
9/7/2014 openresty/echo-nginx-module

https://github.com/openresty/echo-nginx-module 1/31

 Explore Gist Blog Help

HTTPS clone URL

You can clone with HTTPS, SSH,
or Subversion.

echo-nginx-module /

latest commit 8f28ddfde0

An Nginx module for bringing the power of "echo", "sleep", "time" and more to Nginx's config file
http://wiki.nginx.org/NginxHttpEchoModule

doc: release v0.56.

 agentzh authored 5 days ago

 doc doc: release v0.56. 5 days ago

 src bugfix: create_loc_conf did not return NULL on error. thanks Markus L… 20 days ago

 t tests: updated test suite according to the latest changes in Test::Ng… 16 days ago

 util removed util/update-readme.sh because it is no longer used (we now us… a year ago

 .gitignore updated .gitignore a bit. a year ago

 LICENSE completed a placeholder in the license 5 years ago

 README.markdown doc: release v0.56. 5 days ago

 config various file name and coding style fixes. 5 years ago

 valgrind.suppress suppressed a valgrind false positive in libdl. 5 months ago

Search sethc23    

32 190 58 Watch  Star  Forkopenresty / echo-nginx-module

 Code

 Issues 3

 Pull Requests 0

 Wiki

 Pulse

 Graphs

https://github.com/openresty/echo-nginx-module.git



 Clone in Desktop

 Download ZIP

 420 commits 2 branches 74 releases 3 contributors   

  master branch: 

 README.markdown

ngx_echo - Brings "echo", "sleep", "time", "exec" and more shell-style goodies to Nginx config file.

This module is not distributed with the Nginx source. See the installation instructions.

Status
Version
Synopsis
Description
Content Handler Directives

echo
echo_duplicate
echo_flush
echo_sleep
echo_blocking_sleep
echo_reset_timer
echo_read_request_body
echo_location_async
echo_location

Name

Table of Contents

This repository

https://github.com/
https://github.com/explore
https://gist.github.com/
https://github.com/blog
https://help.github.com/
https://github.com/openresty/echo-nginx-module
https://github.com/openresty/echo-nginx-module/commit/8f28ddfde0d15e3da4b804e18831dbc3dad559ae
http://wiki.nginx.org/NginxHttpEchoModule
https://github.com/openresty/echo-nginx-module/tree/master/doc
https://github.com/openresty/echo-nginx-module/commit/8f28ddfde0d15e3da4b804e18831dbc3dad559ae
https://github.com/openresty/echo-nginx-module/tree/master/src
https://github.com/openresty/echo-nginx-module/commit/cd547d19438ed257291fd08c98956b708fc05de8
https://github.com/openresty/echo-nginx-module/tree/master/t
https://github.com/openresty/echo-nginx-module/commit/85cff382c054195ef03c7f86dda0d675a409a4c4
https://github.com/openresty/echo-nginx-module/tree/master/util
https://github.com/openresty/echo-nginx-module/commit/83d85e902fd9d2b879f4a03d153ab9a46f0b1bd4
https://github.com/openresty/echo-nginx-module/blob/master/.gitignore
https://github.com/openresty/echo-nginx-module/commit/9c437939acd242b526ced79d209f508b5e0fbef9
https://github.com/openresty/echo-nginx-module/blob/master/LICENSE
https://github.com/openresty/echo-nginx-module/commit/b57a4b460d39359d7b52ec374b91e0ff9f24bb57
https://github.com/openresty/echo-nginx-module/blob/master/README.markdown
https://github.com/openresty/echo-nginx-module/commit/8f28ddfde0d15e3da4b804e18831dbc3dad559ae
https://github.com/openresty/echo-nginx-module/blob/master/config
https://github.com/openresty/echo-nginx-module/commit/46ffbe856fcf4ed0bbdfde725ce6cc0bbce24ccd
https://github.com/openresty/echo-nginx-module/blob/master/valgrind.suppress
https://github.com/openresty/echo-nginx-module/commit/98691e209c3784a93b5ad350af9520c991ac8820
https://github.com/openresty/echo-nginx-module/commit/8f28ddfde0d15e3da4b804e18831dbc3dad559ae
https://github.com/agentzh
https://github.com/sethc23
https://github.com/notifications
https://github.com/settings/profile
https://github.com/openresty/echo-nginx-module/watchers
https://github.com/openresty/echo-nginx-module/stargazers
https://github.com/openresty/echo-nginx-module/network
https://github.com/openresty/echo-nginx-module/subscription
https://github.com/openresty/echo-nginx-module/fork
https://github.com/openresty
https://github.com/openresty/echo-nginx-module
https://github.com/openresty/echo-nginx-module
https://github.com/openresty/echo-nginx-module/issues
https://github.com/openresty/echo-nginx-module/pulls
https://github.com/openresty/echo-nginx-module/wiki
https://github.com/openresty/echo-nginx-module/pulse/weekly
https://github.com/openresty/echo-nginx-module/graphs
https://help.github.com/articles/which-remote-url-should-i-use
http://mac.github.com/
https://github.com/openresty/echo-nginx-module/archive/master.zip
https://github.com/openresty/echo-nginx-module/commits/master
https://github.com/openresty/echo-nginx-module/branches
https://github.com/openresty/echo-nginx-module/releases
https://github.com/openresty/echo-nginx-module/graphs/contributors
https://github.com/openresty/echo-nginx-module/find/master
https://github.com/openresty/echo-nginx-module/compare

9/7/2014 openresty/echo-nginx-module

https://github.com/openresty/echo-nginx-module 2/31

echo_subrequest_async
echo_subrequest
echo_foreach_split
echo_end
echo_request_body
echo_exec
echo_status

Filter Directives
echo_before_body
echo_after_body

Variables
$echo_it
$echo_timer_elapsed
$echo_request_body
$echo_request_method
$echo_client_request_method
$echo_client_request_headers
$echo_cacheable_request_uri
$echo_request_uri
$echo_incr
$echo_response_status

Installation
Compatibility
Known Issues
Modules that use this module for testing
Community

English Mailing List
Chinese Mailing List

Report Bugs
Source Repository
Changes
Test Suite
TODO
Getting involved
Author
Copyright & License
See Also

This module is production ready.

