
A How to Guide on Modern Monitoring and
Alerting
Sep 2, 2014 Posted By Wernli In Blogs, DevOps Toolbox, Features Tagged Collectd-Notifications, Elasticsearch, Riemann, Syslog-Ng

Comments 0

syslog-ng, riemann, collectd-notifications,
elasticsearch: putting it all together
Context
At our organization (ccin2p3) we are building an event-based infrastructure to push structured
messages to different subsystems for alerting, reporting and storage. Using syslog-ng, each
message is normalized into a structured event, optionally correlated with other messages, and
conditionally routed to the next systems, including:

a synchronous web-dashboard,
different asynchronous alerting systems, and
a searchable storage backend.

SITE MENU

http://devops.com/author/wernli/
http://cc.in2p3.fr/
http://devops.com/category/features/
http://devops.com/tag/collectd-notifications/
http://devops.com/tag/syslog-ng/
http://devops.com/features/guide-modern-monitoring-alerting/
http://devops.com/
http://devops.com/tag/elasticsearch/
http://devops.com/category/blogs/
http://devops.com/category/blogs/devops-toolbox/
http://devops.com/tag/riemann/
http://devops.com/wp-content/uploads/2014/08/hereshow.jpg

The events which are collected are essentially system and application logs. Here’s a few examples
of interesting messages:

puppet-agent[16528]: Finished catalog run in 44.06 seconds
kernel: Killed process 29959, UID 42046, (hadd) total-vm:202363492kB, anon-rss:130698
60kB, file-rss:60kB
ata2.00: exception Emask 0x0 SAct 0xffff SErr 0x0 action 0x0
EXT3-fs error (device dm-1): ext3_journal_start_sb: Detected aborted journal

The unified nature of this pipeline makes it possible for a human to easily identify an event in all
the available back- and frontends.

In this post you’ll learn a way to implement this model, and achieve the following:

Collect system metrics
Monitor events for outliers
Normalize and Correlate these events
Route the events to a real-time stream processor and to a searchable storage backend

We’ll describe the configuration files you’ll have to change, and explain the workflow that
processes an event. For the impatient, we’ll illustrate the final result in a short recorded demo.

Demo

Requirements
We will assume you have basic knowledge of the following tools, as well as a running instance of

http://www.youtube.com/watch?v=iVoTPD8HKkw&vq=hd720

We will assume you have basic knowledge of the following tools, as well as a running instance of
each:

syslog-ng Open Source Edition >= 3.5
syslog-ng-incubator >= 0.2.1
riemann >= 0.2.5
collectd >= 5.1
elasticsearch >= 0.90

The tools
Here’s a list of all the tools we’ll be using, along with a short summary, and their main functions in
the pipeline:

On the client:

collectd: “a daemon that receives system statistics and makes them available in a number of ways”
periodically poll system metrics
trigger notifications based on predefined thresholds

(any)syslog: “system error logging protocol”
listen for syslog messages, including collectd notifications
forward them to a remote destination

On the server(s):

syslog-ng: “a flexible and highly scalable system logging application”
listen for remote notification messages
patterndb: create structured events by parsing the flat collectd notification messages
route the events to the next stages (riemann, Elasticsearch, Nagios, Email, …)

riemann: “aggregates events from your servers and applications with a powerful stream processing
language”

listen for remote structured messages (protocol-buffers)
expose a websocket and/or sse service for subscriptions
send asynchronous alerts to the next stages (e.g. Nagios or Email)

riemann-dash: “a javascript, websockets-powered dashboard for Riemann”
synchronous realtime in-browser display
web application to subscribe to collectd streams using websockets or sse

elasticsearch: “a flexible and powerful open source, distributed, real-time search and analytics engine”
store and index all events
expose an API for query e.g. by Kibana
“You know, for search!“

kibana: “Elasticsearch’s data visualization engine for the browser”
browser-based search interface to query elasticsearch

Architecture
To make things crystal-clear, we’ll choose an example: let’s track filesystem’s usage. The
collectd-df plugin collects this information. Here’s a diagram depicting the dataflow: you can

follow how an event is evolving from a user perspective on the left column, as it travels the

https://github.com/balabit/syslog-ng-incubator
http://riemann.io/
http://collectd.org/
http://syslog-ng.org/
http://elasticsearch.org/

follow how an event is evolving from a user perspective on the left column, as it travels the
pipeline (right column):

