
www.it-ebooks.info

http://www.it-ebooks.info/

Elasticsearch Server
Second Edition

A practical guide to building fast, scalable, and flexible
search solutions with clear and easy-to-understand
examples

Rafał Kuć

Marek Rogoziński

BIRMINGHAM - MUMBAI

www.it-ebooks.info

http://www.it-ebooks.info/

Elasticsearch Server
Second Edition

Copyright © 2014 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the authors nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: February 2013

Second edition: April 2014

Production Reference: 1170414

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78398-052-9

www.packtpub.com

Cover Image by Kannan PM Palanisamy (kannan.pmp@gmail.com)

www.it-ebooks.info

http://www.it-ebooks.info/

Credits

Authors
Rafał Kuć

Marek Rogoziński

Reviewers
John Boere

Jettro Coenradie

Clive Holloway

Surendra Mohan

Alberto Paro

Lukáš Vlček

Commissioning Editor
Anthony Alburqueque

Acquisition Editor
Neha Nagwekar

Content Development Editor
Shaon Basu

Technical Editors
Indrajit Das

Menza Mathew

Shali Sasidharan

Copy Editors
Dipti Kapadia

Insiya Morbiwala

Aditya Nair

Adithi Shetty

Project Coordinator
Amey Sawant

Proofreaders
Simran Bhogal

Maria Gould

Bernadette Watkins

Indexer
Priya Subramani

Graphics
Abhinash Sahu

Production Coordinator
Sushma Redkar

Cover Work
Sushma Redkar

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Rafał Kuć is a born team leader and software developer. He currently works as a
consultant and a software engineer at Sematext Group, Inc., where he concentrates on
open source technologies such as Apache Lucene and Solr, Elasticsearch, and Hadoop
stack. He has more than 12 years of experience in various branches of software, from
banking software to e-commerce products. He focuses mainly on Java but is open
to every tool and programming language that will make the achievement of his goal
easier and faster. Rafał is also one of the founders of the solr.pl site, where he tries
to share his knowledge and help people with the problems they face with Solr and
Lucene. Also, he has been a speaker at various conferences around the world, such
as Lucene Eurocon, Berlin Buzzwords, ApacheCon, and Lucene Revolution.

Rafał began his journey with Lucene in 2002, and it wasn't love at first sight. When
he came back to Lucene in late 2003, he revised his thoughts about the framework
and saw the potential in search technologies. Then, Solr came along and this was it.
He started working with Elasticsearch in the middle of 2010. Currently, Lucene,
Solr, Elasticsearch, and information retrieval are his main points of interest.

Rafał is also the author of Apache Solr 3.1 Cookbook, and the update to it, Apache Solr
4 Cookbook. Also, he is the author of the previous edition of this book and Mastering
ElasticSearch. All these books have been published by Packt Publishing.

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments

The book you are holding in your hands is an update to ElasticSearch Server,
published at the beginning of 2013. Since that time, Elasticsearch has changed a lot;
there are numerous improvements and massive additions in terms of functionalities,
both when it comes to cluster handling and searching. After completing Mastering
ElasticSearch, which covered Version 0.90 of this great search server, we decided
that Version 1.0 would be a perfect time to release the updated version of our first
book about Elasticsearch. Again, just like with the original book, we were not able
to cover all the topics in detail. We had to choose what to describe in detail, what to
mention, and what to omit in order to have a book not more than 1,000 pages long.
Nevertheless, I hope that by reading this book, you'll easily learn about Elasticsearch
and the underlying Apache Lucene, and that you will get the desired knowledge
easily and quickly.

I would like to thank my family for the support and patience during all those days
and evenings when I was sitting in front of a screen instead of being with them.

I would also like to thank all the people I'm working with at Sematext, especially
Otis, who took out his time and convinced me that Sematext is the right company
for me.

Finally, I would like to thank all the people involved in creating, developing, and
maintaining Elasticsearch and Lucene projects for their work and passion. Without
them, this book wouldn't have been written and open source search would be less
powerful.

Once again, thank you all!

www.it-ebooks.info

http://www.it-ebooks.info/

About the Author

Marek Rogoziński is a software architect and consultant with more than 10 years
of experience. He has specialized in solutions based on open source search engines
such as Solr and Elasticsearch, and also the software stack for Big Data analytics
including Hadoop, HBase, and Twitter Storm.

He is also the cofounder of the solr.pl site, which publishes information and
tutorials about Solr and the Lucene library. He is also the co-author of some books
published by Packt Publishing.

Currently, he holds the position of the Chief Technology Officer in a new company,
designing architecture for a set of products that collect, process, and analyze large
streams of input data.

www.it-ebooks.info

http://www.it-ebooks.info/

Acknowledgments

This is our third book on Elasticsearch and the second edition of the first book, which
was published a little over a year ago. This is quite a short period but this is also the
year when Elasticsearch changed. Not more than a year ago, we used Version 0.20;
now, Version 1.0.1 has been released. This is not only a number. Elasticsearch is now
a well-known, widely used piece of software with built-in commercial support and
ecosystem—just look at Logstash, Kibana, or any additional plugins. The functionality
of this search server is also constantly growing. There are some new features such as
the aggregation framework, which opens new use cases—this is where Elasticsearch
shines. This development caused the previous book to get outdated quickly. It was
also a great challenge to keep up with these changes. The differences between the
beta release candidates and the final version caused us to introduce changes several
times during the writing.

Now, it is time to say thank you.

Thanks to all the people involved in creating Elasticsearch, Lucene, and all of the
libraries and modules published around these projects or used by these projects.

I would also like to thank the team working on this book. First of all, a thank
you to the people who worked on the extermination of all my errors, typos,
and ambiguities. Many thanks to all the people who send us remarks or write
constructive reviews. I was surprised and encouraged by the fact that someone
found our work useful.

Last but not least, thanks to all my friends who withstood me and understood
my constant lack of time.

www.it-ebooks.info

http://www.it-ebooks.info/

About the Reviewers

John Boere is an engineer with 22 years of experience in geospatial database design
and development and 13 years of web development experience. He is the founder
of two successful startups and has consulted at many others. He is the founder and
CEO of Cliffhanger Solutions Inc., a company that offers a geospatial search engine
for the companies that need mapping solutions.

John lives in Arizona with his family and enjoys the outdoors—hiking and biking.
He can also solve a Rubik's cube.

Jettro Coenradie likes to try out new stuff. That is why he got his motorcycle
driver's license recently. On a motorbike, you tend to explore different routes to
get the best experience out of your bike and have fun while doing the things you
need to do, such as going from A to B. In the past 15 years, while exploring new
technologies, he has tried out new routes to find better and more interesting ways
to accomplish his goal. Jettro rides an all-terrain bike; he does not like riding on the
same ground over and over again. The same is true for his technical interests; he
knows about backend (Elasticsearch, MongoDB, Axon Framework, Spring Data,
and Spring Integration), as well as frontend (AngularJS, Sass, and Less), and mobile
development (iOS and Sencha Touch).

www.it-ebooks.info

http://www.it-ebooks.info/

Clive Holloway is a web application developer based in New York City. Over the
past 18 years, he has worked on a variety of backend and frontend projects, focusing
mainly on Perl and JavaScript.

He lives with his partner, Christine, and his cat, Blueberry (who would have been
called Blackberry except for the intervention of his daughter, Abbey, after she
pointed out that they could not name a cat after a phone).

In his spare time, he is involved as a part of Thisoneisonus, an international
collective of music fans who work together to produce fan-created live show
recordings. You can learn more about him at http://toiou.org.

Surendra Mohan, who has served a few top-notch software organizations in
varied roles, is currently a freelance software consultant. He has been working
on various cutting-edge technologies such as Drupal, Moodle, Apache Solr,
and Elasticsearch for more than 9 years. He also delivers technical talks at
various community events such as Drupal Meetups and Drupal Camps.
To know more about him, his write-ups, technical blogs, and many more,
log on to http://www.surendramohan.info/.

He has also authored the titles, Administrating Solr and Apache Solr High Performance,
published by Packt Publishing, and there are many more in the pipeline to be
published soon. He also contributes technical articles to a number of portals,
for instance, sitepoint.com.

Additionally, he has reviewed other technical books, such as Drupal 7 Multi Sites
Configuration and Drupal Search Engine Optimization, both by Packt Publishing.
He has also reviewed titles on Drupal commerce, Elasticsearch, Drupal-related
video tutorials, a title on OpsView, and many more.

I would like to thank my family and friends who supported and
encouraged me to complete this book on time with good quality.

www.it-ebooks.info

http://www.it-ebooks.info/

Alberto Paro is an engineer, project manager, and software developer.
He currently works as a chief technology officer at The Net Planet Europe and as
a freelance consultant on software engineering on Big Data and NoSQL Solutions.
He loves studying the emerging solutions and applications mainly related to Big
Data processing, NoSQL, natural language processing, and neural networks. He
started programming in BASIC on a Sinclair Spectrum when he was 8 years old,
and in his life, he has gained a lot of experience by using different operative
systems, applications, and by doing programming.

In 2000, he graduated from a degree in Computer Science Engineering from
Politecnico di Milano with a thesis on designing multiuser and multidevice web
applications. He worked as a professor's helper at the university for about one
year. Then, having come in contact with The Net Planet company and loving their
innovative ideas, he started working on knowledge management solutions and
advanced data-mining products.