This document describes ngx_echo v0.56 released on 2 September 2014.

 location /hello {

Status

Version

Synopsis

https://github.com/agentzh/echo-nginx-module/tags

9/7/2014 openresty/echo-nginx-module

https://github.com/openresty/echo-nginx-module 3/31

 echo "hello, world!";
 }

 location /hello {
 echo -n "hello, ";
 echo "world!";
 }

 location /timed_hello {
 echo_reset_timer;
 echo hello world;
 echo "'hello world' takes about $echo_timer_elapsed sec.";
 echo hiya igor;
 echo "'hiya igor' takes about $echo_timer_elapsed sec.";
 }

 location /echo_with_sleep {
 echo hello;
 echo_flush; # ensure the client can see previous output immediately
 echo_sleep 2.5; # in sec
 echo world;
 }

 # in the following example, accessing /echo yields
 # hello
 # world
 # blah
 # hiya
 # igor
 location /echo {
 echo_before_body hello;
 echo_before_body world;
 proxy_pass $scheme://127.0.0.1:$server_port$request_uri/more;
 echo_after_body hiya;
 echo_after_body igor;
 }
 location /echo/more {
 echo blah;
 }

 # the output of /main might be
 # hello
 # world
 # took 0.000 sec for total.
 # and the whole request would take about 2 sec to complete.
 location /main {
 echo_reset_timer;

 # subrequests in parallel
 echo_location_async /sub1;
 echo_location_async /sub2;

 echo "took $echo_timer_elapsed sec for total.";
 }
 location /sub1 {
 echo_sleep 2;
 echo hello;
 }
 location /sub2 {
 echo_sleep 1;

9/7/2014 openresty/echo-nginx-module

https://github.com/openresty/echo-nginx-module 4/31

 echo world;
 }

 # the output of /main might be
 # hello
 # world
 # took 3.003 sec for total.
 # and the whole request would take about 3 sec to complete.
 location /main {
 echo_reset_timer;

 # subrequests in series (chained by CPS)
 echo_location /sub1;
 echo_location /sub2;

 echo "took $echo_timer_elapsed sec for total.";
 }
 location /sub1 {
 echo_sleep 2;
 echo hello;
 }
 location /sub2 {
 echo_sleep 1;
 echo world;
 }

 # Accessing /dup gives
 # ------ END ------
 location /dup {
 echo_duplicate 3 "--";
 echo_duplicate 1 " END ";
 echo_duplicate 3 "--";
 echo;
 }

 # /bighello will generate 1000,000,000 hello's.
 location /bighello {
 echo_duplicate 1000_000_000 'hello';
 }

 # echo back the client request
 location /echoback {
 echo_duplicate 1 $echo_client_request_headers;
 echo "\r";

 echo_read_request_body;

 echo_request_body;
 }

 # GET /multi will yields
 # querystring: foo=Foo
 # method: POST
 # body: hi
 # content length: 2
 # ///
 # querystring: bar=Bar
 # method: PUT
 # body: hello
 # content length: 5

9/7/2014 openresty/echo-nginx-module

https://github.com/openresty/echo-nginx-module 5/31

 # ///
 location /multi {
 echo_subrequest_async POST '/sub' -q 'foo=Foo' -b 'hi';
 echo_subrequest_async PUT '/sub' -q 'bar=Bar' -b 'hello';
 }
 location /sub {
 echo "querystring: $query_string";
 echo "method: $echo_request_method";
 echo "body: $echo_request_body";
 echo "content length: $http_content_length";
 echo '///';
 }

 # GET /merge?/foo.js&/bar/blah.js&/yui/baz.js will merge the .js resources together
 location /merge {
 default_type 'text/javascript';
 echo_foreach_split '&' $query_string;
 echo "/* JS File $echo_it */";
 echo_location_async $echo_it;
 echo;
 echo_end;
 }

 # accessing /if?val=abc yields the "hit" output
 # while /if?val=bcd yields "miss":
 location ̂~ /if {
 set $res miss;
 if ($arg_val ~* '̂a') {
 set $res hit;
 echo $res;
 }
 echo $res;
 }

Back to TOC

This module wraps lots of Nginx internal APIs for streaming input and output, parallel/sequential
subrequests, timers and sleeping, as well as various meta data accessing.

Basically it provides various utilities that help testing and debugging of other modules by trivially
emulating different kinds of faked subrequest locations.

People will also find it useful in real-world applications that need to

1. serve static contents directly from memory (loading from the Nginx config file).
2. wrap the upstream response with custom header and footer (kinda like the addition module but

with contents read directly from the config file and Nginx variables).
3. merge contents of various "Nginx locations" (i.e., subrequests) together in a single main request

(using echo_location and its friends).

This is a special dual-role module that can lazily serve as a content handler or register itself as an
output filter only upon demand. By default, this module does not do anything at all.

Technially, this module has also demonstrated the following techniques that might be helpful for
module writers:

Description

http://nginx.org/en/docs/http/ngx_http_addition_module.html

9/7/2014 openresty/echo-nginx-module

https://github.com/openresty/echo-nginx-module 6/31

1. Issue parallel subreqeusts directly from content handler.
2. Issue chained subrequests directly from content handler, by passing continuation along the

subrequest chain.
3. Issue subrequests with all HTTP 1.1 methods and even an optional faked HTTP request body.
4. Interact with the Nginx event model directly from content handler using custom events and

timers, and resume the content handler back if necessary.
5. Dual-role module that can (lazily) serve as a content handler or an output filter or both.
6. Nginx config file variable creation and interpolation.
7. Streaming output control using output_chain, flush and its friends.
8. Read client request body from the content handler, and returns back (asynchronously) to the

content handler after completion.
9. Use Perl-based declarative test suite to drive the development of Nginx C modules.

Back to TOC

Use of the following directives register this module to the current Nginx location as a content handler.
If you want to use another module, like the standard proxy module, as the content handler, use the
filter directives provided by this module.

All the content handler directives can be mixed together in a single Nginx location and they're
supposed to run sequentially just as in the Bash scripting language.

Every content handler directive supports variable interpolation in its arguments (if any).