And the details:

1. collectd-df plugin polls the filesystem utilization:
df-tmp/percent_bytes-free is 1.9

2. collectd-threshold plugin issues a notification as the failure threshold is reached: Notification:
severity = FAILURE, host = foo, plugin = df, plugin_instance = tmp, type =
df_complex, type_instance = free, message = Host foo, plugin df (instance tmp) type
df_complex (instance free): Data source "value" is currently 1.9. That is below the
failure threshold of 2.0

3. collectd-network plugin receives this notification and sends it over to the local syslog server
4. the local syslog server forwards the flat message to a remote destination
5. the remote syslog-ng server receives the message and parses it using patterndb
6. the patterndb extracts relevant values and creates a hash table (name-value pairs):

program: collectd
host: foo
tags: syslog, collectd
collectd.plugin: df
collectd.plugin_instance: tmp
collectd.type: percent_bytes
collectd.type_instance: free
collectd.thresh_type: the thresh type (above/ below)
collectd.thresh_value: the failure thresh: 2
collectd.metric: the value of the current reading: 1.9

This structured event is then routed to syslog-ng destinations, in our case riemann and elasticsearch.
Both of these applications can then be used to query the event in a comprehensive manner, for
example, “show me all collectd notifications concerning the plugin df and the instance tmp“

Configuration
Here you can find configuration snippets for the relevant sections of each tool.
You can find the complete configuration at the end of this post.

collectd

The following part ensures that /tmp is being polled, and that the disk utilization is reported as a
percentage:

<LoadPlugin df>
 Interval 10
</LoadPlugin>
<Plugin df>

 MountPoint "/tmp"
 IgnoreSelected false
 ValuesPercentage true
</Plugin>

The next section triggers notifications when the free space of all monitored filesystems goes
below 5 and 2 percent, for warning and critical severities, respectively:

LoadPlugin threshold
<Plugin threshold>
 <Type "percent_bytes">
 Instance free
 WarningMin 5
 FailureMin 2
 </Type>
</Plugin>

Last but not least, this snippet makes sure the syslog plugin receives all notifications and sends
them over to the local syslog implementation:

LoadPlugin syslog
<Plugin syslog>
 LogLevel info
 NotifyLevel OKAY
</Plugin>

local (any)syslog

This step can be skipped in case you run the log analyzer on the local system.
If you want to forward the local syslog messages to a remote analyzer, this is how to do it. Most
systems will ship with some kind of syslog daemon, most likely the original syslog or rsyslog. As
your mileage may vary, we’ll present two examples: using the legacy syslog configuration file
format (for example, using rsyslog), or syslog-ng.

(r)syslog

. @loghost.mydomain.gtld

syslog-ng

source s_local { ... }
destination d_remote {
 network("syslog-ng.mydomain.gtld"
 transport(udp)

 transport(udp)
 port(514)
 flags(syslog-protocol)
);
};
log { source(s_local) destination(d_remote) }

remote syslog-ng

Here we present the configuration snippets on the remote syslog-ng server, that will make sure our
collectd notifications are parsed and structured correctly.
We’ll give some more details here, as it’s both the most important part of our setup, and also the
most complex.

Network source

This syslog-ng.conf section will make sure the remote events are being collected (assuming that
your clients send the logs via UDP):

source s_remote {
 network(transport(udp) port(514) flags(syslog-protocol));
};

Patterndb

This defines a patterndb parser in syslog-ng.conf:

parser p_patterndb {
 db_parser(file("/var/lib/syslog-ng/patterndb.xml"))
};

The parser itself is controlled by patterndb.xml which contains the rules that match the collectd
notification events:

<patterndb version='4' pub_date='2013-08-19'>
 <ruleset name='collectd_ruleset' id='ee3bf7e1-4889-4bb0-ae73-8c2ceea629ff'>
 <patterns>
 <pattern>collectd</pattern>
 </patterns>
 <rules>
 <rule provider="syslog-ng-superfan" id='16c80b55-5401-45c7-88ff-06c0dec034ef'
 class='application'
 context-id="collectd-$(sha1 --length 12 ${collectd.hostname} ${collectd.p
lugin} ${collectd.plugin_instance} ${collectd.type} ${collectd.type_instance})"
 context-scope="global">

