “SciPy” for
the stack) has been insufficient, and few would wish
to say “SciPy the stack” and “scipy the package” on
each use. To avoid confusion, one of these usages much
change. Changing the name of the package would shat-
ter its API. We also have a web site, scipy.org, whose
widely-known name we would be foolish to change, yet
it is the portal to the stack. Our name for the stack
would thus best begin with the fragment “SciPy...” for
consistency with the well-known site.

We considered many possible names, including “Sci-
entific Python” (already taken by another package)
and “Py4Sci” (disagrees with web site name), and
“SciPython” (likely to revert to “SciPy” in casual
speech). “SciPyStack” could work; it is explicit, not
easily abbreviated back to “SciPy”, and short. Oth-
ers might work as well. We raise the issue now to en-
courage discussion before writing begins on integrative
documentation.

c©2009, J. Harrington, D. Goldsmith 86

http://www.mathworks.com/products/matlab/
http://www.ittvis.com/ProductServices/IDL.aspx
http://scipy.org
http://scipy.org

Proceedings of the 8th Python in Science Conference (SciPy 2009)

Conclusions

The SDP’s first project has been reference documen-
tation for NumPy. The vast majority of reference
pages for user-visible objects are now ready for review,
and these drafts have already been included in several
NumPy releases. Given that most objects lacked doc-
umentation prior to the project, we feel these drafts
are a significant improvement over the prior state, and
the testimonials of students in courses taught by the
first author bear out the notion that NumPy is much
easier to learn today than it was two years ago. Once
the NumPy documentation is finished, we will move
on to SciPy. Future plans also include several books
and a pamphlet. However, the big labor requirement
now is for technical and presentation reviewers for the
NumPy reference documentation.

There is another need, however: a sustainable funding
stream to pay a Documentation Coordinator (which
is all but essential for continued progress) and per-
haps others in the future, such as book editors. The
first author has been paying the Coordinators from
his research grants, with the justification that this
is ultimately costing the grants less than paying his
group for the time they would require to learn NumPy
without documentation. This cannot continue much
longer, but the return to the community has already
been significant. We believe that NumPy represents
“bread and butter” to thousands of technical profes-
sionals worldwide, and that the number is quickly in-
creasing. This software is not free of cost, only free
of charge, and its continued development depends on
contributions. We feel strongly that those who benefit
substantially from NumPy, and especially those who
profit from it, should consider contributing labor or
funds. We are pursuing both commercial and govern-
mental funding opportunities to continue supporting
the SDP, and we seek senior collaborators for propos-
als. We invite those interested to contact us so that

we may all continue to benefit from the power of the
SciPy software stack.

Acknowledgements

Support for this work was provided by NASA through
an award issued by JPL/Caltech.

References

[Bran] Georg Brandl, Sphinx: Python Documentation
Generator. http://sphinx.pocoo.org/, 2009.

[Gen] Igor Genibel, Christoph Berg, Ian Lynagh
(graphs), et al. Debian Quality Assur-
ance: Popularity contest statistics for python-
numpy. http://qa.debian.org/popcon.php?

package=python-numpy, October, 2009.
[Goo] David Goodger and Guido van Rossum, Python

Enhancement Proposal 257: Docstring Con-
ventions. http://www.python.org/dev/peps/

pep-0257/, 2001-9.
[Gre] Perry Greenfield and Robert Jedrzejewski, Using

Python for Interactive Data Analysis. http://

stsdas.stsci.edu/perry/pydatatut.pdf, 2007.
[Har] Joseph Harrington, The SciPy Documenta-

tion Project. In Proceedings of the 7th
Python in Science Conference, G. Varoquaux,
T. Vaught, and J. Millman (Eds.), pp. 33 –
35, http://conference.scipy.org/proceedings/

SciPy2008/paper_7/full_text.pdf, 2008.
[Oli] Travis Oliphant, Guide to NumPy. http://www.

tramy.us/numpybook.pdf, 2006.
[reST] reStructuredText: Markup Syntax and Parser

Component of Docutils. http://docutils.

sourceforge.net/rst.html, 2006.
[Vir] Pauli Virtanen, Emmanuelle Gouillart, Gael Varo-

quaux, and Stefan van der Walt, et al. pydocweb:
A tool for collaboratively documenting Python
modules via the web. http://code.google.com/

p/pydocweb/, 2008-9.

87 http://conference.scipy.org/proceedings/SciPy2009/paper_14

http://sphinx.pocoo.org/
http://sphinx.pocoo.org/
http://qa.debian.org/popcon.php?package=python-numpy
http://qa.debian.org/popcon.php?package=python-numpy
http://qa.debian.org/popcon.php?package=python-numpy
http://qa.debian.org/popcon.php?package=python-numpy
http://www.python.org/dev/peps/pep-0257/
http://www.python.org/dev/peps/pep-0257/
http://www.python.org/dev/peps/pep-0257/
http://www.python.org/dev/peps/pep-0257/
http://stsdas.stsci.edu/perry/pydatatut.pdf
http://stsdas.stsci.edu/perry/pydatatut.pdf
http://stsdas.stsci.edu/perry/pydatatut.pdf
http://stsdas.stsci.edu/perry/pydatatut.pdf
http://conference.scipy.org/proceedings/SciPy2008/paper_7/full_text.pdf
http://conference.scipy.org/proceedings/SciPy2008/paper_7/full_text.pdf
http://conference.scipy.org/proceedings/SciPy2008/paper_7/full_text.pdf
http://conference.scipy.org/proceedings/SciPy2008/paper_7/full_text.pdf
http://www.tramy.us/numpybook.pdf
http://www.tramy.us/numpybook.pdf
http://www.tramy.us/numpybook.pdf
http://www.tramy.us/numpybook.pdf
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://docutils.sourceforge.net/rst.html
http://code.google.com/p/pydocweb/
http://code.google.com/p/pydocweb/
http://code.google.com/p/pydocweb/
http://code.google.com/p/pydocweb/
http://conference.scipy.org/proceedings/SciPy2009/paper_14

Proceedings of the 8th Python in Science Conference
SciPy Conference – Pasadena, CA, August 18-23, 2009.
Editors: Gaël Varoquaux, Stéfan van der Walt,
K. Jarrod Millman

2321237805579

ISBN 978-0-557-23212-3
90000

	Editorial
	Cython tutorial
	Fast numerical computations with Cython
	High-Performance Code Generation Using CorePy
	Convert-XY: type-safe interchange of C++ and Python containers for NumPy extensions
	Parallel Kernels: An Architecture for Distributed Parallel Computing
	PaPy: Parallel and distributed data-processing pipelines in Python
	PMI - Parallel Method Invocation
	Sherpa: 1D/2D modeling and fitting in Python
	The FEMhub Project and Classroom Teaching of Numerical Methods
	Exploring the future of bioinformatics data sharing and mining with Pygr and Worldbase
	Nitime: time-series analysis for neuroimaging data
	Multiprocess System for Virtual Instruments in Python
	Neutron-scattering data acquisition and experiment automation with Python
	Progress Report: NumPy and SciPy Documentation in 2009