The MIME type set by the standard default_type directive is respected by this module, as in:

 location /hello {
 default_type text/plain;
 echo hello;
 }

Then on the client side:

 $ curl -I 'http://localhost/echo'
 HTTP/1.1 200 OK
 Server: nginx/0.8.20
 Date: Sat, 17 Oct 2009 03:40:19 GMT
 Content-Type: text/plain
 Connection: keep-alive

Since the v0.22 release, all of the directives are allowed in the rewrite module's if directive block, for
instance:

location ̂~ /if {
 set $res miss;
 if ($arg_val ~* '̂a') {
 set $res hit;
 echo $res;
 }
 echo $res;
}

Back to TOC

Content Handler Directives

http://nginx.org/en/docs/http/ngx_http_proxy_module.html
http://nginx.org/en/docs/http/ngx_http_core_module.html#default_type
http://nginx.org/en/docs/http/ngx_http_rewrite_module.html
http://nginx.org/en/docs/http/ngx_http_rewrite_module.html#if

9/7/2014 openresty/echo-nginx-module

https://github.com/openresty/echo-nginx-module 7/31

syntax: echo [options] <string>...

default: no

context: location, location if

phase: content

Sends arguments joined by spaces, along with a trailing newline, out to the client.

Note that the data might be buffered by Nginx's underlying buffer. To force the output data flushed
immediately, use the echo_flush command just after echo , as in

 echo hello world;
 echo_flush;

When no argument is specified, echo emits the trailing newline alone, just like the echo command in
shell.

Variables may appear in the arguments. An example is

 echo The current request uri is $request_uri;

where $request_uri is a variable exposed by the ngx_http_core_module.

This command can be used multiple times in a single location configuration, as in

location /echo {
 echo hello;
 echo world;
}

The output on the client side looks like this

$ curl 'http://localhost/echo'
hello
world

Special characters like newlines (\n) and tabs (\t) can be escaped using C-style escaping
sequences. But a notable exception is the dollar sign ($). As of Nginx 0.8.20, there's still no clean
way to esacpe this characters. (A work-around might be to use a $echo_dollor variable that is
always evaluated to the constant $ character. This feature will possibly be introduced in a future
version of this module.)

As of the echo v0.28 release, one can suppress the trailing newline character in the output by using
the -n option, as in

location /echo {
 echo -n "hello, ";
 echo "world";
}

Accessing /echo gives

echo

http://nginx.org/en/docs/http/ngx_http_core_module.html#var_request_uri
http://nginx.org/en/docs/http/ngx_http_core_module.html

9/7/2014 openresty/echo-nginx-module

https://github.com/openresty/echo-nginx-module 8/31

$ curl 'http://localhost/echo'
hello, world

Leading -n in variable values won't take effect and will be emitted literally, as in

location /echo {
 set $opt -n;
 echo $opt "hello,";
 echo "world";
}

This gives the following output

$ curl 'http://localhost/echo'
-n hello,
world

One can output leading -n literals and other options using the special -- option like this

location /echo {
 echo -- -n is an option;
}

which yields

$ curl 'http://localhost/echo'
-n is an option

Back to TOC

syntax: echo_duplicate <count> <string>

default: no

context: location, location if

phase: content

Outputs duplication of a string indicated by the second argument, using the times specified in the first
argument.

For instance,

 location /dup {
 echo_duplicate 3 "abc";
 }

will lead to an output of "abcabcabc" .

Underscores are allowed in the count number, just like in Perl. For example, to emit 1000,000,000
instances of "hello, world" :

 location /many_hellos {

echo_duplicate

9/7/2014 openresty/echo-nginx-module

https://github.com/openresty/echo-nginx-module 9/31

 echo_duplicate 1000_000_000 "hello, world";
 }

The count argument could be zero, but not negative. The second string argument could be an
empty string ("") likewise.

Unlike the echo directive, no trailing newline is appended to the result. So it's possible to "abuse" this
directive as a no-trailing-newline version of echo by using "count" 1, as in

 location /echo_art {
 echo_duplicate 2 '---';
 echo_duplicate 1 ' END '; # we don't want a trailing newline here
 echo_duplicate 2 '---';
 echo; # we want a trailing newline here...
 }

You get

 ------ END ------

This directive was first introduced in version 0.11.

Back to TOC

syntax: echo_flush

default: no

context: location, location if

phase: content

Forces the data potentially buffered by underlying Nginx output filters to send immediately to the
client side via socket.

Note that techically the command just emits a ngx_buf_t object with flush slot set to 1, so certain
weird third-party output filter module could still block it before it reaches Nginx's (last) write filter.

This directive does not take any argument.

Consider the following example:

 location /flush {
 echo hello;

 echo_flush;

 echo_sleep 1;
 echo world;
 }

Then on the client side, using curl to access /flush , you'll see the "hello" line immediately, but only
after 1 second, the last "world" line. Without calling echo_flush in the example above, you'll most
likely see no output until 1 second is elapsed due to the internal buffering of Nginx.

This directive will fail to flush the output buffer in case of subrequests get involved. Consider the

echo_flush

9/7/2014 openresty/echo-nginx-module

https://github.com/openresty/echo-nginx-module 10/31

following example:

 location /main {
 echo_location_async /sub;
 echo hello;
 echo_flush;
 }
 location /sub {
 echo_sleep 1;
 }

Then the client won't see "hello" appear even if echo_flush has been executed before the
subrequest to /sub has actually started executing. The outputs of /main that are sent after
echo_location_async will be postponed and buffered firmly.

This does not apply to outputs sent before the subrequest initiated. For a modified version of the
example given above:

 location /main {
 echo hello;
 echo_flush;
 echo_location_async /sub;
 }
 location /sub {
 echo_sleep 1;
 }

The client will immediately see "hello" before /sub enters sleeping.

See also echo, echo_sleep, and echo_location_async.

Back to TOC

syntax: echo_sleep <seconds>

default: no

context: location, location if

phase: content

Sleeps for the time period specified by the argument, which is in seconds.

This operation is non-blocking on server side, so unlike the echo_blocking_sleep directive, it won't
block the whole Nginx worker process.

The period might takes three digits after the decimal point and must be greater than 0.001.

An example is

 location /echo_after_sleep {
 echo_sleep 1.234;
 echo resumed!;
 }

Behind the scene, it sets up a per-request "sleep" ngx_event_t object, and adds a timer using that
custom event to the Nginx event model and just waits for a timeout on that event. Because the

echo_sleep

9/7/2014 openresty/echo-nginx-module

https://github.com/openresty/echo-nginx-module 11/31

"sleep" event is per-request, this directive can work in parallel subrequests.