 context-scope="global">
 <patterns>
 <pattern>Notification: severity = @ESTRING:collectd.severity:,@ host = @HOS
TNAME:collectd.hostname@, plugin = @ESTRING:collectd.plugin:,@ plugin_instance = @EST
RING:collectd.plugin_instance:,@ type = @ESTRING:collectd.type:,@ type_instance = @ES
TRING:collectd.type_instance:,@ message = @ESTRING:::@ Data source @QSTRING:collectd.
ds:"@ is currently @FLOAT:collectd.metric@. That is @ESTRING:collectd.thresh_type: @t
he @ESTRING:: @threshold of @FLOAT:collectd.thresh_value@.</pattern>
 <pattern>Notification: severity = @ESTRING:collectd.severity:,@ host = @HOS
TNAME:collectd.hostname@, plugin = @ESTRING:collectd.plugin:,@ type = @ESTRING:collec
td.type:,@ type_instance = @ESTRING:collectd.type_instance:,@ message = @ESTRING:::@
Data source @QSTRING:collectd.ds:"@ is currently @FLOAT:collectd.metric@. That is @ES
TRING:collectd.thresh_type: @the @ESTRING:: @threshold of @FLOAT:collectd.thresh_valu
e@.</pattern>
 <pattern>Notification: severity = @ESTRING:collectd.severity:,@ host = @HOS
TNAME:collectd.hostname@, plugin = @ESTRING:collectd.plugin:,@ plugin_instance = @EST
RING:collectd.plugin_instance:,@ type = @ESTRING:collectd.type:,@ message = @ESTRING:
::@ Data source @QSTRING:collectd.ds:"@ is currently @FLOAT:collectd.metric@. That is
 @ESTRING:collectd.thresh_type: @the @ESTRING:: @threshold of @FLOAT:collectd.thresh_
value@.</pattern>
 <pattern>Notification: severity = @ESTRING:collectd.severity:,@ host = @HOS
TNAME:collectd.hostname@, plugin = @ESTRING:collectd.plugin:,@ type = @ESTRING:collec
td.type:,@ message = @ESTRING:::@ Data source @QSTRING:collectd.ds:"@ is currently @F
LOAT:collectd.metric@. That is @ESTRING:collectd.thresh_type: @the @ESTRING:: @thresh
old of @FLOAT:collectd.thresh_value@.</pattern>
 </patterns>
 <tags>
 <tag>syslog</tag>
 <tag>collectd</tag>
 </tags>
 </rule>
 </rules>
 </ruleset>
</patterndb>

While this may seem a bit complex, it’s mainly due to the XML overhead. If you are using puppet to
manage your configuration, you could use the ccin2p3-patterndb module which will generate it for
you. Some notes on this ruleset:

The context-id makes sure all events related to the same collectd metric will end up in the same
correlation context, for example, for comprehensive lookup later in Elasticsearch.
The context-scope is set to global, which means all events will be in the same correlation
context regardless of the host sending the notification. This is useful as many different hosts might
send identical events: the collectd client itself, the remote collectd aggregator, etc.
There are four very similar patterns, because collectd emits slightly different messages depending on

https://github.com/ccin2p3/puppet-patterndb

the plugin, as plugin-instance and type-instance are optional.
All messages matching the rule will get enriched with the tags syslog and collectd, which will
be used later for routing.
This ruleset covers the WARNING and FAILURE collectd notifications. There is the equivalent for OKAY
notifications in the config tarball at the end of this post.

Riemann destination

The following syslog-ng.conf section reformats the data for the riemann server.

destination d_riemann {
 riemann(
 server("riemann.mydomain.gtld")
 port(5555)
 type("udp")
 ttl("300")
 metric("${collectd.metric}")
 description("$MESSAGE")
 host("${collectd.hostname}")
 state("$(if ("${collectd.severity}" == "FAILURE") "critical" $(if ("${collect
d.severity}" == "WARNING") "warning" "ok"))")
 tags("syslog", "collectd")
 service("${collectd.plugin}$(if ("${collectd.plugin_instance}" == "") "" "-${
collectd.plugin_instance}")/${collectd.type}$(if ("${collectd.type_instance}" == "")
"" "-${collectd.type_instance}")")
 attributes(
 pair("type", "${collectd.type}")
 pair("type_instance", "${collectd.type_instance}")
 pair("plugin", "${collectd.plugin}")
 pair("plugin_instance", "${collectd.plugin_instance}")
)
);
};

A few notes:

metric("${collectd.metric}") makes sure the current measurement of the collectd value in the
notification is the metric of the riemann event. The actual name of the variable comes from the
patterndb parser’s rule definition: @FLOAT:collectd.metric@
The riemann event’s state is generated according to the collectd notification severity field.
The collectd fully qualified plugin name is reconstructed and set as the riemann service (for example,
df-tmp/percent_bytes-free). This is useful if used together with the collectd-write_riemann

plugin, which uses the same service name.
The collectd plugin‘s details are added as riemann attributes
The full unstructured message is copied to the riemann event’s description field.