In his spare time, when he is not playing with his children, he likes working on open
source projects. When he was in high school, he started contributing to projects
related to the Gnome environment (gtkmm). One of his preferred programming
languages was Python, and he wrote one of the first NoSQL backend for Django
MongoDB (django-mongodb-engine). In 2010, he started using Elasticsearch to
provide search capabilities for some Django e-commerce sites and developed
PyES (a pythonic client for Elasticsearch) and the initial part of Elasticsearch
MongoDB River. Now, he mainly works on Scala, using the Typesafe Stack
and Apache Spark project.

He is the author of ElasticSearch Cookbook, Packt Publishing, published in
December 2013.

I would like to thank my wife and children for their support.

Lukáš Vlček is a professional open source fan. He has been working with
Elasticsearch nearly from the day it was released and enjoys it till today. Currently,
Lukáš works for Red Hat, where he uses Elasticsearch hand-in-hand with various
JBoss Java technologies on a daily basis. He has been speaking on Elasticsearch
and his work at several conferences around Europe. He is also heavy on client-side
JavaScript and building frontends for full-text search services.

www.it-ebooks.info

http://www.it-ebooks.info/

www.PacktPub.com

Support files, eBooks, discount offers, and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why subscribe?
•	 Fully searchable across every book published by Packt
•	 Copy and paste, print and bookmark content

•	 On demand and accessible via web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib
today and view nine entirely free books. Simply use your login credentials for immediate access.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents
Preface	 1
Chapter 1: Getting Started with the Elasticsearch Cluster	 7

Full-text searching	 8
The Lucene glossary and architecture	 8
Input data analysis	 10

Indexing and querying	 10
Scoring and query relevance	 11

The basics of Elasticsearch	 12
Key concepts of data architecture	 12

Index	 12
Document	 12
Document type	 13
Mapping	 13

Key concepts of Elasticsearch	 14
Node and cluster	 14
Shard	 14
Replica	 14
Gateway	 15

Indexing and searching	 15
Installing and configuring your cluster	 17

Installing Java	 17
Installing Elasticsearch	 17
Installing Elasticsearch from binary packages on Linux	 18

Installing Elasticsearch using the RPM package	 18
Installing Elasticsearch using the DEB package	 18

The directory layout	 18
Configuring Elasticsearch	 19
Running Elasticsearch	 20
Shutting down Elasticsearch	 22
Running Elasticsearch as a system service	 23

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ii]

Elasticsearch as a system service on Linux	 23
Elasticsearch as a system service on Windows	 24

Manipulating data with the REST API	 24
Understanding the Elasticsearch RESTful API	 25
Storing data in Elasticsearch	 25
Creating a new document	 25

Automatic identifier creation	 27
Retrieving documents	 27
Updating documents	 28
Deleting documents	 30
Versioning	 30

An example of versioning	 31
Using the version provided by an external system	 31

Searching with the URI request query	 32
Sample data	 32
The URI request	 33

The Elasticsearch query response	 33
Query analysis	 35
URI query string parameters	 37

The Lucene query syntax	 41
Summary	 42

Chapter 2: Indexing Your Data	 43
Elasticsearch indexing	 43

Shards and replicas	 44
Creating indices	 45

Altering automatic index creation	 46
Settings for a newly created index	 46

Mappings configuration	 47
Type determining mechanism	 47

Disabling field type guessing	 49
Index structure mapping	 50

Type definition	 51
Fields	 52
Core types	 52
Multifields	 57
The IP address type	 57
The token_count type	 58
Using analyzers	 58

Different similarity models	 63
Setting per-field similarity	 64
Available similarity models	 65

The postings format	 66
Configuring the postings format	 67

Doc values	 68

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iii]

Configuring the doc values	 68
Doc values formats	 69

Batch indexing to speed up your indexing process	 69
Preparing data for bulk indexing	 69
Indexing the data	 70
Even quicker bulk requests	 72

Extending your index structure with additional internal information	 73
Identifier fields	 73
The _type field	 74
The _all field	 75
The _source field	 76

Exclusion and inclusion	 76
The _index field	 77
The _size field	 77
The _timestamp field	 78
The _ttl field	 79

Introduction to segment merging	 80
Segment merging	 81
The need for segment merging	 81
The merge policy	 81
The merge scheduler	 82
The merge factor	 82
Throttling	 83

Introduction to routing	 83
Default indexing	 84
Default searching	 85
Routing	 86
The routing parameters	 88
Routing fields	 89

Summary	 90
Chapter 3: Searching Your Data	 91

Querying Elasticsearch	 91
The example data	 92
A simple query	 94
Paging and result size	 95
Returning the version value	 96
Limiting the score	 97
Choosing the fields that we want to return	 98

The partial fields	 100
Using the script fields	 100

Passing parameters to the script fields	 102

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[iv]

Understanding the querying process	 102
Query logic	 103
Search types	 104
Search execution preferences	 105
The Search shards API	 106

Basic queries	 108
The term query	 108
The terms query	 109
The match_all query	 110
The common terms query	 110
The match query	 112

The Boolean match query	 112
The match_phrase query	 114
The match_phrase_prefix query	 114

The multi_match query	 115
The query_string query	 116

Running the query_string query against multiple fields	 118
The simple_query_string query	 118
The identifiers query	 119
The prefix query	 120
The fuzzy_like_this query	 121
The fuzzy_like_this_field query	 122
The fuzzy query	 122
The wildcard query	 124
The more_like_this query	 125
The more_like_this_field query	 126
The range query	 127
The dismax query	 128
The regular expression query	 129

Compound queries	 129
The bool query	 130
The boosting query	 131
The constant_score query	 132
The indices query	 133

Filtering your results	 134
Using filters	 134
Filter types	 136

The range filter	 136
The exists filter	 137
The missing filter	 138
The script filter	 138
The type filter	 139
The limit filter	 139

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[v]

The identifiers filter	 139
If this is not enough	 140
Combining filters	 141
Named filters	 143

Caching filters	 146
Highlighting	 147

Getting started with highlighting	 148
Field configuration	 149
Under the hood	 149
Configuring HTML tags	 150
Controlling the highlighted fragments	 151
Global and local settings	 151
Require matching	 152
The postings highlighter	 155

Validating your queries	 158
Using the validate API	 158

Sorting data	 161
Default sorting	 161
Selecting fields used for sorting	 162
Specifying the behavior for missing fields	 164
Dynamic criteria	 165
Collation and national characters	 166

Query rewrite	 166
An example of the rewrite process	 166
Query rewrite properties	 168

Summary	 169
Chapter 4: Extending Your Index Structure	 171

Indexing tree-like structures	 171
Data structure	 172
Analysis	 173

Indexing data that is not flat	 174
Data	 174
Objects	 175
Arrays	 175
Mappings	 175

Final mappings	 176
Sending the mappings to Elasticsearch	 177
To be or not to be dynamic	 178

Using nested objects	 178
Scoring and nested queries	 182

Using the parent-child relationship	 182

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vi]

Index structure and data indexing	 183
Parent mappings	 183
Child mappings	 183
The parent document	 184
The child documents	 184

Querying	 184
Querying data in the child documents	 185
Querying data in the parent documents	 187

The parent-child relationship and filtering	 188
Performance considerations	 188

Modifying your index structure with the update API	 189
The mappings	 189
Adding a new field	 189
Modifying fields	 190

Summary	 192
Chapter 5: Make Your Search Better	 193

An introduction to Apache Lucene scoring	 193
When a document is matched	 194
Default scoring formula	 194
Relevancy matters	 195

Scripting capabilities of Elasticsearch	 196
Objects available during script execution	 196
MVEL	 198
Using other languages	 198
Using our own script library	 199

Using native code	 199
Searching content in different languages	 202

Handling languages differently	 202
Handling multiple languages	 203
Detecting the language of the documents	 203
Sample document	 204
The mappings	 204
Querying	 206

Queries with the identified language	 206
Queries with unknown languages	 207
Combining queries	 208

Influencing scores with query boosts	 209
The boost	 209
Adding boost to queries	 209
Modifying the score	 212

The constant_score query	 212
The boosting query	 213
The function_score query	 213

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[vii]

Deprecated queries	 219
When does index-time boosting make sense?	 222

Defining field boosting in input data	 222
Defining boosting in mapping	 223

Words with the same meaning	 223
The synonym filter	 224

Synonyms in the mappings	 224
Synonyms stored in the filesystem	 225

Defining synonym rules	 225
Using Apache Solr synonyms	 225
Using WordNet synonyms	 227

Query- or index-time synonym expansion	 227
Understanding the explain information	 227

Understanding field analysis	 227
Explaining the query	 229

Summary	 231
Chapter 6: Beyond Full-text Searching	 233

Aggregations	 233
General query structure	 234
Available aggregations	 236

Metric aggregations	 236
Bucketing	 240

Nesting aggregations	 255
Bucket ordering and nested aggregations	 258
Global and subsets	 258

Inclusions and exclusions	 261
Faceting	 262

The document structure	 262
Returned results	 263
Using queries for faceting calculations	 264
Using filters for faceting calculations	 265
Terms faceting	 266
Ranges based faceting	 268

Choosing different fields for an aggregated data calculation	 270
Numerical and date histogram faceting	 271

The date_histogram facet	 272
Computing numerical field statistical data	 272
Computing statistical data for terms	 274
Geographical faceting	 276
Filtering faceting results	 277
Memory considerations	 277

Using suggesters	 278

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[viii]

Available suggester types	 278
Including suggestions	 278

The suggester response	 279
The term suggester	 281

The term suggester configuration options	 281
Additional term suggester options	 282