Back to TOC

syntax: echo_blocking_sleep <seconds>

default: no

context: location, location if

phase: content

This is a blocking version of the echo_sleep directive.

See the documentation of echo_sleep for more detail.

Behind the curtain, it calls the ngx_msleep macro provided by the Nginx core which maps to usleep
on POSIX-compliant systems.

Note that this directive will block the current Nginx worker process completely while being executed,
so never use it in production environment.

Back to TOC

syntax: echo_reset_timer

default: no

context: location, location if

phase: content

Reset the timer begin time to now, i.e., the time when this command is executed during request.

The timer begin time is default to the starting time of the current request and can be overridden by
this directive, potentially multiple times in a single location. For example:

 location /timed_sleep {
 echo_sleep 0.03;
 echo "$echo_timer_elapsed sec elapsed.";

 echo_reset_timer;

 echo_sleep 0.02;
 echo "$echo_timer_elapsed sec elapsed.";
 }

The output on the client side might be

$ curl 'http://localhost/timed_sleep'
0.032 sec elapsed.
0.020 sec elapsed.

The actual figures you get on your side may vary a bit due to your system's current activities.

echo_blocking_sleep

echo_reset_timer

9/7/2014 openresty/echo-nginx-module

https://github.com/openresty/echo-nginx-module 12/31

Invocation of this directive will force the underlying Nginx timer to get updated to the current system
time (regardless the timer resolution specified elsewhere in the config file). Furthermore, references of
the $echo_timer_elapsed variable will also trigger timer update forcibly.

See also echo_sleep and $echo_timer_elapsed.

Back to TOC

syntax: echo_read_request_body

default: no

context: location, location if

phase: content

Explicitly reads request body so that the $request_body variable will always have non-empty values
(unless the body is so big that it has been saved by Nginx to a local temporary file).

Note that this might not be the original client request body because the current request might be a
subrequest with a "artificial" body specified by its parent.

This directive does not generate any output itself, just like echo_sleep.

Here's an example for echo'ing back the original HTTP client request (both headers and body are
included):

 location /echoback {
 echo_duplicate 1 $echo_client_request_headers;
 echo "\r";
 echo_read_request_body;
 echo $request_body;
 }

The content of /echoback looks like this on my side (I was using Perl's LWP utility to access this
location on the server):

 $ (echo hello; echo world) | lwp-request -m POST 'http://localhost/echoback'
 POST /echoback HTTP/1.1
 TE: deflate,gzip;q=0.3
 Connection: TE, close
 Host: localhost
 User-Agent: lwp-request/5.818 libwww-perl/5.820
 Content-Length: 12
 Content-Type: application/x-www-form-urlencoded

 hello
 world

Because /echoback is the main request, $request_body holds the original client request body.

Before Nginx 0.7.56, it makes no sense to use this directive because $request_body was first
introduced in Nginx 0.7.58.

This directive itself was first introduced in the echo module's v0.14 release.

Back to TOC

echo_read_request_body

http://nginx.org/en/docs/http/ngx_http_core_module.html#var_request_body
http://nginx.org/en/docs/http/ngx_http_core_module.html#var_request_body
http://nginx.org/en/docs/http/ngx_http_core_module.html#var_request_body

9/7/2014 openresty/echo-nginx-module

https://github.com/openresty/echo-nginx-module 13/31

syntax: echo_location_async <location> [<url_args>]

default: no

context: location, location if

phase: content

Issue GET subrequest to the location specified (first argument) with optional url arguments specified
in the second argument.

As of Nginx 0.8.20, the location argument does not support named location, due to a limitation in
the ngx_http_subrequest function. The same is true for its brother, the echo_location directive.

A very simple example is

location /main {
 echo_location_async /sub;
 echo world;
}
location /sub {
 echo hello;
}

Accessing /main gets

 hello
 world

Calling multiple locations in parallel is also possible:

location /main {
 echo_reset_timer;
 echo_location_async /sub1;
 echo_location_async /sub2;
 echo "took $echo_timer_elapsed sec for total.";
}
location /sub1 {
 echo_sleep 2; # sleeps 2 sec
 echo hello;
}
location /sub2 {
 echo_sleep 1; # sleeps 1 sec
 echo world;
}

Accessing /main yields

 $ time curl 'http://localhost/main'
 hello
 world
 took 0.000 sec for total.

 real 0m2.006s
 user 0m0.000s
 sys 0m0.004s

echo_location_async

9/7/2014 openresty/echo-nginx-module

https://github.com/openresty/echo-nginx-module 14/31

You can see that the main handler /main does not wait the subrequests /sub1 and /sub2 to
complete and quickly goes on, hence the "0.000 sec" timing result. The whole request, however takes
approximately 2 sec in total to complete because /sub1 and /sub2 run in parallel (or "concurrently"
to be more accurate).

If you use echo_blocking_sleep in the previous example instead, then you'll get the same output, but
with 3 sec total response time, because "blocking sleep" blocks the whole Nginx worker process.

Locations can also take an optional querystring argument, for instance

location /main {
 echo_location_async /sub 'foo=Foo&bar=Bar';
}
location /sub {
 echo $arg_foo $arg_bar;
}

Accessing /main yields

 $ curl 'http://localhost/main'
 Foo Bar

Querystrings is not allowed to be concatenated onto the location argument with "?" directly, for
example, /sub?foo=Foo&bar=Bar is an invalid location, and shouldn't be fed as the first argument to
this directive.

Technically speaking, this directive is an example that Nginx content handler issues one or more
subrequests directly. AFAIK, the fancyindex module also does such kind of things ;)

Nginx named locations like @foo is not supported here.

This directive is logically equivalent to the GET version of echo_subrequest_async. For example,

 echo_location_async /foo 'bar=Bar';

is logically equivalent to

 echo_subrequest_async GET /foo -q 'bar=Bar';

But calling this directive is slightly faster than calling echo_subrequest_async using GET because we
don't have to parse the HTTP method names like GET and options like -q .

There is a known issue with this directive when disabling the standard standard SSI module. See
Known Issues for more details.

This directive is first introduced in version 0.09 of this module and requires at least Nginx 0.7.46.