Elasticsearch destination

The following syslog-ng.conf snippet configures the Elasticsearch destination. This destination is
available in the syslog-ng-incubator package in the form of a lua script. Your mileage may vary: ours
does, as we are using a perl implementation instead (home grown module using
Search::Elasticsearch from cpan).

destination d_elasticsearch {
 elasticsearch(
 host("es_cluster.mydomain.gtld")
 port("9200")
 index("collectd-$YEAR.$MONTH.$DAY")
 type("collectd_notification")
);
};

Note that this will create daily indices in Elasticsearch.

Routing

Now that we have all the pieces of the puzzle, let’s connect them using syslog-ng log statements:

filter f_collectd_notifications {
 tags("collectd", "syslog")
};
log {
 source(s_remote);
 parser(p_patterndb);
 log {
 filter(f_collectd_notifications);
 destination(d_riemann);
 destination(d_elasticsearch);
 };
 log {
 destination(d_messages);
 };
};

The latter will send all messages tagged with syslog and collectd to riemann and elasticsearch.
Moreover, it will send all messages regardless of their tags to the destination d_messages. These
tags have been added using the patterndb. You can add as many log statements you want e.g. to
route only notifications with critical severities to Nagios using for instance a pipe destination which
would be consumed by a nsca script.

Conclusion
In this article we showed how to send collectd threshold notification messages to a central syslog-
ng server, and how to extract numeric metric information from it. We also showed how to route the
result to two backends, one of which can be used to view the data in real-time (riemann), and the
other to query historical data (elasticsearch). This system could be extended in multiple ways, for
instance:

by compiling a large patterndb to match multiple subsystem messages
by tagging important messages, and routing them to relevant destinations. For instance: “send all
hardware errors to nagios“
by using the correlation context information to generate alerts, excluding self-healing components:
“send an email if a filesystem is full and doesn’t come back to normal in less than 5 minutes”
by using the correlation context information to generate alerts upon reaching a threshold on the
number of messages: “run this command if the same scsi device is referenced in more than 100
messages every minute”
send metric data to graphite

Configuration files
tarball

Here’s a transcript from a shell session working on these configuration files:

#
installation
#

$ yum install collectd riemann elasticsearch syslog-ng syslog-ng-incubator lua-socket
[...]
Installed:
 elasticsearch.noarch 0:1.1.1-1 riemann.noarch 0:0.2.5-1 syslo
g-ng.x86_64 0:3.5.4.1-1.el6 syslog-ng-incubator.x86_64 0:0.3.1-0
 lua-socket.x86_64 0:2.0.2-4.el6

Dependency Installed:
 GeoIP.x86_64 0:1.4.8-1.el6 daemonize.x86_64 0:1.7.3-1.el6 eventlog.x86_
64 0:0.2.13-1.el6 ivykis.x86_64 0:0.36.2-1.el6 json-c.x86_64 0:0.10-2.el6
 libnet.x86_64 0:1.1.6-7.el6 riemann-c-client.x86_64 0:1.1.1-0

#
configuration
#

after copying the config to /tmp

https://www.balabit.com/support/documentation/pdf/syslog-ng-riemann-elasticsearch.tgz

$ cp /tmp/config/etc/elasticsearch/elasticsearch.yml /etc/elasticsearch/
$ cp /tmp/config/etc/riemann/riemann.config /etc/riemann/
$ cp -r /tmp/config/etc/syslog-ng /etc/
$ update-patterndb
$ cp -r /tmp/config/usr/share/syslog-ng/include/scl/elasticsearch /usr/share/syslog-n
g/include/scl/
$ cp /tmp/config/etc/collectd.conf /etc/

#
starting services
#

$ service rsyslog stop
$ service syslog-ng start
$ service elasticsearch start
$ service riemann start
$ service collectd restart