The phrase suggester	 283
The completion suggester	 284

Percolator	 289
The index	 289
Percolator preparation	 290
Getting deeper	 293

Getting the number of matching queries	 296
Indexed documents percolation	 296

Handling files	 297
Adding additional information about the file	 300

Geo	 301
Mappings preparation for spatial search	 301
Example data	 302
Sample queries	 302

Distance-based sorting	 302
Bounding box filtering	 304
Limiting the distance	 306

Arbitrary geo shapes	 307
Point	 308
Envelope	 308
Polygon	 308
Multipolygon	 309
An example usage	 309
Storing shapes in the index	 311

The scroll API	 312
Problem definition	 313
Scrolling to the rescue	 313

The terms filter	 316
Terms lookup	 317

The terms lookup query structure	 320
Terms lookup cache settings	 321

Summary	 321
Chapter 7: Elasticsearch Cluster in Detail	 323

Node discovery	 323
Discovery types	 324
The master node	 324

Configuring the master and data nodes	 325
The master-election configuration	 325

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[ix]

Setting the cluster name	 326
Configuring multicast	 326
Configuring unicast	 327

Ping settings for nodes	 327
The gateway and recovery modules	 328

The gateway	 328
Recovery control	 328

Additional gateway recovery options	 329
Preparing Elasticsearch cluster for high query and indexing
throughput	 330

The filter cache	 330
The field data cache and circuit breaker	 330

The circuit breaker	 331
The store	 331
Index buffers and the refresh rate	 332

The index refresh rate	 332
The thread pool configuration	 333
Combining it all together – some general advice	 334

Choosing the right store	 335
The index refresh rate	 335
Tuning the thread pools	 336
Tuning your merge process	 336
The field data cache and breaking the circuit	 336
RAM buffer for indexing	 337
Tuning transaction logging	 337
Things to keep in mind	 338

Templates and dynamic templates	 338
Templates	 338

An example of a template	 338
Storing templates in files	 339

Dynamic templates	 340
The matching pattern	 341
Field definitions	 341

Summary	 342
Chapter 8: Administrating Your Cluster	 343

The Elasticsearch time machine	 343
Creating a snapshot repository	 344
Creating snapshots	 345

Additional parameters	 346
Restoring a snapshot	 347
Cleaning up – deleting old snapshots	 348

Monitoring your cluster's state and health	 348
The cluster health API	 348

Controlling information details	 349

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[x]

Additional parameters	 349
The indices stats API	 350

Docs	 351
Store	 351
Indexing, get, and search	 352
Additional information	 353

The status API	 353
The nodes info API	 353
The nodes stats API	 355
The cluster state API	 356
The pending tasks API	 357
The indices segments API	 357
The cat API	 357

Limiting returned information	 358
Controlling cluster rebalancing	 359

Rebalancing	 359
Cluster being ready	 359
The cluster rebalance settings	 360

Controlling when rebalancing will start	 360
Controlling the number of shards being moved between nodes concurrently	 360
Controlling the number of shards initialized concurrently on a single node	 360
Controlling the number of primary shards initialized concurrently on a single node	 360
Controlling types of shards allocation	 361
Controlling the number of concurrent streams on a single node	 361

Controlling the shard and replica allocation	 361
Explicitly controlling allocation	 362

Specifying node parameters	 362
Configuration	 362
Index creation	 362
Excluding nodes from allocation	 363
Requiring node attributes	 364
Using IP addresses for shard allocation	 364
Disk-based shard allocation	 364

Cluster wide allocation	 366
Number of shards and replicas per node	 366
Moving shards and replicas manually	 366

Moving shards	 367
Canceling shard allocation	 367
Forcing shard allocation	 368
Multiple commands per HTTP request	 368

Warming up	 369
Defining a new warming query	 369
Retrieving the defined warming queries	 371
Deleting a warming query	 372
Disabling the warming up functionality	 372

www.it-ebooks.info

http://www.it-ebooks.info/

Table of Contents

[xi]

Choosing queries	 372
Index aliasing and using it to simplify your everyday work	 374

An alias	 374
Creating an alias	 374
Modifying aliases	 375
Combining commands	 375
Retrieving all aliases	 376
Removing aliases	 376
Filtering aliases	 376
Aliases and routing	 377

Elasticsearch plugins	 378
The basics	 378
Installing plugins	 379
Removing plugins	 380

The update settings API	 380
Summary	 381

Index	 383

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Preface
Welcome to Elasticsearch Server Second Edition. In the second edition of the book,
we decided not only to do the update to match the latest version of Elasticsearch but
also to add some additional important sections that we didn't think of while writing
the first book. While reading this book, you will be taken on a journey through
a wonderful world of full-text search provided by the Elasticsearch server. We will
start with a general introduction to Elasticsearch, which covers how to start and run
Elasticsearch, what are the basic concepts of Elasticsearch, and how to index and
search your data in the most basic way.

This book will also discuss the query language, so-called Querydsl, that allows
you to create complicated queries and filter the returned results. In addition to all
this, you'll see how you can use faceting to calculate aggregated data based on the
results returned by your queries, and how to use the newly introduced aggregation
framework (the analytics engine allows you to give meaning to your data). We will
implement autocomplete functionality together and learn how to use Elasticsearch
spatial capabilities and prospective search.

Finally, this book will show you Elasticsearch administration API capabilities
with features such as shard placement control and cluster handling.

What this book covers
Chapter 1, Getting Started with the Elasticsearch Cluster, covers what full-text searching,
Apache Lucene, and text analysis are, how to run and configure Elasticsearch,
and finally, how to index and search your data in the most basic way.

Chapter 2, Indexing Your Data, shows how indexing works, how to prepare an index
structure and what data types we are allowed to use, how to speed up indexing,
what segments are, how merging works, and what routing is.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[2]

Chapter 3, Searching Your Data, introduces the full-text search capabilities of
Elasticsearch by discussing how to query, how the querying process works,
and what type of basic and compound queries are available. In addition to this,
we will learn how to filter our results, use highlighting, and modify the sorting
of returned results.

Chapter 4, Extending Your Index Structure, discusses how to index more complex
data structures. We will learn how to index tree-like data types, index data with
relationships between documents, and modify the structure of an index.

Chapter 5, Make Your Search Better, covers Apache Lucene scoring and how
to influence it in Elasticsearch, the scripting capabilities of Elasticsearch,
and language analysis.

Chapter 6, Beyond Full-text Searching, shows the details of the aggregation framework
functionality, faceting, and how to implement spellchecking and autocomplete using
Elasticsearch. In addition to this, readers will learn how to index binary files, work
with geospatial data, and efficiently process large datasets.

Chapter 7, Elasticsearch Cluster in Detail, discusses the nodes discovery mechanism,
recovery and gateway Elasticsearch modules, templates and cluster preparation
for high indexing, and querying use cases.

Chapter 8, Administrating Your Cluster, covers the Elasticsearch backup functionality,
cluster monitoring, rebalancing, and moving shards. In addition to this, you will
learn how to use the warm-up functionality, work with aliases, install plugins,
and update cluster settings with the update API.

What you need for this book
This book was written using Elasticsearch server Version 1.0.0, and all the examples
and functions should work with it. In addition to this, you'll need a command
that allows you to send HTTP requests such as cURL, which is available for most
operating systems. Please note that all the examples in this book use the mentioned
cURL tool. If you want to use another tool, please remember to format the request
in an appropriate way that can be understood by the tool of your choice.

In addition to this, some chapters may require additional software such as
Elasticsearch plugins, but it has been explicitly mentioned when certain types
of software are needed.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[3]

Who this book is for
If you are a beginner to the world of full-text search and Elasticsearch, this book is
for you. You will be guided through the basics of Elasticsearch, and you will learn
how to use some of the advanced functionalities.

If you know Elasticsearch and have worked with it, you may find this book
interesting as it provides a nice overview of all the functionalities with examples
and description.

If you know the Apache Solr search engine, this book can also be used to compare
some functionalities of Apache Solr and Elasticsearch. This may give you the
knowledge about the tool, which is more appropriate for your use.

Conventions
In this book, you will find a number of styles of text that distinguish between
different kinds of information. Here are some examples of these styles, and an
explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows:

"The postings format is a per-field property, just like type or name."

A block of code is set as follows:

{
 "status" : 200,
 "name" : "es_server",
 "version" : {
 "number" : "1.0.0",
 "build_hash" : "a46900e9c72c0a623d71b54016357d5f94c8ea32",
 "build_timestamp" : "2014-02-12T16:18:34Z",
 "build_snapshot" : false,
 "lucene_version" : "4.6"
 },
 "tagline" : "You Know, for Search"
}

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[4]

When we wish to draw your attention to a particular part of a code block,
the relevant lines or items are set in bold:

{
 "mappings" : {
 "post" : {
 "properties" : {
 "id" : { "type" : "long", "store" : "yes",
 "precision_step" : "0" },
 "name" : { "type" : "string", "store" : "yes",
 "index" : "analyzed", "similarity" : "BM25" },
 "contents" : { "type" : "string", "store" : "no",
 "index" : "analyzed", "similarity" : "BM25" }
 }
 }
 }
}

Any command-line input or output is written as follows:

curl -XGET http://localhost:9200/blog/article/1

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message. If there is a topic that
you have expertise in and you are interested in either writing or contributing to
a book, see our author guide on www.packtpub.com/authors.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[5]

Customer support
Now that you are the proud owner of a Packt book, we have a number of things
to help you to get the most from your purchase.