Back to TOC

syntax: echo_location <location> [<url_args>]

default: no

context: location, location if

echo_location

https://connectical.com/projects/ngx-fancyindex/wiki
http://nginx.org/en/docs/http/ngx_http_ssi_module.html

9/7/2014 openresty/echo-nginx-module

https://github.com/openresty/echo-nginx-module 15/31

phase: content

Just like the echo_location_async directive, but echo_location issues subrequests in series rather
than in parallel. That is, the content handler directives following this directive won't be executed until
the subrequest issued by this directive completes.

The final response body is almost always equivalent to the case when echo_location_async is used
instead, only if timing variables is used in the outputs.

Consider the following example:

location /main {
 echo_reset_timer;
 echo_location /sub1;
 echo_location /sub2;
 echo "took $echo_timer_elapsed sec for total.";
}
location /sub1 {
 echo_sleep 2;
 echo hello;
}
location /sub2 {
 echo_sleep 1;
 echo world;
}

The location /main above will take for total 3 sec to complete (compared to 2 sec if
echo_location_async is used instead here). Here's the result in action on my machine:

 $ curl 'http://localhost/main'
 hello
 world
 took 3.003 sec for total.

 real 0m3.027s
 user 0m0.020s
 sys 0m0.004s

This directive is logically equivalent to the GET version of echo_subrequest. For example,

 echo_location /foo 'bar=Bar';

is logically equivalent to

 echo_subrequest GET /foo -q 'bar=Bar';

But calling this directive is slightly faster than calling echo_subrequest using GET because we don't
have to parse the HTTP method names like GET and options like -q .

Behind the scene, it creates an ngx_http_post_subrequest_t object as a continuation and passes it
into the ngx_http_subrequest function call. Nginx will later reopen this "continuation" in the
subrequest's ngx_http_finalize_request function call. We resumes the execution of the parent-
request's content handler and starts to run the next directive (command) if any.

Nginx named locations like @foo is not supported here.

This directive was first introduced in the release v0.12.

See also echo_location_async for more details about the meaning of the arguments.

9/7/2014 openresty/echo-nginx-module

https://github.com/openresty/echo-nginx-module 16/31

Back to TOC

syntax: echo_subrequest_async <HTTP_method> <location> [-q <url_args>] [-b <request_body>] [-f
<request_body_path>]

default: no

context: location, location if

phase: content

Initiate an asynchronous subrequest using HTTP method, an optional url arguments (or querystring)
and an optional request body which can be defined as a string or as a path to a file which contains
the body.

This directive is very much like a generalized version of the echo_location_async directive.

Here's a small example demonstrating its usage:

location /multi {
 # body defined as string
 echo_subrequest_async POST '/sub' -q 'foo=Foo' -b 'hi';
 # body defined as path to a file, relative to nginx prefix path if not absolute
 echo_subrequest_async PUT '/sub' -q 'bar=Bar' -f '/tmp/hello.txt';
}
location /sub {
 echo "querystring: $query_string";
 echo "method: $echo_request_method";
 echo "body: $echo_request_body";
 echo "content length: $http_content_length";
 echo '///';
}

Then on the client side:

 $ echo -n hello > /tmp/hello.txt
 $ curl 'http://localhost/multi'
 querystring: foo=Foo
 method: POST
 body: hi
 content length: 2
 ///
 querystring: bar=Bar
 method: PUT
 body: hello
 content length: 5
 ///

Here's more funny example using the standard proxy module to handle the subrequest:

location /main {
 echo_subrequest_async POST /sub -b 'hello, world';
}
location /sub {
 proxy_pass $scheme://127.0.0.1:$server_port/proxied;
}
location /proxied {
 echo "method: $echo_request_method.";

echo_subrequest_async

9/7/2014 openresty/echo-nginx-module

https://github.com/openresty/echo-nginx-module 17/31

 # we need to read body explicitly here...or $echo_request_body
 # will evaluate to empty ("")
 echo_read_request_body;

 echo "body: $echo_request_body.";
}

Then on the client side, we can see that

 $ curl 'http://localhost/main'
 method: POST.
 body: hello, world.

Nginx named locations like @foo is not supported here.

This directive takes several options:

-q <url_args> Specify the URL arguments (or URL querystring) for the subrequest.

-f <path> Specify the path for the file whose content will be serve as the
 subrequest's request body.

-b <data> Specify the request body data

This directive was first introduced in the release v0.15.

The -f option to define a file path for the body was introduced in the release v0.35.

See also the echo_subrequest and echo_location_async directives.

There is a known issue with this directive when disabling the standard standard SSI module. See
Known Issues for more details.

Back to TOC

syntax: echo_subrequest <HTTP_method> <location> [-q <url_args>] [-b <request_body>] [-f
<request_body_path>]

default: no

context: location, location if

phase: content

This is the synchronous version of the echo_subrequest_async directive. And just like echo_location,
it does not block the Nginx worker process (while echo_blocking_sleep does), rather, it uses
continuation to pass control along the subrequest chain.

See echo_subrequest_async for more details.

Nginx named locations like @foo is not supported here.

This directive was first introduced in the release v0.15.

Back to TOC

echo_subrequest

http://nginx.org/en/docs/http/ngx_http_ssi_module.html

9/7/2014 openresty/echo-nginx-module

https://github.com/openresty/echo-nginx-module 18/31

syntax: echo_foreach_split <delimiter> <string>

default: no

context: location, location if

phase: content

Split the second argument string using the delimiter specified in the first argument, and then iterate
through the resulting items. For instance:

 location /loop {
 echo_foreach_split ',' $arg_list;
 echo "item: $echo_it";
 echo_end;
 }

Accessing /main yields

 $ curl 'http://localhost/loop?list=cat,dog,mouse'
 item: cat
 item: dog
 item: mouse

As seen in the previous example, this directive should always be accompanied by an echo_end
directive.

Parallel echo_foreach_split loops are allowed, but nested ones are currently forbidden.

The delimiter argument could contain multiple arbitrary characters, like

 # this outputs "cat\ndog\nmouse\n"
 echo_foreach_split -- '-a-' 'cat-a-dog-a-mouse';
 echo $echo_it;
 echo_end;

Logically speaking, this looping structure is just the foreach loop combined with a split function
call in Perl (using the previous example):

 foreach (split ',', $arg_list) {
 print "item $_\n";
 }

People will also find it useful in merging multiple .js or .css resources into a whole. Here's an
example:

 location /merge {
 default_type 'text/javascript';

 echo_foreach_split '&' $query_string;
 echo "/* JS File $echo_it */";
 echo_location_async $echo_it;
 echo;
 echo_end;
 }

echo_foreach_split

9/7/2014 openresty/echo-nginx-module

https://github.com/openresty/echo-nginx-module 19/31

Then accessing /merge to merge the .js resources specified in the query string:

 $ curl 'http://localhost/merge?/foo/bar.js&/yui/blah.js&/baz.js'

One can also use third-party Nginx cache module to cache the merged response generated by the
 /merge location in the previous example.