#
demo
#

$ dd if=/dev/zero of=/tmp/full bs=1M
dd: writing ̀/tmp/full': No space left on device
473+0 records in
472+0 records out
495230976 bytes (495 MB) copied, 98.726 s, 5.0 MB/s

$ grep Notification /var/log/messages
Jun 20 15:08:23 localhost.local collectd[2395]: Notification: severity = FAILURE, hos
t = localhost.local, plugin = df, plugin_instance = tmp, type = percent_bytes, type_i
nstance = free, message = Host localhost.local, plugin df (instance tmp) type percent
_bytes (instance free): Data source "value" is currently 0.000000. That is below the
failure threshold of 2.000000.

$ riemann-client query 'tagged "collectd"'
Event #0:
 time = 1403269707 - Fri Jun 20 15:08:27 2014
 state = critical
 service = df-tmp/percent_bytes-free
 host = localhost.local
 description = Notification: severity = FAILURE, host = localhost.local, plugin = df
, plugin_instance = tmp, type = percent_bytes, type_instance = free, message = Host l
ocalhost.local, plugin df (instance tmp) type percent_bytes (instance free): Data sou

rce "value" is currently 0.000000. That is below the failure threshold of 2.000000.
 ttl = 300.000000
 metric_sint64 = 0
 metric_d = 0.000000
 metric_f = 0.000000
 tags = [syslog collectd]
 attributes = {
 type = percent_bytes
 plugin_instance = tmp
 type_instance = free
 plugin = df
 }

$ curl 0:9200/collectd-2014.06.20/_search\?pretty
{
 "took" : 41,
 "timed_out" : false,
 "_shards" : {
 "total" : 4,
 "successful" : 4,
 "failed" : 0
 },
 "hits" : {
 "total" : 1,
 "max_score" : 1.0,
 "hits" : [{
 "_index" : "collectd-2014.06.20",
 "_type" : "message",
 "_id" : "Cq6Yg81cQii_1tSRXw4rEQ",
 "_score" : 1.0, "_source" : {"collectd":{"type_instance":"free","type":"percent
_bytes","thresh_value":"2.000000","thresh_type":"below","severity":"FAILURE","plugin_
instance":"tmp","plugin":"df","metric":"0.000000","hostname":"localhost.local","ds":"
value"},"PROGRAM":"collectd","PID":"2395","MESSAGE":"Notification: severity = FAILURE
, host = localhost.local, plugin = df, plugin_instance = tmp, type = percent_bytes, t
ype_instance = free, message = Host localhost.local, plugin df (instance tmp) type pe
rcent_bytes (instance free): Data source \"value\" is currently 0.000000. That is bel
ow the failure threshold of 2.000000.","LEGACY_MSGHDR":"collectd[2395]: ","HOST_FROM"
:"localhost","HOST":"localhost","@timestamp":"2014-06-20T15:08:23+02:00","@message":"
Notification: severity = FAILURE, host = localhost.local, plugin = df, plugin_instanc
e = tmp, type = percent_bytes, type_instance = free, message = Host localhost.local,
plugin df (instance tmp) type percent_bytes (instance free): Data source \"value\" is
 currently 0.000000. That is below the failure threshold of 2.000000."}
 }]
 }

 }
}

$ rm /tmp/full
$ grep Notification /var/log/messages
Jun 20 15:08:23 localhost collectd[2395]: Notification: severity = FAILURE, host = lo
calhost.local, plugin = df, plugin_instance = tmp, type = percent_bytes, type_instanc
e = free, message = Host localhost.local, plugin df (instance tmp) type percent_bytes
 (instance free): Data source "value" is currently 0.000000. That is below the failur
e threshold of 2.000000.
Jun 20 15:14:33 localhost collectd[2395]: Notification: severity = OKAY, host = local
host.local, plugin = df, plugin_instance = tmp, type = percent_bytes, type_instance =
 free, message = Host localhost.local, plugin df (instance tmp) type percent_bytes (i
nstance free): All data sources are within range again.