Downloading the example code
You can download the example code files for all Packt books you have purchased
from your account at http://www.packtpub.com. If you purchased this book
elsewhere, you can visit http://www.packtpub.com/support and register to have
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text
or the code—we would be grateful if you would report this to us. By doing so,
you can save other readers from frustration and help us improve subsequent
versions of this book. If you find any errata, please report them by visiting
http://www.packtpub.com/submit-errata, selecting your book, clicking on
the errata submission form link, and entering the details of your errata. Once
your errata are verified, your submission will be accepted and the errata will be
uploaded on our website, or added to any list of existing errata, under the Errata
section of that title. Any existing errata can be viewed by selecting your title from
http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media.
At Packt, we take the protection of our copyright and licenses very seriously. If you
come across any illegal copies of our works, in any form, on the Internet, please
provide us with the location address or website name immediately so that we
can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors, and our ability to bring
you valuable content.

www.it-ebooks.info

http://www.it-ebooks.info/

Preface

[6]

Questions
You can contact us at questions@packtpub.com if you are having a problem
with any aspect of the book, and we will do our best to address it.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the
Elasticsearch Cluster

Welcome to the wonderful world of Elasticsearch—a great full text search and
analytics engine. It doesn't matter if you are new to Elasticsearch and full text
search in general or if you have experience. We hope that by reading this book
you'll be able to learn and extend your knowledge of Elasticsearch. As this book
is also dedicated to beginners, we decided to start with a short introduction to
full text search in general and after that, a brief overview of Elasticsearch.

The first thing we need to do with Elasticsearch is install it. With many applications,
you start with the installation and configuration and usually forget the importance
of those steps. We will try to guide you through these steps so that it becomes
easier to remember. In addition to this, we will show you the simplest way to
index and retrieve data without getting into too many details. By the end of
this chapter, you will have learned the following topics:

•	 Full-text searching
•	 Understanding Apache Lucene
•	 Performing text analysis
•	 Learning the basic concepts of Elasticsearch
•	 Installing and configuring Elasticsearch
•	 Using the Elasticsearch REST API to manipulate data
•	 Searching using basic URI requests

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the Elasticsearch Cluster

[8]

Full-text searching
Back in the days when full-text searching was a term known to a small percentage
of engineers, most of us used SQL databases to perform search operations. Of course,
it is ok, at least to some extent. However, as you go deeper and deeper, you start to
see the limits of such an approach. Just to mention some of them—lack of scalability,
not enough flexibility, and lack of language analysis (of course there were additions
that introduced full-text searching to SQL databases). These were the reasons why
Apache Lucene (http://lucene.apache.org) was created—to provide a library
of full text search capabilities. It is very fast, scalable, and provides analysis
capabilities for different languages.

The Lucene glossary and architecture
Before going into the details of the analysis process, we would like to introduce
you to the glossary for Apache Lucene and the overall architecture of Apache
Lucene. The basic concepts of the mentioned library are as follows:

•	 Document: This is a main data carrier used during indexing and searching,
comprising one or more fields that contain the data we put in and get
from Lucene.

•	 Field: This is a section of the document which is built of two parts; the name
and the value.

•	 Term: This is a unit of search representing a word from the text.
•	 Token: This is an occurrence of a term in the text of the field. It consists of

the term text, start and end offsets, and a type.

Apache Lucene writes all the information to the structure called inverted index. It is
a data structure that maps the terms in the index to the documents and not the other
way around as the relational database does in its tables. You can think of an inverted
index as a data structure where data is term-oriented rather than document-oriented.
Let's see how a simple inverted index will look. For example, let's assume that we
have the documents with only the title field to be indexed and they look as follows:

•	 Elasticsearch Server 1.0 (document 1)
•	 Mastering Elasticsearch (document 2)
•	 Apache Solr 4 Cookbook (document 3)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[9]

So, the index (in a very simplified way) can be visualized as follows:

1.0

4

Apache

Cookbook

Elasticsearch

Mastering

Server

Solr

2

<1>

<3>

<2>

<1>, <2>

1

1

1

1

1

1

<3>

<3>

<1>

<3>

Term

1

Count Document

Each term points to the number of documents it is present in. This allows a very
efficient and fast searching, such as the term-based queries. In addition to this, each
term has a number connected to it, count, telling Lucene how often the term occurs.

Of course, the actual index created by Lucene is much more complicated and
advanced because of additional files that include information such as term vectors,
doc values, and so on. However, all you need to know for now is how the data is
organized and not what is exactly stored.

Each index is divided into multiple write once and read many time segments.
When indexing, after a single segment is written to the disk, it can't be updated.
Therefore, the information on deleted documents is stored in a separate file, but
the segment itself is not updated.

However, multiple segments can be merged together through a process called
segments merge. After forcing the segments to merge or after Lucene decides that
it is time to perform merging, the segments are merged together by Lucene to create
larger ones. This can demand I/O; however, some information needs to be cleaned
up because during this time, information that is not needed anymore will be deleted
(for example, the deleted documents). In addition to this, searching with one large
segment is faster than searching with multiple smaller ones holding the same data.
That's because, in general, to search means to just match the query terms to the ones
that are indexed. You can imagine how searching through multiple small segments
and merging those results will be slower than having a single segment preparing
the results.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the Elasticsearch Cluster

[10]

Input data analysis
Of course, the question that arises is how the data that is passed in the documents is
transformed into the inverted index and how the query text is changed into terms to
allow searching. The process of transforming this data is called analysis. You may
want some of your fields to be processed by a language analyzer so that words such
as car and cars are treated as the same in your index. On the other hand, you may
want other fields to be only divided on the white space or only lowercased.

Analysis is done by the analyzer, which is built of a tokenizer and zero or more
token filters, and it can also have zero or more character mappers.

A tokenizer in Lucene is used to split the text into tokens, which are basically
the terms with additional information, such as its position in the original text
and its length. The results of the tokenizer's work is called a token stream,
where the tokens are put one by one and are ready to be processed by the filters.

Apart from the tokenizer, the Lucene analyzer is built of zero or more token filters that
are used to process tokens in the token stream. Some examples of filters are as follows:

•	 Lowercase filter: This makes all the tokens lowercased
•	 Synonyms filter: This is responsible for changing one token to another on

the basis of synonym rules
•	 Multiple language stemming filters: These are responsible for reducing

tokens (actually, the text part that they provide) into their root or base forms,
the stem

Filters are processed one after another, so we have almost unlimited analysis
possibilities with the addition of multiple filters one after another.

Finally, the character mappers operate on non-analyzed text—they are used before
the tokenizer. Therefore, we can easily remove HTML tags from whole parts of text
without worrying about tokenization.

Indexing and querying
We may wonder how all the preceding functionalities affect indexing and querying
when using Lucene and all the software that is built on top of it. During indexing,
Lucene will use an analyzer of your choice to process the contents of your document;
of course, different analyzers can be used for different fields, so the name field of
your document can be analyzed differently compared to the summary field. Fields
may not be analyzed at all, if we want.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[11]

During a query, your query will be analyzed. However, you can also choose not to
analyze your queries. This is crucial to remember because some of the Elasticsearch
queries are analyzed and some are not. For example, the prefix and the term queries
are not analyzed, and the match query is analyzed. Having the possibility to chose
from the queries that are analyzed and the ones that are not analyzed are very useful;
sometimes, you may want to query a field that is not analyzed, while sometimes
you may want to have a full text search analysis. For example, if we search for the
LightRed term and the query is being analyzed by the standard analyzer, then the
terms that would be searched are light and red. If we use a query type that has not
been analyzed, then we will explicitly search for the LightRed term.

What you should remember about indexing and querying analysis is that the index
should match the query term. If they don't match, Lucene won't return the desired
documents. For example, if you are using stemming and lowercasing during indexing,
you need to ensure that the terms in the query are also lowercased and stemmed, or
your queries wouldn't return any results at all. It is important to keep the token filters
in the same order during indexing and query time analysis so that the terms resulting
of such an analysis are the same.

Scoring and query relevance
There is one additional thing we haven't mentioned till now—scoring. What is the
score of a document? The score is a result of a scoring formula that describes how
well the document matches the query. By default, Apache Lucene uses the TF/IDF
(term frequency / inverse document frequency) scoring mechanism—an algorithm
that calculates how relevant the document is in the context of our query. Of course,
it is not the only algorithm available, and we will mention other algorithms in the
Mappings configuration section of Chapter 2, Indexing Your Data.

If you want to read more about the Apache Lucene TF/IDF
scoring formula, please visit Apache Lucene Javadocs for the
TFIDFSimilarity class available at http://lucene.
apache.org/core/4_6_0/core/org/apache/lucene/
search/similarities/TFIDFSimilarity.html.

Remember though that the higher the score value calculated by Elasticsearch
and Lucene, the more relevant is the document. The score calculation is affected
by parameters such as boost, by different query types (we will discuss these query
types in the Basic queries section of Chapter 3, Searching Your Data), or by using
different scoring algorithms.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the Elasticsearch Cluster

[12]

If you want to read more detailed information about how Apache
Lucene scoring works, what the default algorithm is, and how the
score is calculated, please refer to our book, Mastering ElasticSearch,
Packt Publishing.

The basics of Elasticsearch
Elasticsearch is an open source search server project started by Shay Banon and
published in February 2010. During this time, the project has grown into a major
player in the field of search and data analysis solutions and is widely used in many
more or lesser-known search applications. In addition, due to its distributed nature
and real-time capabilities, many people use it as a document store.

Key concepts of data architecture
Let's go through the basic concepts of Elasticsearch. You can skip this section if
you are already familiar with the Elasticsearch architecture. However, if you are
not familiar with this architecture, consider reading this section. We will refer to
the key words used in the rest of the book.