This directive was first introduced in the release v0.17.

Back to TOC

syntax: echo_end

default: no

context: location, location if

phase: content

This directive is used to terminate the body of looping and conditional control structures like
echo_foreach_split.

This directive was first introduced in the release v0.17.

Back to TOC

syntax: echo_request_body

default: no

context: location, location if

phase: content

Outputs the contents of the request body previous read.

Behind the scene, it's implemented roughly like this:

 if (r->request_body && r->request_body->bufs) {
 return ngx_http_output_filter(r, r->request_body->bufs);
 }

Unlike the $echo_request_body and $request_body variables, this directive will show the whole
request body even if some parts or all parts of it are saved in temporary files on the disk.

It is a "no-op" if no request body has been read yet.

This directive was first introduced in the release v0.18.

See also echo_read_request_body and the chunkin module.

Back to TOC

echo_end

echo_request_body

http://github.com/agentzh/chunkin-nginx-module

9/7/2014 openresty/echo-nginx-module

https://github.com/openresty/echo-nginx-module 20/31

syntax: echo_exec <location> [<query_string>]

syntax: echo_exec <named_location>

default: no

context: location, location if

phase: content

Does an internal redirect to the location specified. An optional query string can be specified for
normal locations, as in

 location /foo {
 echo_exec /bar weight=5;
 }
 location /bar {
 echo $arg_weight;
 }

Or equivalently

 location /foo {
 echo_exec /bar?weight=5;
 }
 location /bar {
 echo $arg_weight;
 }

Named locations are also supported. Here's an example:

 location /foo {
 echo_exec @bar;
 }
 location @bar {
 # you'll get /foo rather than @bar
 # due to a potential bug in nginx.
 echo $echo_request_uri;
 }

But query string (if any) will always be ignored for named location redirects due to a limitation in the
 ngx_http_named_location function.

Never try to echo things before the echo_exec directive or you won't see the proper response of the
location you want to redirect to. Because any echoing will cause the original location handler to send
HTTP headers before the redirection happens.

Technically speaking, this directive exposes the Nginx internal API functions
 ngx_http_internal_redirect and ngx_http_named_location .

This directive was first introduced in the v0.21 release.

Back to TOC

echo_exec

echo_status

9/7/2014 openresty/echo-nginx-module

https://github.com/openresty/echo-nginx-module 21/31

syntax: echo_status <status-num>

default: echo_status 200

context: location, location if

phase: content

Specify the default response status code. Default to 200 . This directive is declarative and the relative
order with other echo-like directives is not important.

Here is an example,

location = /bad {
 echo_status 404;
 echo "Something is missing...";
}

then we get a response like this:

HTTP/1.1 404 Not Found
Server: nginx/1.2.1
Date: Sun, 24 Jun 2012 03:58:18 GMT
Content-Type: text/plain
Transfer-Encoding: chunked
Connection: keep-alive

Something is missing...

This directive was first introduced in the v0.40 release.

Back to TOC

Use of the following directives trigger the filter registration of this module. By default, no filter will be
registered by this module.

Every filter directive supports variable interpolation in its arguments (if any).

Back to TOC

syntax: echo_before_body [options] [argument]...

default: no

context: location, location if

phase: output filter

It's the filter version of the echo directive, and prepends its output to the beginning of the original
outputs generated by the underlying content handler.

An example is

Filter Directives

echo_before_body

9/7/2014 openresty/echo-nginx-module

https://github.com/openresty/echo-nginx-module 22/31

location /echo {
 echo_before_body hello;
 proxy_pass $scheme://127.0.0.1:$server_port$request_uri/more;
}
location /echo/more {
 echo world
}

Accessing /echo from the client side yields

 hello
 world

In the previous sample, we borrow the standard proxy module to serve as the underlying content
handler that generates the "main contents".

Multiple instances of this filter directive are also allowed, as in:

location /echo {
 echo_before_body hello;
 echo_before_body world;
 echo !;
}

On the client side, the output is like

 $ curl 'http://localhost/echo'
 hello
 world
 !

In this example, we also use the content handler directives provided by this module as the underlying
content handler.

This directive also supports the -n and -- options like the echo directive.

This directive can be mixed with its brother directive echo_after_body.

Back to TOC

syntax: echo_after_body [argument]...

default: no

context: location, location if

phase: output filter

It's very much like the echo_before_body directive, but appends its output to the end of the original
outputs generated by the underlying content handler.

Here's a simple example:

location /echo {
 echo_after_body hello;

echo_after_body

http://nginx.org/en/docs/http/ngx_http_proxy_module.html

9/7/2014 openresty/echo-nginx-module

https://github.com/openresty/echo-nginx-module 23/31

 proxy_pass http://127.0.0.1:$server_port$request_uri/more;
}
location /echo/more {
 echo world
}

Accessing /echo from the client side yields

 world
 hello

Multiple instances are allowed, as in:

location /echo {
 echo_after_body hello;
 echo_after_body world;
 echo i;
 echo say;
}

The output on the client side while accessing the /echo location looks like

 i
 say
 hello
 world

This directive also supports the -n and -- options like the echo directive.

This directive can be mixed with its brother directive echo_before_body.

Back to TOC

Back to TOC

This is a "topic variable" used by echo_foreach_split, just like the $_ variable in Perl.

Back to TOC

This variable holds the seconds elapsed since the start of the current request (might be a subrequest
though) or the last invocation of the echo_reset_timer command.

The timing result takes three digits after the decimal point.

References of this variable will force the underlying Nginx timer to update to the current system time,
regardless the timer resolution settings elsewhere in the config file, just like the echo_reset_timer
directive.

Back to TOC

Variables

$echo_it

$echo_timer_elapsed

9/7/2014 openresty/echo-nginx-module

https://github.com/openresty/echo-nginx-module 24/31

Evaluates to the current (sub)request's request body previously read if no part of the body has been
saved to a temporary file. To always show the request body even if it's very large, use the
echo_request_body directive.