$ riemann-client query 'tagged "collectd"'
Event #0:
 time = 1403270073 - Fri Jun 20 15:14:33 2014
 state = ok
 service = df-tmp/percent_bytes-free
 host = localhost.local
 description = Notification: severity = OKAY, host = localhost.local, plugin = df, p
lugin_instance = tmp, type = percent_bytes, type_instance = free, message = Host loca
lhost.local, plugin df (instance tmp) type percent_bytes (instance free): All data so
urces are within range again.
 ttl = 300.000000
 metric_sint64 = 0
 metric_d = 0.000000
 metric_f = 0.000000
 tags = [syslog collectd]
 attributes = {
 type = percent_bytes
 plugin_instance = tmp
 type_instance = free
 plugin = df
 }

$ curl 0:9200/collectd-2014.06.20/_search\?pretty
{
 "took" : 1,
 "timed_out" : false,
 "_shards" : {
 "total" : 4,
 "successful" : 4,
 "failed" : 0

28Like submit StumbleUpon
Tweet 54 Share 2

 "failed" : 0
 },
 "hits" : {
 "total" : 2,
 "max_score" : 1.0,
 "hits" : [{
 "_index" : "collectd-2014.06.20",
 "_type" : "message",
 "_id" : "Cq6Yg81cQii_1tSRXw4rEQ",
 "_score" : 1.0, "_source" : {"collectd":{"type_instance":"free","type":"percent
_bytes","thresh_value":"2.000000","thresh_type":"below","severity":"FAILURE","plugin_
instance":"tmp","plugin":"df","metric":"0.000000","hostname":"localhost.local","ds":"
value"},"PROGRAM":"collectd","PID":"2395","MESSAGE":"Notification: severity = FAILURE
, host = localhost.local, plugin = df, plugin_instance = tmp, type = percent_bytes, t
ype_instance = free, message = Host localhost.local, plugin df (instance tmp) type pe
rcent_bytes (instance free): Data source \"value\" is currently 0.000000. That is bel
ow the failure threshold of 2.000000.","LEGACY_MSGHDR":"collectd[2395]: ","HOST_FROM"
:"localhost","HOST":"localhost","@timestamp":"2014-06-20T15:08:23+02:00","@message":"
Notification: severity = FAILURE, host = localhost.local, plugin = df, plugin_instanc
e = tmp, type = percent_bytes, type_instance = free, message = Host localhost.local,
plugin df (instance tmp) type percent_bytes (instance free): Data source \"value\" is
 currently 0.000000. That is below the failure threshold of 2.000000."}
 }, {
 "_index" : "collectd-2014.06.20",
 "_type" : "message",
 "_id" : "73mKTbvnTdGLleXlbg1FBw",
 "_score" : 1.0, "_source" : {"collectd":{"type_instance":"free","type":"percent
_bytes","plugin_instance":"tmp","plugin":"df","hostname":"localhost.local"},"PROGRAM"
:"collectd","PID":"2395","MESSAGE":"Notification: severity = OKAY, host = localhost.l
ocal, plugin = df, plugin_instance = tmp, type = percent_bytes, type_instance = free,
 message = Host localhost.local, plugin df (instance tmp) type percent_bytes (instanc
e free): All data sources are within range again.","LEGACY_MSGHDR":"collectd[2395]: "
,"HOST_FROM":"localhost","HOST":"localhost","@timestamp":"2014-06-20T15:14:33+02:00",
"@message":"Notification: severity = OKAY, host = localhost.local, plugin = df, plugi
n_instance = tmp, type = percent_bytes, type_instance = free, message = Host localhos
t.local, plugin df (instance tmp) type percent_bytes (instance free): All data source
s are within range again."}
 }]
 }
}

share 6

javascript:void(0);
http://www.tumblr.com/share/link/?url=http%3A%2F%2Fdevops.com%2Ffeatures%2Fguide-modern-monitoring-alerting%2F&name=A%20How%20to%20Guide%20on%20Modern%20Monitoring%20and%20Alerting

 PREV
CHASING CONSISTENCY ACROSS THE WILD SEAS OF
ENTERPRISE IT

NEXT
PROVISIONING VERSUS CONFIGURATION EXAMPLE

Fabien Wernli (faxm0dem) has been administering Linux clusters at the Computing Centre of the National
Institute of Nuclear Physics and Particle Physics (CC-IN2P3) for 10+ years. Among others, he is an expert
on performance-data monitoring and infrastructure management.