Index
Index is the logical place where Elasticsearch stores logical data, so that it can be
divided into smaller pieces. If you come from the relational database world, you
can think of an index like a table. However, the index structure is prepared for fast
and efficient full-text searching, and in particular, does not store original values.
If you know MongoDB, you can think of the Elasticsearch index as a collection in
MongoDB. If you are familiar with CouchDB, you can think about an index as you
would about the CouchDB database. Elasticsearch can hold many indices located
on one machine or spread over many servers. Every index is built of one or more
shards, and each shard can have many replicas.

Document
The main entity stored in Elasticsearch is a document. Using the analogy to relational
databases, a document is a row of data in a database table. When you compare an
Elasticsearch document to a MongoDB document, you will see that both can have
different structures, but the document in Elasticsearch needs to have the same type
for all the common fields. This means that all the documents with a field called
title need to have the same data type for it, for example, string.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[13]

Documents consist of fields, and each field may occur several times in a single
document (such a field is called multivalued). Each field has a type (text, number,
date, and so on). The field types can also be complex: a field can contain other
subdocuments or arrays. The field type is important for Elasticsearch because it
gives information about how various operations such as analysis or sorting should
be performed. Fortunately, this can be determined automatically (however, we still
suggest using mappings). Unlike the relational databases, documents don't need to
have a fixed structure—every document may have a different set of fields, and in
addition to this, fields don't have to be known during application development. Of
course, one can force a document structure with the use of schema. From the client's
point of view, a document is a JSON object (see more about the JSON format at
http://en.wikipedia.org/wiki/JSON). Each document is stored in one index and
has its own unique identifier (which can be generated automatically by Elasticsearch)
and document type. A document needs to have a unique identifier in relation to the
document type. This means that in a single index, two documents can have the same
unique identifier if they are not of the same type.

Document type
In Elasticsearch, one index can store many objects with different purposes. For
example, a blog application can store articles and comments. The document type
lets us easily differentiate between the objects in a single index. Every document
can have a different structure, but in real-world deployments, dividing documents
into types significantly helps in data manipulation. Of course, one needs to keep the
limitations in mind; that is, different document types can't set different types for the
same property. For example, a field called title must have the same type across all
document types in the same index.

Mapping
In the section about the basics of full-text searching (the Full-text searching section),
we wrote about the process of analysis—the preparation of input text for indexing
and searching. Every field of the document must be properly analyzed depending
on its type. For example, a different analysis chain is required for the numeric fields
(numbers shouldn't be sorted alphabetically) and for the text fetched from web
pages (for example, the first step would require you to omit the HTML tags as it is
useless information—noise). Elasticsearch stores information about the fields in the
mapping. Every document type has its own mapping, even if we don't explicitly
define it.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the Elasticsearch Cluster

[14]

Key concepts of Elasticsearch
Now, we already know that Elasticsearch stores data in one or more indices. Every
index can contain documents of various types. We also know that each document has
many fields and how Elasticsearch treats these fields is defined by mappings. But there
is more. From the beginning, Elasticsearch was created as a distributed solution that
can handle billions of documents and hundreds of search requests per second. This is
due to several important concepts that we are going to describe in more detail now.

Node and cluster
Elasticsearch can work as a standalone, single-search server. Nevertheless, to be
able to process large sets of data and to achieve fault tolerance and high availability,
Elasticsearch can be run on many cooperating servers. Collectively, these servers are
called a cluster, and each server forming it is called a node.

Shard
When we have a large number of documents, we may come to a point where a single
node may not be enough—for example, because of RAM limitations, hard disk
capacity, insufficient processing power, and inability to respond to client requests
fast enough. In such a case, data can be divided into smaller parts called shards
(where each shard is a separate Apache Lucene index). Each shard can be placed on
a different server, and thus, your data can be spread among the cluster nodes. When
you query an index that is built from multiple shards, Elasticsearch sends the query
to each relevant shard and merges the result in such a way that your application
doesn't know about the shards. In addition to this, having multiple shards can speed
up the indexing.

Replica
In order to increase query throughput or achieve high availability, shard replicas can
be used. A replica is just an exact copy of the shard, and each shard can have zero
or more replicas. In other words, Elasticsearch can have many identical shards and
one of them is automatically chosen as a place where the operations that change the
index are directed. This special shard is called a primary shard, and the others are
called replica shards. When the primary shard is lost (for example, a server holding
the shard data is unavailable), the cluster will promote the replica to be the new
primary shard.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[15]

Gateway
Elasticsearch handles many nodes. The cluster state is held by the gateway.
By default, every node has this information stored locally, which is synchronized
among nodes. We will discuss the gateway module in The gateway and recovery
modules section of Chapter 7, Elasticsearch Cluster in Detail.

Indexing and searching
You may wonder how you can practically tie all the indices, shards, and replicas
together in a single environment. Theoretically, it should be very difficult to fetch
data from the cluster when you have to know where is your document, on which
server, and in which shard. Even more difficult is searching when one query can
return documents from different shards placed on different nodes in the whole
cluster. In fact, this is a complicated problem; fortunately, we don't have to care
about this—it is handled automatically by Elasticsearch itself. Let's look at the
following diagram:

Indexing request
Application

Shard 1
replica

Shard 2
replica

Shard 1
primary

Shard 2
primary

Elasticsearch Node

Elasticsearch Node

Elasticsearch Cluster

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the Elasticsearch Cluster

[16]

When you send a new document to the cluster, you specify a target index and send
it to any of the nodes. The node knows how many shards the target index has and is
able to determine which shard should be used to store your document. Elasticsearch
can alter this behavior; we will talk about this in the Routing section of Chapter 2,
Indexing Your Data. The important information that you have to remember for now is
that Elasticsearch calculates the shard in which the document should be placed using
the unique identifier of the document. After the indexing request is sent to a node,
that node forwards the document to the target node, which hosts the relevant shard.

Now let's look at the following diagram on searching request execution:

Application

Elasticsearch Node

Elasticsearch Node

Elasticsearch Cluster

Shard 1

Shard 2

Scatter phase

Gather phase

Results

Query

When you try to fetch a document by its identifier, the node you send the query to
uses the same routing algorithm to determine the shard and the node holding the
document and again forwards the query, fetches the result, and sends the result to
you. On the other hand, the querying process is a more complicated one. The node
receiving the query forwards it to all the nodes holding the shards that belong to a
given index and asks for minimum information about the documents that match the
query (identifier and score, by default), unless routing is used, where the query will
go directly to a single shard only. This is called the scatter phase. After receiving this
information, the aggregator node (the node that receives the client request) sorts the
results and sends a second request to get the documents that are needed to build the
results list (all the other information apart from the document identifier and score).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[17]

This is called the gather phase. After this phase is executed, the results are returned
to the client.

Now the question arises—what is the role of replicas in the process described
previously? While indexing, replicas are only used as an additional place to store
the data. When executing a query, by default, Elasticsearch will try to balance
the load among the shard and its replicas so that they are evenly stressed.
Also, remember that we can change this behavior; we will discuss this in the
Understanding the querying process section of Chapter 3, Searching Your Data.

Installing and configuring your cluster
There are a few steps required to install Elasticsearch, which we will explore in the
following sections.

Installing Java
In order to set up Elasticsearch, the first step is to make sure that a Java SE
environment is installed properly. Elasticsearch requires Java Version 6 or later to
run. You can download it from http://www.oracle.com/technetwork/java/
javase/downloads/index.html. You can also use OpenJDK (http://openjdk.
java.net/) if you wish. You can, of course, use Java Version 6, but it is not
supported with patches by default, so we suggest that you install Java 7.

Installing Elasticsearch
To install Elasticsearch, just download it from http://www.elasticsearch.org/
download/ and unpack it. Choose the last stable version. That's it! The installation
is complete.

At the time of writing this book, we used Elasticsearch
1.0.0.GA. This means that we've skipped describing some
properties that were marked as deprecated and are or will
be removed in the future versions of Elasticsearch.

The main interface to communicate with Elasticsearch is based on an HTTP protocol
and REST. This means that you can even use a web browser for some basic queries
and requests, but for anything more sophisticated, you'll need to use additional
software such as the cURL command. If you use the Linux or OS X command, the
curl package should already be available. If you use Windows, you can download
it from http://curl.haxx.se/download.html.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the Elasticsearch Cluster

[18]

Installing Elasticsearch from binary packages
on Linux
The other way to install Elasticsearch is to use the provided binary packages—the
RPM or DEB packages, depending on your Linux distribution. The mentioned binary
packages can be found at the following URL address: http://www.elasticsearch.
org/download/.

Installing Elasticsearch using the RPM package
After downloading the RPM package, you just need to run the following command:

sudo yum elasticsearch-1.0.0.noarch.rpm

It is as simple as that. If everything went well, Elasticsearch should be installed and
its configuration file should be stored in /etc/sysconfig/elasticsearch. If your
operating system is based on Red Hat, you will be able to use the init script found
at /etc/init.d/elasticsearch. If your operating system is a SUSE Linux, you can
use the systemctl file found at /bin to start and stop the Elasticsearch service.

Installing Elasticsearch using the DEB package
After downloading the DEB package, all you need to do is run the
following command:

sudo dpkg -i elasticsearch-1.0.0.deb

It is as simple as that. If everything went well, Elasticsearch should be installed and
its configuration file should be stored in /etc/elasticsearch/elasticsearch.yml.
The init script that allows you to start and stop Elasticsearch will be found at /etc/
init.d/elasticsearch. Also, there will be files containing environment settings at
/etc/default/elasticsearch.

