Nashville Python User Group Home () Blog (/blog/) Jobs (/jobs.htmi)

Timing and Profiling in IPython

Timing and profiling code is all sorts of useful, and it's also just good ol’ fashioned fun (and sometimes
surprising!). In this post, I'll introduce how to do the following through IPython magic functions:

%time & %timeit : See how long a script takes to run (one time, or averaged over a bunch of runs).
%prun : See how long it took each function in a script to run.

%lprun : See how long it took each line in a function to run.

#mprun & %memit : See how much memory a script uses (line-by-line, or averaged over a bunch of
runs).

Installation & Setup

Please make sure you're running IPython 0.11 or greater. This post was authored against Python 2.7 and
IPython 0.13.1.

$ pip install ipython
$ ipython --version
B.13.1

Most of the functionality we’ll work with is included in the standard library, but if you're interested in line-by-
line or memory profiling, go ahead and run through this setup. First, install the following:

% pip install line-profiler
% pip install psutil
% pip install memory_profiler

Next, create an IPython profile and extensions directory where we’'ll configure a couple of missing magic
functions:

% ipython profile create
[ProfileCreate] Genergting default config file: w'/Users/tsclausing/.ipython/profile_default/ip
ython_config.py'

% mkdir ~/.ipython/extensions/

Create the following IPython extention files with the contents below to define the magic functions:

~/ . 1python/extensions/line_profiler_ext.py

import line_profiler

def load_ipython_extension(ip):
ip.define_magic('lprun', line_profiler.magic_lprun)

~/ . ipython/extensions/memory_profiler_ext.py

import memory_profiler

def load_ipython_extension(ip):

ip.define_magic('memit', memory_profiler.magic_memit)
ip.define_magic('mprun', memory_profiler.maglc_mprumn)

Finally, register the extension modules you just created with the default IPython profile we made earlier:

Edit ~/.ipython/profile_default/ipython_config.py , search for, uncomment, and modify these lists to
include:

c.TerminalIPythonApp.extensions =
"line_profiler_ext"”,
‘memory_profiler_ext’,

]

c.InteractiveShellApp.extensions =
"line_profiler_ext"”,
‘memory_profiler_ext’,

And that’s it! We're ready to time and profile to our hearts content. Start ipython and test for the following:

3 ipython
Python 2.7.2 (default, Jun 2@ 20812, 1&:23:33)
Type "copyright"”, "credits" aor "license" for more information.

IPython ©.13.1 -- An enhanced Interactiwve Python.
g -> Introduction and overview of IPython's features.

¥oguickref -> Quick reference.

help -= Python's own help system.
object? Details gbout 'object’, use 'object??' for extra details.

In [1]: %time?
In [2]: %timeit?
In [3]: %¥prun?
In [4]: ¥lprun?
In [5]: ¥mprun?

[&]: “memit?

Time Profiling

Time profiling does exactly what it sounds like - it tells you how much time it took to execute a script, which
may be a simple one-liner or a whole module.

%time

See how long it takes a script to run.
In [7]: %time {1 for i in xrange(1@*100000@)}

CPU times: user @.72 5, sys: .16 5, total: @.88 s
Wall time: @.75 s

%timeit

See how long a script takes to run averaged over multiple runs.

In [8]: %timeit 18*1008008
100802888 loops, best of 3: 38.Z2 ns per loop

stimeit will limit the number of runs depending on how long the script takes to execute. Keep in mind that
the timeit module in the standard library does not do this by default, so timing long running scripts that way
may leave you waiting forever.

The number of runs may be set with with -n 1888 , for example, which will limit #timeit to a thousand
iterations, like this:

In [9]: ¥timelt -n 19808 18*128@8aa
190@ loops, best of 3: 67 ns per loop

Also note that the run-time reported will vary more when limited to fewer loops.

%prun

See how long it took each function in a script to run.
In [1@]: from time import sleep
In [11]: def foo(): sleep(l)
In [12]: def bar(): sleep(Z)
In [13]: def baz(): foo(), bar()

In [14]: %prun baz()
7 function calls in 3.801 seconds

Ordered by: internal time

ncalls tottime percall cumtime percall filename:linenolfunction)
3.881 1.508 3.881 1.508 {time.sleep}
@.0aa @.28a 3.881 3.001 <ipython-input-17-c32ced4852cid=:1(baz)
@.0aa @.28a Z.08a 2.088 <=ipython-input-11-2689ca739@dc=:1(bar)
@.0aa @.28a 1.8@1 1.881 <ipython-input-1@-ellaflcc2c9l=:1(foo)
@.0aa @.28a 3.881 3.@81 =string=:1(<module:)
@.0aa @.28a @.28a 2.2808 {method 'disable' of '_lsprof.Profiler’ objects}

%Ilprun

See how long it took each line in a function to run.