Leave a Comment

First Name

Last Name

Email

Website

About The Author ⁄ Wernli

No Comments

Type something…

Type something…

Type something…

Type something…

https://twitter.com/faxm0dem
http://faxmodem.ch/
http://devops.com/features/chasing-consistency-across-enterprise-it/
https://www.youtube.com/user/swissunix/videos
http://devops.com/blogs/provisioning-versus-configuration-example/
https://plus.google.com/+FabienWernli

SIGN UP FOR OUR NEWSLETTER

Notify me of follow-up comments by email.

 Notify me of new posts by email.

Enter email to subscribe

SUBSCRIBE

Your message

SUBMIT COMMENT

CAPTCHA Code

*

RELEASES

DevOps Connect: SecOps Edition @RSA Conference

javascript:ft948646.api.open('http://servedby.flashtalking.com/click/4/38522;948646;818331;210;0/?g=2516C46839A6B0&random=241351298&ft_width=300&ft_height=250&url=http://www.ca.com/us/lpg/release-automation-guided-tour.aspx?mrm=416567&cid=NA-DSP-APD-AAO-000080-00000089');
http://devops.com/news/devops-connect-secops-edition-rsa-conference/
http://www.devopsconnect.com/
http://go.jumpcloud.com/ldap-service?id=701G000000121G7&rs=DevOps.com&cs=UC1.DevOps

AUTHORS

We are very happy to announce that we will be hosting DevOps Connect: SecOps Edition at RSA
Conference on Monday, April… Read more…

DevOps Anonymous Salary Survey

DevOps certainly is a hyped word right now. There are no shortage of DevOps jobs either. But, What are
the… Read more…

XebiaLabs Offers Free Community Edition of XL Deploy & XL Release

 BOSTON – November 18, 2014 -- To introduce the DevOps community to the powerful benefits of
launching applications to… Read more…

IBM DevOps Webcast Nov 20 – Transforming Application Delivery for Continuous Innovation

What if you could deliver applications faster without compromising quality or accepting higher risk? Fast-
moving adopters of technology are transforming… Read more…

IBM Webcast Nov 18 : Rapid and Continuous Delivery to Hybrid Clouds

Organizations need to innovate at speed. As software has become increasingly critical to business
outcomes, delivering high quality changes quickly… Read more…

IBM Webcast Nov 12: Use Discovery to accelerate testing and virtualization

Many of today's business applications offer a multitude of services (APIs) across many different
technologies. These same applications also reach… Read more…

Alan Shimel

contributor

Chris Riley

Ericka Chickowski

George Hulme

Lori MacVittie

Complete Author List

http://devops.com/news/devops-anonymous-salary-survey/
http://devops.com/news/devops-anonymous-salary-survey/
http://devops.com/author/ericka-chickowski/
http://devops.com/news/ibm-devops-webcast-nov-20-transforming-application-delivery-continuous-innovation/
http://devops.com/news/ibm-webcast-nov-13-rapid-continuous-delivery-hybrid-clouds/
http://devops.com/news/xebialabs-offers-free-community-edition-xl-deploy-xl-release/
http://devops.com/news/ibm-webcast-nov-12-use-discovery-accelerate-testing-virtualization/
http://devops.com/author/chrisriley/
http://devops.com/author/lmacvittie/
http://devops.com/news/ibm-webcast-nov-13-rapid-continuous-delivery-hybrid-clouds/
http://devops.com/news/devops-connect-secops-edition-rsa-conference/
http://devops.com/news/ibm-devops-webcast-nov-20-transforming-application-delivery-continuous-innovation/
http://devops.com/news/xebialabs-offers-free-community-edition-xl-deploy-xl-release/
http://devops.com/author/contributor/
http://devops.com/author/ashimmy/
http://devops.com/author/george-hulme/
http://devops.com/authors-page/
http://devops.com/news/ibm-webcast-nov-12-use-discovery-accelerate-testing-virtualization/

Home Business Directory About Sponsor Copyright TOS Privacy Policy

 RSS - Posts

© 2014 Mediaops, LLC. All Rights Reserved.

Devops.com

885 people like Devops.com.

Facebook social plugin

Like

http://devops.com/copyright/
http://devops.com/tos/
http://devops.com/about/
https://plus.google.com/u/0/105939795122860171376
http://www.linkedin.com/groups/DevOpscom-6619007
https://twitter.com/devopsdotcom
https://www.facebook.com/devopscom
http://devops.com/feed/
http://devops.com/about/sponsor/
http://devops.com/business-directory/
http://devops.com/privacy-policy/
http://devops.com/feed/
http://devops.com/