The directory layout
Now, let's go to the newly created directory. We should see the following directory
structure:

Directory Description
bin The scripts needed for running Elasticsearch instances and for plugin

management
config The directory where configuration files are located
lib The libraries used by Elasticsearch

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[19]

After Elasticsearch starts, it will create the following directories (if they don't exist):

Directory Description
data Where all the data used by Elasticsearch is stored
logs The files with information about events and errors
plugins The location for storing the installed plugins
work The temporary files used by Elasticsearch

Configuring Elasticsearch
One of the reasons—of course, not the only one—why Elasticsearch is gaining more
and more popularity is that getting started with Elasticsearch is quite easy. Because
of the reasonable default values and automatic settings for simple environments,
we can skip the configuration and go straight to the next chapter without changing
a single line in our configuration files. However, in order to truly understand
Elasticsearch, it is worth understanding some of the available settings.

We will now explore the default directories and layout of the files provided with
the Elasticsearch tar.gz archive. The whole configuration is located in the config
directory. We can see two files there: elasticsearch.yml (or elasticsearch.
json, which will be used if present) and logging.yml. The first file is responsible
for setting the default configuration values for the server. This is important because
some of these values can be changed at runtime and can be kept as a part of the
cluster state, so the values in this file may not be accurate. The two values that we
cannot change at runtime are cluster.name and node.name.

The cluster.name property is responsible for holding the name of our cluster. The
cluster name separates different clusters from each other. Nodes configured with the
same cluster name will try to form a cluster.

The second value is the instance (the node) name. We can leave this parameter
undefined. In this case, Elasticsearch automatically chooses a unique name for itself.
Note that this name is chosen during every startup, so the name can be different
on each restart. Defining the name can help when referring to concrete instances
by the API or when using monitoring tools to see what is happening to a node
during long periods of time and between restarts. Think about giving descriptive
names to your nodes.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the Elasticsearch Cluster

[20]

Other parameters are well commented in the file, so we advise you to look through
it; don't worry if you do not understand the explanation. We hope that everything
will become clear after reading the next few chapters.

Remember that most of the parameters that have been set in the
elasticsearch.yml file can be overwritten with the use of
Elasticsearch REST API. We will talk about this API in the The
update settings API section of Chapter 8, Administrating Your Cluster.

The second file (logging.yml) defines how much information is written to system
logs, defines the logfiles, and creates new files periodically. Changes in this file are
usually required only when you need to adapt to monitoring or backup solutions
or during system debugging; however, if you want to have a more detailed logging,
you need to adjust it accordingly.

Let's leave the configuration files for now. An important part of the configuration is
tuning your operating system. During the indexing, especially when having many
shards and replicas, Elasticsearch will create many files; so, the system cannot limit
the open file descriptors to less than 32,000. For Linux servers, this can be usually
changed in /etc/security/limits.conf and the current value can be displayed
using the ulimit command. If you end up reaching the limit, Elasticsearch will not
be able to create new files; so, merging will fail, indexing may fail, and new indices
will not be created.

The next set of settings is connected to the Java Virtual Machine (JVM) heap
memory limit for a single Elasticsearch instance. For small deployments, the default
memory limit (1024 MB) will be sufficient, but for large ones, it will not be enough.
If you spot entries that indicate the OutOfMemoryError exceptions in a logfile, set
the ES_HEAP_SIZE variable to a value greater than 1024. When choosing the right
amount of memory size to be given to the JVM, remember that, in general, no more
than 50 percent of your total system memory should be given. However, as with all
the rules, there are exceptions. We will discuss this in greater detail later, but you
should always monitor your JVM heap usage and adjust it when needed.

Running Elasticsearch
Let's run our first instance that we just downloaded as the ZIP archive and
unpacked. Go to the bin directory and run the following commands depending
on the OS:

•	 Linux or OS X: ./elasticsearch
•	 Windows: elasticsearch.bat

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[21]

Congratulations! Now, we have our Elasticsearch instance up and running. During
its work, the server usually uses two port numbers: the first one for communication
with the REST API using the HTTP protocol, and the second one for the transport
module used for communication in a cluster and in between the native Java client
and the cluster. The default port used for the HTTP API is 9200, so we can check the
search readiness by pointing the web browser to http://127.0.0.1:9200/. The
browser should show a code snippet similar to the following:

{
 "status" : 200,
 "name" : "es_server",
 "version" : {
 "number" : "1.0.0",
 "build_hash" : "a46900e9c72c0a623d71b54016357d5f94c8ea32",
 "build_timestamp" : "2014-02-12T16:18:34Z",
 "build_snapshot" : false,
 "lucene_version" : "4.6"
 },
 "tagline" : "You Know, for Search"
}

The output is structured as a JSON (JavaScript Object Notation) object. If you
are not familiar with JSON, please take a minute and read the article available at
http://en.wikipedia.org/wiki/JSON.

Elasticsearch is smart. If the default port is not available, the engine
binds to the next free port. You can find information about this on
the console during booting as follows:
[2013-11-16 11:56:12,101][INFO][http] [Red Lotus]
 bound_address {inet[/0:0:0:0:0:0:0:0%0:9200]},
 publish_address {inet[/192.168.1.101:9200]}

Note the fragment with [http]. Elasticsearch uses a few ports
for various tasks. The interface that we are using is handled by the
HTTP module.

Now, we will use the cURL program. For example, to check cluster health, we will
use the following command:

curl -XGET http://127.0.0.1:9200/_cluster/health?pretty

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the Elasticsearch Cluster

[22]

The -X parameter is a request method. The default value is GET (so, in this example,
we can omit this parameter). Temporarily, do not worry about the GET value; we will
describe it in more detail later in this chapter.

As a standard, the API returns information in a JSON object in which new line
characters are omitted. The pretty parameter added to our requests forces
Elasticsearch to add a new line character to the response, making the response more
human friendly. You can try running the preceding query with and without the
?pretty parameter to see the difference.

Elasticsearch is useful in small- and medium-sized applications, but it has been built
with large clusters in mind. So, now we will set up our big, two-node cluster. Unpack
the Elasticsearch archive in a different directory and run the second instance. If we
look at the log, we see what is shown as follows:

[2013-11-16 11:55:16,767][INFO][cluster.service]
[Stane, Obadiah] detected_master [Martha Johansson]
[vswsFRWTSjOa_fy7uPuOMA]
[inet[/192.168.1.19:9300]], added {[Martha Johansson]
[vswsFRWTSjOa_fy7uPuOMA]
[inet[/192.168.1.19:9300]],}, reason: zen-disco-receive(from master
[[Martha Johansson][vswsFRWTSjOa_fy7uPuOMA]
[inet[/192.168.1.19:9300]]])

This means that our second instance (named Stane,Obadiah) discovered the
previously running instance (named Martha Johansson). Here, Elasticsearch
automatically formed a new, two-node cluster.

Note that on some systems, the firewall software may be enabled
by default, which may result in the nodes not being able to
discover themselves.

Shutting down Elasticsearch
Even though we expect our cluster (or node) to run flawlessly for a lifetime, we
may need to restart it or shut it down properly (for example, for maintenance). The
following are three ways in which we can shut down Elasticsearch:

•	 If your node is attached to the console, just press Ctrl + C
•	 The second option is to kill the server process by sending the TERM signal

(see the kill command on the Linux boxes and Program Manager on
Windows)

•	 The third method is to use a REST API

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[23]

We will focus on the last method now. It allows us to shut down the whole cluster by
executing the following command:

curl -XPOST http://localhost:9200/_cluster/nodes/_shutdown

To shut down just a single node, for example, a node with the
BlrmMvBdSKiCeYGsiHijdg identifier, we will execute the following command:

curl –XPOST
http://localhost:9200/_cluster/nodes/BlrmMvBdSKiCeYGsiHijdg/_shutdown

The identifier of the node can be read either from the logs or using the _cluster/
nodes API, with the following command:

curl -XGET http://localhost:9200/_cluster/nodes/

Running Elasticsearch as a system service
Elasticsearch 1.0 can run as a service both on Linux-based systems as well as on
Windows-based ones.

Elasticsearch as a system service on Linux
If you have installed Elasticsearch from the provided binary packages, you are
already good to go and don't have to worry about anything. However, if you
have just downloaded the archive and unpacked Elasticsearch to the directories
of your choice, you'll need to put some additional effort. To install Elasticsearch
as a Linux system service, we will use the Elasticsearch service wrapper that can
be downloaded from https://github.com/elasticsearch/elasticsearch-
servicewrapper.

Let's look at the steps to use the Elasticsearch service wrapper in order to set up
a Linux service for Elasticsearch. First, we will run the following command to
download the wrapper:

curl -L http://github.com/elasticsearch/elasticsearch-
 servicewrapper/tarball/master | tar -xz

Assuming that Elasticsearch has been installed in /usr/local/share/
elasticsearch, we will run the following command to move the needed service
wrapper files:

sudo mv *servicewrapper*/service /usr/local/share/elasticsearch/bin/

We will remove the remaining wrapper files by running the following command:

rm -Rf *servicewrapper*

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the Elasticsearch Cluster

[24]

Finally, we will install the service by running the install command as follows:

sudo /usr/local/share/elasticsearch/bin/service/elasticsearch install

After this, we need to create a symbolic link to the /usr/local/share/
elasticsearch/bin/service/elasticsearch script in /usr/local/bin/
rcelasticsearch. We do this by running the following command:

sudo ln -s 'readlink -f
 /usr/local/share/elasticsearch/bin/service/elasticsearch'
 /usr/local/bin/rcelasticsearch

And that's all. If you want to start Elasticsearch, just run the following command:

/etc/init.d/elasticsearch start

Elasticsearch as a system service on Windows
Installing Elasticsearch as a system service on Windows is very easy. You just need
to go to your Elasticsearch installation directory, then go to the bin subdirectory, and
run the following command:

service.bat install

You'll be asked about the permission to do so. If you allow the script to run,
Elasticsearch will be installed as a Windows service.