Back to TOC

Evaluates to the HTTP request method of the current request (it can be a subrequest).

Behind the scene, it just takes the string data stored in r->method_name .

Compare it to the $echo_client_request_method variable.

At least for Nginx 0.8.20 and older, the $request_method variable provided by the http core module is
actually doing what our $echo_client_request_method is doing.

This variable was first introduced in our v0.15 release.

Back to TOC

Always evaluates to the main request's HTTP method even if the current request is a subrequest.

Behind the scene, it just takes the string data stored in r->main->method_name .

Compare it to the $echo_request_method variable.

This variable was first introduced in our v0.15 release.

Back to TOC

Evaluates to the original client request's headers.

Just as the name suggests, it will always take the main request (or the client request) even if it's
currently executed in a subrequest.

A simple example is below:

 location /echoback {
 echo "headers are:"
 echo $echo_client_request_headers;
 }

Accessing /echoback yields

 $ curl 'http://localhost/echoback'
 headers are
 GET /echoback HTTP/1.1
 User-Agent: curl/7.18.2 (i486-pc-linux-gnu) libcurl/7.18.2 OpenSSL/0.9.8g
 Host: localhost:1984
 Accept: */*

$echo_request_body

$echo_request_method

$echo_client_request_method

$echo_client_request_headers

http://nginx.org/en/docs/http/ngx_http_core_module.html#var_request_method
http://nginx.org/en/docs/http/ngx_http_core_module.html

9/7/2014 openresty/echo-nginx-module

https://github.com/openresty/echo-nginx-module 25/31

Behind the scene, it recovers r->main->header_in (or the large header buffers, if any) on the C level
and does not construct the headers itself by traversing parsed results in the request object.

This variable was first introduced in version 0.15.

Back to TOC

Evaluates to the parsed form of the URI (usually led by /) of the current (sub-)request. Unlike the
$echo_request_uri variable, it is cacheable.

See $echo_request_uri for more details.

This variable was first introduced in version 0.17.

Back to TOC

Evaluates to the parsed form of the URI (usually led by /) of the current (sub-)request. Unlike the
$echo_cacheable_request_uri variable, it is not cacheable.

This is quite different from the $request_uri variable exported by the ngx_http_core_module, because
 $request_uri is the unparsed form of the current request's URI.

This variable was first introduced in version 0.17.

Back to TOC

It is a counter that always generate the current counting number, starting from 1. The counter is
always associated with the main request even if it is accessed within a subrequest.

Consider the following example

location /main {
 echo "main pre: $echo_incr";
 echo_location_async /sub;
 echo_location_async /sub;
 echo "main post: $echo_incr";
}
location /sub {
 echo "sub: $echo_incr";
}

Accessing /main yields

main pre: 1
sub: 3
sub: 4
main post: 2

This directive was first introduced in the v0.18 release.

$echo_cacheable_request_uri

$echo_request_uri

$echo_incr

http://nginx.org/en/docs/http/ngx_http_core_module.html#var_request_uri
http://nginx.org/en/docs/http/ngx_http_core_module.html

9/7/2014 openresty/echo-nginx-module

https://github.com/openresty/echo-nginx-module 26/31

Back to TOC

Evaluates to the status code of the current (sub)request, null if not any.

Behind the scene, it's just the textual representation of r->headers_out->status .

This directive was first introduced in the v0.23 release.

Back to TOC

You're recommended to install this module (as well as the Nginx core and many other goodies) via
the ngx_openresty bundle. See the detailed instructions for downloading and installing ngx_openresty
into your system. This is the easiest and most safe way to set things up.

Alternatively, you can install this module manually with the Nginx source:

Grab the nginx source code from nginx.org, for example, the version 1.7.4 (see nginx compatibility),
and then build the source with this module:

$ wget 'http://nginx.org/download/nginx-1.7.4.tar.gz'
$ tar -xzvf nginx-1.7.4.tar.gz
$ cd nginx-1.7.4/

Here we assume you would install you nginx under /opt/nginx/.
$./configure --prefix=/opt/nginx \
 --add-module=/path/to/echo-nginx-module

$ make -j2
$ make install

Download the latest version of the release tarball of this module from echo-nginx-module file list.

Also, this module is included and enabled by default in the ngx_openresty bundle.

Back to TOC

The following versions of Nginx should work with this module:

1.7.x (last tested: 1.7.4)
1.6.x
1.5.x (last tested: 1.5.12)
1.4.x (last tested: 1.4.4)
1.3.x (last tested: 1.3.7)
1.2.x (last tested: 1.2.9)
1.1.x (last tested: 1.1.5)
1.0.x (last tested: 1.0.11)
0.9.x (last tested: 0.9.4)
0.8.x (last tested: 0.8.54)

$echo_response_status

Installation

Compatibility

http://openresty.org/
http://openresty.org/#Installation
http://nginx.org/
https://github.com/agentzh/echo-nginx-module/tags
http://openresty.org/

9/7/2014 openresty/echo-nginx-module

https://github.com/openresty/echo-nginx-module 27/31

0.7.x >= 0.7.21 (last tested: 0.7.68)

In particular,

the directive echo_location_async and its brother echo_subrequest_async do not work with 0.7.x
< 0.7.46.
the echo_after_body directive does not work at all with nginx < 0.8.7.
the echo_sleep directive cannot be used after echo_location or echo_subrequest for nginx <
0.8.11.

Earlier versions of Nginx like 0.6.x and 0.5.x will not work at all.

If you find that any particular version of Nginx above 0.7.21 does not work with this module, please
consider reporting a bug.

Back to TOC

Due to an unknown bug in Nginx (it still exists in Nginx 1.7.4), the standard SSI module is required to
ensure that the contents of the subrequests issued by echo_locatoin_async and
echo_subrequest_async are correctly merged into the output chains of the main one. Fortunately, the
SSI module is enabled by default during Nginx's configure process.

If calling this directive without SSI module enabled, you'll get truncated response without contents of
any subrequests and get an alert message in your Nginx's error.log , like this:

 [alert] 24212#0: *1 the http output chain is empty, client: 127.0.0.1, ...