Create and edit a new module named foo.py in the same directory where you started IPython. Paste the
following code in the file and jump back to IPython.

def foo(n):
phrase = 'repeat me'
pmul = phrase * n
piol = "'.joln([phrase for x in xrange(n)])
pinc = "°
for x in xrange(n):
pinc += phrase
del pmul, pjoi, pinc

Import the function and profile it line by lineg with %1prun . Functions to profile this way must be passed by
name with -f.

In [15]: from foo import foo

In [16]: #¥lprun -f foo fooll@@@@a)
Timer unit: le-86 s

File: foo.py
Function: foo at line 1

Total time: @.381832 s

Line # Hits Per Hit % Time Line Contents

def fooln):
1 .8 @a. phrase = 'repeat me'
1 . @a.1 pmul = phrase * n
180@aal .8 . pjoi ''jolnC[phrase for ® in xrange(n)]

1 4 4, c pinc = "'
1eaaal 98133 a. c for x 1n xrange(n):
18a2aa 112935 1. 7. pinc += phrase

1 182 c c del pmul, pjol, pinc

Memory Profiling

Yemprun

See how much memory a script uses line by line. Let's take a look at the same foo() function that we
profiled with ¥lprun - except this time we're interested in incremental memory usage and not execution
time.

In [17]: #%mprun -f foo fooll@@@@a)
Filename: foo.py

Line # Mem usage Increment Line Contents

28.598 MB .08@ ME def foo(n):

28.598 MB .38 MB phrase = 'repeat me'

£1.445 MB .855 MB pmul = phrase * n

25,928 MB 574 MB pjoi 'LjolnC[phrase for x in xrange(n)])
25.028 MB .0@a MB pinc = "'

43.594 MB 574 MB for x in xrange(n):

43.594 MB .38 MB pinc += phrase

41.18Z MB 492 MB del pmul, pjoi, pinc

Lo B = T B I

%memit

See how much memory a script uses overall. ¥memit works a lot like ¥timeit except that the number of
iterations is set with -r instead of -n.

In [18]: ¥memit -r 3 [x for x in xrange(1020022)]
maximum of 3: 75.320312 MB per loop

What do you know?

Please leave other tips & tools in the comments below. | remember a while back seeing a video from
someone who built a profiling visualization in matplotlib, but | haven't been able to dig it up. If you find it,
please post it here, too!

Some additional reading and sources:

Run ¥magicfunctionname? for each magic function for specific help.

Profiling Python Code (http://scikit-learn.org/dev/developers/performance.html#profiling-python-code)
Chapter 3 of the Python Data Analysis book (hitp://www.amazon.com/Python-Data-Analysis-Wes-
McKinney/dp/1449319793)

Python MotW: Debugging and Profiling (hitp://pymotw.com/2/profilers.html)

by Scot Clausing on 06 Mar 2013
Related Posts

« 08 Jul 2014 » PyNash Coffee and Code Environments (/2014/07/08/PyNash-CNC-Environments.html)

+ 03 Apr 2013 = Fun Extending Dict (/2013/04/03/fun-extending-dict.html)
« 25 Mar 2013 » How | got started with Python (/2013/03/25/how-i-got-start-with-python.html)

5 Comments

Fabian Pedregosa -
With the latest memory_profiler (0.24) you can load the IPython magic functions using
"O6load_ext memory_profiler’, no need to edit the IPython config file :-)

olgabot -
Thank you! One tip is that | had to add the flag "--pre" to each of the "pip install* commands
because they were all in beta/pre-release stage.

Augustine Dunn -
regarding:

"Notice that by default %timeit runs your code millions of times before returning. Timing long
running scripts this way may leave you waiting forever."

It is my understanding that timeit’ loops intelligently. Your example takes no time so it loops
millions. However if the code took longer it will lower the loops it runs automatically unless told
to loop 'n" times.

. T. Scot Clausing .
Thanks for the heads up! I've submitted a PR for this change:
https://github.com/pynashorg/p...

T. Scot Clausing -
Hey Fabian! Thanks for the heads up - | was not aware of %load_ext. IPython docs here:
http://ipython.org/ipython-doc...

And thank you for your awesome work on memory_profiler (and SciKit, SymPy, SciPy ..)! It's
a long way, but if you're ever in Nashville, TN (or at PyCon) - holler at me and I'll buy you a
beer.

Fun Extending Dict Named Tuple

— i'd be curious to see what could be ‘ — Oh wow. That verbose=
accomplished with functions that operate on __ | keyword argument is really cool. | didn't know
dictionaries. Something like this: ... namedtuple was pure Python.

Quick Hit: Virtualenvwrapper Auto Directory How | got started with Python
Tips
‘_‘ — | would also add Idiomatic
— Great tip. This is something | Python http://www jeffknupp.com/writi... as
_‘ | have been using along these same lines another great reference for new Pythonista
https://github.com/kennethreit... so thatifl ...

.