If you would like to see all the commands exposed by the service.bat script file,
just run the following command in the same directory as earlier:

service.bat

For example, to start Elasticsearch, we will just run the following command:

service.bat start

Manipulating data with the REST API
The Elasticsearch REST API can be used for various tasks. Thanks to this, we can
manage indices, change instance parameters, check nodes and cluster status, index
data, search the data, or retrieve documents via the GET API. But for now, we will
concentrate on using the CRUD (create-retrieve-update-delete) part of the API,
which allows you to use Elasticsearch in a similar way to how you would use a
NoSQL database.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[25]

Understanding the Elasticsearch RESTful API
In a REST-like architecture, every request is directed to a concrete object indicated by
the path of the address. For example, if /books/ is a reference to a list of books in our
library, /books/1 is the reference to the book with the identifier 1. Note that these
objects can be nested. The /books/1/chapter/6 reference denotes the sixth chapter
of the first book in the library, and so on. We have a subject for our API call. What
about an operation that we would like to execute, such as GET or POST? To indicate
this, request types are used. The HTTP protocol gives us quite a long list of types that
can be used as verbs in the API calls. Logical choices are GET in order to obtain the
current state of the requested object, POST to change the object state, PUT to create an
object, and DELETE to destroy objects. There is also a HEAD request that is only used to
fetch the base information of an object.

If we look at the following examples of the operations discussed in the Shutting down
Elasticsearch section, everything should make more sense:

•	 GET http://localhost:9000/: This command retrieves basic information
about Elasticsearch

•	 GET http://localhost:9200/_cluster/state/nodes/: This command
retrieves the information about the nodes in the cluster

•	 POST http://localhost:9200/_cluster/nodes/_shutdown: This
command sends a shutdown request to all the nodes in the cluster

We now know what REST means, at least in general (you can read more about REST
at http://en.wikipedia.org/wiki/Representational_state_transfer). Now,
we can proceed and learn how to use the Elasticsearch API to store, fetch, alter, and
delete data.

Storing data in Elasticsearch
As we have already discussed, in Elasticsearch, every piece of data—each
document—has a defined index and type. Each document can contain one or more
fields that will hold your data. We will start by showing you how to index a simple
document using Elasticsearch.

Creating a new document
Now, we will try to index some of the documents. For example, let's imagine that we
are building some kind of CMS system for our blog. One of the entities in this blog is
articles (surprise!).

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the Elasticsearch Cluster

[26]

Using the JSON notation, a document can be presented as shown in the
following example:

{
 "id": "1",
 "title": "New version of Elasticsearch released!",
 "content": "Version 1.0 released today!",
 "priority": 10,
 "tags": ["announce", "elasticsearch", "release"]
}

As we can see, the JSON document contains a set of fields, where each field can have
a different form. In our example, we have a number (priority), text (title), and an
array of strings (tags). In the following examples, we will show you the other types.
As mentioned earlier in this chapter, Elasticsearch can guess these types (because
JSON is semi-typed; for example, the numbers are not in quotation marks) and
automatically customize how this data will be stored in its internal structures.

Of course, we would like to index our example document and make it available for
searching. We will use an index named blog and a type named article. In order
to index our example document to this index under the given type and with the
identifier of 1, we will execute the following command:

curl -XPUT http://localhost:9200/blog/article/1 -d '{"title": "New
version of Elasticsearch released!", "content": "Version 1.0
released today!", "tags": ["announce", "elasticsearch", "release"] }'

Note a new option to the cURL command: the -d parameter. The value of this option
is the text that will be used as a request payload—a request body. This way, we can
send additional information such as document definition. Also, note that the unique
identifier is placed in the URL and not in the body. If you omit this identifier (while
using the HTTP PUT request), the indexing request will return the following error:

No handler found for uri [/blog/article/] and method [PUT]

If everything is correct, Elasticsearch will respond with a JSON response similar to
the following output:

{

 "_index":"blog",

 "_type":"article",

 "_id":"1",

 "_version":1

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[27]

In the preceding response, Elasticsearch includes the information about the status of
the operation and shows where a new document was placed. There is information
about the document's unique identifier and current version, which will be
incremented automatically by Elasticsearch every time it is updated.

Automatic identifier creation
In the last example, we specified the document identifier ourselves. However,
Elasticsearch can generate this automatically. This seems very handy, but only when
index is the only source of data. If we use a database to store data and Elasticsearch
for full-text searching, the synchronization of this data will be hindered unless
the generated identifier is stored in the database as well. The generation of a
unique identifier can be achieved by using the POST HTTP request type and by not
specifying the identifier in the URL. For example, look at the following command:

curl -XPOST http://localhost:9200/blog/article/ -d '{"title": "New
version of Elasticsearch released!", "content": "Version 1.0
released today!", "tags": ["announce", "elasticsearch", "release"] }'

Note the use of the POST HTTP request method instead of PUT in comparison to the
previous example. Referring to the previous description of REST verbs, we wanted to
change the list of documents in the index rather than create a new entity, and that's
why we used POST instead of PUT. The server should respond with a response similar
to the following output:

{
 "_index" : "blog",
 "_type" : "article",
 "_id" : "XQmdeSe_RVamFgRHMqcZQg",
 "_version" : 1
}

Note the highlighted line, which holds the unique identifier generated automatically
by Elasticsearch.

Retrieving documents
We already have documents stored in our instance. Now let's try to retrieve them by
using their identifiers. We will start by executing the following command:

curl -XGET http://localhost:9200/blog/article/1

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the Elasticsearch Cluster

[28]

Elasticsearch will return a response similar to the following output:

{

 "_index" : "blog",

 "_type" : "article",

 "_id" : "1",

 "_version" : 1,

 "exists" : true,

 "_source" : {

 "title": "New version of Elasticsearch released!",

 "content": "Version 1.0 released today!",

 "tags": ["announce", "elasticsearch", "release"]

 }

In the preceding response, besides the index, type, identifier, and version, we
can also see the information that says that the document was found (the exists
property) and the source of this document (in the _source field). If document is not
found, we get a reply as follows:

{

 "_index" : "blog",

 "_type" : "article",

 "_id" : "9999",

 "exists" : false

}

Of course, there is no information about the version and source because no document
was found.

Updating documents
Updating documents in the index is a more complicated task. Internally,
Elasticsearch must first fetch the document, take its data from the _source field,
remove the old document, apply changes to the _source field, and then index it as a
new document. It is so complicated because we can't update the information once it
is stored in the Lucene inverted index. Elasticsearch implements this through a script
given as an update request parameter. This allows us to do more a sophisticated
document transformation than simple field changes. Let's see how it works in a
simple case.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[29]

Please recall the example blog article that we've indexed previously. We will try to
change its content field from the old one to new content. To do this, we will run
the following command:

curl -XPOST http://localhost:9200/blog/article/1/_update -d '{

 "script": "ctx._source.content = \"new content\""

}'

Elasticsearch will reply with the following response:

{"_index":"blog","_type":"article","_id":"1","_version":2}

It seems that the update operation was executed successfully. To be sure, let's
retrieve the document by using its identifier. To do this, we will run the following
command:

curl -XGET http://localhost:9200/blog/article/1

The response from Elasticsearch should include the changed content field, and
indeed, it includes the following information:

{

 "_index" : "blog",

 "_type" : "article",

 "_id" : "1",

 "_version" : 2,

 "exists" : true,

 "_source" : {

 "title":"New version of Elasticsearch released!",

 "content":"new content",

 "tags":["announce","elasticsearch","release"]

 }

Elasticsearch changed the contents of our article and the version number for this
document. Note that we didn't have to send the whole document, only the changed
parts. However, remember that to use the update functionality, we need to use the
_source field—we will describe how to use the _source field in the Extending your
index structure with additional internal information section in Chapter 2, Indexing
Your Data.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the Elasticsearch Cluster

[30]

There is one more thing about document updates; if your script uses a field value
from a document that is to be updated, you can set a value that will be used if the
document doesn't have that value present. For example, if you want to increment the
counter field of the document and it is not present, you can use the upsert section
in your request to provide the default value that will be used. For example, look at
the following lines of command:

curl -XPOST http://localhost:9200/blog/article/1/_update -d '{

 "script": "ctx._source.counter += 1",

 "upsert": {

 "counter" : 0

 }

}'

If you execute the preceding example, Elasticsearch will add the counter field with the
value of 0 to our example document. This is because our document does not have the
counter field present and we've specified the upsert section in the update request.

Deleting documents
We have already seen how to create (PUT) and retrieve (GET) documents. We also
know how to update them. It is not difficult to guess that the process to remove
a document is similar; we need to send a proper HTTP request using the DELETE
request type. For example, to delete our example document, we will run the
following command:

curl -XDELETE http://localhost:9200/blog/article/1

The response from Elasticsearch will be as follows:

{"found":true,"_index":"blog","_type":"article","_id":"1","_version":3}

This means that our document was found and it was deleted.

Now we can use the CRUD operations. This lets us create applications using
Elasticsearch as a simple key-value store. But this is only the beginning!