Back to TOC

The following modules take advantage of this echo module in their test suite:

The memc module that supports almost the whole memcached TCP protocol.
The chunkin module that adds HTTP 1.1 chunked input support to Nginx.
The headers_more module that allows you to add, set, and clear input and output headers under
the conditions that you specify.
The echo module itself.

Please mail me other modules that use echo in any form and I'll add them to the list above :)

Back to TOC

Back to TOC

The openresty-en mailing list is for English speakers.

Known Issues

Modules that use this module for testing

Community

English Mailing List

http://nginx.org/en/docs/http/ngx_http_ssi_module.html
http://github.com/openresty/memc-nginx-module
http://github.com/agentzh/chunkin-nginx-module
http://github.com/openresty/headers-more-nginx-module
https://groups.google.com/group/openresty-en

9/7/2014 openresty/echo-nginx-module

https://github.com/openresty/echo-nginx-module 28/31

Back to TOC

The openresty mailing list is for Chinese speakers.

Back to TOC

Although a lot of effort has been put into testing and code tuning, there must be some serious bugs
lurking somewhere in this module. So whenever you are bitten by any quirks, please don't hesitate to

1. create a ticket on the issue tracking interface provided by GitHub,
2. or send a bug report, questions, or even patches to the OpenResty Community.

Back to TOC

Available on github at agentzh/echo-nginx-module.

Back to TOC

The changes of every release of this module can be obtained from the ngx_openresty bundle's
change logs:

http://openresty.org/#Changes

Back to TOC

This module comes with a Perl-driven test suite. The test cases are declarative too. Thanks to the
Test::Nginx module in the Perl world.

To run it on your side:

$ PATH=/path/to/your/nginx-with-echo-module:$PATH prove -r t

You need to terminate any Nginx processes before running the test suite if you have changed the
Nginx server binary.

Because a single nginx server (by default, localhost:1984) is used across all the test scripts (.t
files), it's meaningless to run the test suite in parallel by specifying -jN when invoking the prove
utility.

Some parts of the test suite requires standard modules proxy, rewrite and SSI to be enabled as well
when building Nginx.

Chinese Mailing List

Report Bugs

Source Repository

Changes

Test Suite

https://groups.google.com/group/openresty
https://github.com/agentzh/echo-nginx-module/issues
https://github.com/agentzh/echo-nginx-module
http://openresty.org/#Changes
https://github.com/agentzh/echo-nginx-module/tree/master/t/
https://github.com/agentzh/echo-nginx-module/blob/master/t/echo.t
http://search.cpan.org/perldoc?Test::Nginx
http://nginx.org/en/docs/http/ngx_http_proxy_module.html
http://nginx.org/en/docs/http/ngx_http_rewrite_module.html
http://nginx.org/en/docs/http/ngx_http_ssi_module.html

9/7/2014 openresty/echo-nginx-module

https://github.com/openresty/echo-nginx-module 29/31

Back to TOC

Fix the echo_after_body directive in subrequests.
Add directives echo_read_client_request_body and echo_request_headers.
Add new directive echo_log to use Nginx's logging facility directly from the config file and
specific loglevel can be specified, as in

 echo_log debug "I am being called.";

Add support for options -h and -t to echo_subrequest_async and echo_subrequest. For
example

 echo_subrequest POST /sub -q 'foo=Foo&bar=Bar' -b 'hello' -t 'text/plan' -h 'X-My-Header: blah blah'

Add options to control whether a subrequest should inherit cached variables from its parent
request (i.e. the current request that is calling the subrequest in question). Currently none of the
subrequests issued by this module inherit the cached variables from the parent request.
Add new variable $echo_active_subrequests to show r->main->count - 1 .
Add the echo_file and echo_cached_file directives.
Add new varaible $echo_request_headers to accompany the existing
$echo_client_request_headers variable.
Add new directive echo_foreach, as in

 echo_foreach 'cat' 'dog' 'mouse';
 echo_location_async "/animals/$echo_it";
 echo_end;

Add new directive echo_foreach_range, as in

 echo_foreach_range '[1..100]' '[a-zA-z0-9]';
 echo_location_async "/item/$echo_it";
 echo_end;

Add new directive echo_repeat, as in

 echo_repeat 10 $i {
 echo "Page $i";
 echo_location "/path/to/page/$i";
 }

This is just another way of saying

 echo_foreach_range $i [1..10];
 echo "Page $i";
 echo_location "/path/to/page/$i";
 echo_end;

Thanks Marcus Clyne for providing this idea.

Add new variable $echo_random which always returns a random non-negative integer with the

TODO

9/7/2014 openresty/echo-nginx-module

https://github.com/openresty/echo-nginx-module 30/31

lower/upper limit specified by the new directives echo_random_min and echo_random_max . For
example,

 echo_random_min 10
 echo_random_max 200
 echo "random number: $echo_random";

Thanks Marcus Clyne for providing this idea.

Back to TOC

You'll be very welcomed to submit patches to the author or just ask for a commit bit to the source
repository on GitHub.

Back to TOC

Yichun "agentzh" Zhang (章亦春) <agentzh@gmail.com>, CloudFlare Inc.

This wiki page is also maintained by the author himself, and everybody is encouraged to improve this
page as well.

Back to TOC

Copyright (c) 2009-2014, Yichun "agentzh" Zhang (章亦春) agentzh@gmail.com, CloudFlare Inc.

This module is licensed under the terms of the BSD license.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Getting involved

Author

Copyright & License

mailto:agentzh@gmail.com
mailto:agentzh@gmail.com

9/7/2014 openresty/echo-nginx-module

https://github.com/openresty/echo-nginx-module 31/31

Back to TOC

The original blog post about this module's initial development.
The standard addition filter module.
The standard proxy module.
The ngx_openresty bundle.

See Also

Status API Training Shop Blog About© 2014 GitHub, Inc. Terms Privacy Security Contact 

http://agentzh.blogspot.com/2009/10/hacking-on-nginx-echo-module.html
http://nginx.org/en/docs/http/ngx_http_addition_module.html
http://nginx.org/en/docs/http/ngx_http_proxy_module.html
http://openresty.org/
https://status.github.com/
http://developer.github.com/
http://training.github.com/
http://shop.github.com/
https://github.com/blog
https://github.com/about
https://github.com/site/terms
https://github.com/site/privacy
https://github.com/security
https://github.com/contact