Versioning
In the examples provided, you might have seen information about the version of the
document, which looked like the following:

"_version" : 1

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[31]

If you look carefully, you will notice that after updating the document with the
same identifier, this version is incremented. By default, Elasticsearch increments the
version when a document is added, changed, or deleted. In addition to informing us
about the number of changes made to the document, it also allows us to implement
optimistic locking (http://en.wikipedia.org/wiki/Optimistic_concurrency
_control). This allows us to avoid issues when processing the same document in
parallel. For example, we read the same document in two different applications,
modify it differently, and then try to update the one in Elasticsearch. Without
versioning the version, we will see the one sent for indexation as the last version.
Using optimistic locking, Elasticsearch guards the data accuracy—every attempt to
write the document that has been already changed will fail.

An example of versioning
Let's look at an example that uses versioning. Let's assume that we want to delete a
document with the identifier 1 with the book type from the library index. We also
want to be sure that the delete operation is successful if the document was not updated.
What we need to do is add the version parameter with the value of 1 as follows:

curl -XDELETE 'localhost:9200/library/book/1?version=1'

If the version of the document in the index is different from 1, the following error
will be returned by Elasticsearch:

{

 "error": "VersionConflictEngineException[[library][4] [book][1]:
 version conflict, current [2], provided [1]]",

 "status": 409

}

In our example, Elasticsearch compared the version number declared by us and saw
that this version is not the same in comparison to the version of the document in
Elasticsearch. That's why the operation failed.

Using the version provided by an external system
Elasticsearch can also be based on the version number provided by us. It is necessary
when the version is stored in the external system—in this case, when you index a new
document, you should provide the version parameter as in the preceding example.
In such cases, Elasticsearch will only check if the version provided with the operation
is greater (it is not important how much) than the one saved in the index. If it is, the
operation will be successful, and if not, it will fail. To inform Elasticsearch that we
want to use external version tracking, we need to add the version_type=external
parameter in addition to the version parameter.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the Elasticsearch Cluster

[32]

For example, if we want to add a document that has a version 123456 in our system,
we will run a command as follows:

curl -XPUT 'localhost:9200/library/book/1?version=123456' -d {...}

Elasticsearch can check the version number even after the document
is removed. That's because Elasticsearch keeps information about the
version of the deleted document. By default, this information is available
for 60 seconds after the deletion of the document. This time value can be
changed by using the index.gc_deletes configuration parameter.

Searching with the URI request query
Before going into the details of Elasticsearch querying, we will use its capabilities
of using a simple URI request to search. Of course, we will extend our search
knowledge using Elasticsearch in Chapter 3, Searching Your Data, but for now,
we will stick to the simplest approach.

Sample data
For the purpose of this section of the book, we will create a simple index with two
document types. To do this, we will run the following commands:

curl -XPOST 'localhost:9200/books/es/1' -d '{"title":"Elasticsearch
 Server", "published": 2013}'

curl -XPOST 'localhost:9200/books/es/2' -d '{"title":"Mastering
 Elasticsearch", "published": 2013}'

curl -XPOST 'localhost:9200/books/solr/1' -d '{"title":"Apache Solr 4
 Cookbook", "published": 2012}'

Running the preceding commands will create the books index with two types: es
and solr. The title and published fields will be indexed. If you want to check
this, you can do so by running the mappings API call using the following command
(we will talk about the mappings in the Mappings configuration section of Chapter 2,
Indexing Your Data):

curl -XGET 'localhost:9200/books/_mapping?pretty'

This will result in Elasticsearch returning the mappings for the whole index.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[33]

The URI request
All the queries in Elasticsearch are sent to the _search endpoint. You can search a
single index or multiple indices, and you can also narrow down your search only to
a given document type or multiple types. For example, in order to search our books
index, we will run the following command:

curl -XGET 'localhost:9200/books/_search?pretty'

If we have another index called clients, we can also run a single query against
these two indices as follows:

curl -XGET 'localhost:9200/books,clients/_search?pretty'

In the same manner, we can also choose the types we want to use during searching.
For example, if we want to search only in the es type in the books index, we will run
a command as follows:

curl -XGET 'localhost:9200/books/es/_search?pretty'

Please remember that in order to search for a given type, we
need to specify the index or indices. If we want to search for any
index, we just need to set * as the index name or omit the index
name totally. Elasticsearch allows quite a rich semantics when
it comes to choosing index names. If you are interested, please
refer to http://www.elasticsearch.org/guide/en/
elasticsearch/reference/current/multi-index.html.

We can also search all the indices by omitting the indices and types. For example, the
following command will result in a search through all the data in our cluster:

curl -XGET 'localhost:9200/_search?pretty'

The Elasticsearch query response
Let's assume that we want to find all the documents in our books index that
contain the elasticsearch term in the title field. We can do this by running
the following query:

curl -XGET
 'localhost:9200/books/_search?pretty&q=title:elasticsearch'

The response returned by Elasticsearch for the preceding request will be as follows:

{

 "took" : 4,

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the Elasticsearch Cluster

[34]

 "timed_out" : false,

 "_shards" : {

 "total" : 5,

 "successful" : 5,

 "failed" : 0

 },

 "hits" : {

 "total" : 2,

 "max_score" : 0.625,

 "hits" : [{

 "_index" : "books",

 "_type" : "es",

 "_id" : "1",

 "_score" : 0.625, "_source" : {"title":"Elasticsearch Server",
 "published": 2013}

 }, {

 "_index" : "books",

 "_type" : "es",

 "_id" : "2",

 "_score" : 0.19178301, "_source" : {"title":"Mastering
 Elasticsearch", "published": 2013}

 }]

 }

}

The first section of the response gives us the information on how much time the
request took (the took property is specified in milliseconds); whether it was timed
out (the timed_out property); and information on the shards that were queried
during the request execution—the number of queried shards (the total property of
the _shards object), the number of shards that returned the results successfully (the
successful property of the _shards object), and the number of failed shards (the
failed property of the _shards object). The query may also time out if it is executed
for a longer time than we want. (We can specify the maximum query execution time
using the timeout parameter.) The failed shard means that something went wrong
on that shard or it was not available during the search execution.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[35]

Of course, the mentioned information can be useful, but usually, we are interested
in the results that are returned in the hits object. We have the total number of
documents returned by the query (in the total property) and the maximum score
calculated (in the max_score property). Finally, we have the hits array that contains
the returned documents. In our case, each returned document contains its index
name (the _index property), type (the _type property), identifier (the _id property),
score (the _score property), and the _source field (usually, this is the JSON object
sent for indexing; we will discuss this in the Extending your index structure with
additional internal information section in Chapter 2, Indexing Your Data.

Query analysis
You may wonder why the query we've run in the previous section worked. We
indexed the Elasticsearch term and ran a query for elasticsearch and even
though they differ (capitalization), relevant documents were found. The reason for
this is the analysis. During indexing, the underlying Lucene library analyzes the
documents and indexes the data according to the Elasticsearch configuration. By
default, Elasticsearch will tell Lucene to index and analyze both string-based data as
well as numbers. The same happens during querying because the URI request query
maps to the query_string query (which will be discussed in Chapter 3, Searching
Your Data), and this query is analyzed by Elasticsearch.

Let's use the indices analyze API (http://www.elasticsearch.org/guide/en/
elasticsearch/reference/current/indices-analyze.html). It allows us to see
how the analysis process is done. With it, we can see what happened to one of the
documents during indexing and what happened to our query phrase during querying.

In order to see what was indexed in the title field for the Elasticsearch Server
phrase, we will run the following command:

curl -XGET 'localhost:9200/books/_analyze?field=title' -d
 'Elasticsearch Server'

The response will be as follows:

{

 "tokens" : [{

 "token" : "elasticsearch",

 "start_offset" : 0,

 "end_offset" : 13,

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the Elasticsearch Cluster

[36]

 "type" : "<ALPHANUM>",

 "position" : 1

 }, {

 "token" : "server",

 "start_offset" : 14,

 "end_offset" : 20,

 "type" : "<ALPHANUM>",

 "position" : 2

 }]

}

We can see that Elasticsearch has divided the text into two terms—the first one has a
token value of elasticsearch and the second one has a token value of server.

Now let's look at how the query text was analyzed. We can do that by running the
following command:

curl -XGET 'localhost:9200/books/_analyze?pretty&field=title' -d
 'elasticsearch'

The response of the request looks as follows:

{

 "tokens" : [{

 "token" : "elasticsearch",

 "start_offset" : 0,

 "end_offset" : 13,

 "type" : "<ALPHANUM>",

 "position" : 1

 }]

}

We can see that the word is the same as the original one that we passed to the query.
We won't get into Lucene query details and how the query parser constructed the
query, but in general, the indexed term after analysis was the same as the one in the
query after analysis; so, the document matched the query and the result was returned.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[37]

URI query string parameters
There are a few parameters that we can use to control the URI query behavior, which
we will discuss now. Each parameter in the query should be concatenated with the &
character, as shown in the following example:

curl -XGET
 'localhost:9200/books/_search?pretty&q=published:
 2013&df=title&explain=true&default_operator=AND'

Please also remember about the ' characters because on Linux-based systems, the &
character will be analyzed by the Linux shell.

The query
The q parameter allows us to specify the query that we want our documents to
match. It allows us to specify the query using the Lucene query syntax described in
the The Lucene query syntax section in this chapter. For example, a simple query could
look like q=title:elasticsearch.

The default search field
By using the df parameter, we can specify the default search field that should be
used when no field indicator is used in the q parameter. By default, the _all field
will be used (the field that Elasticsearch uses to copy the content of all the other
fields. We will discuss this in greater depth in the Extending your index structure with
additional internal information section in Chapter 2, Indexing Your Data). An example of
the df parameter value can be df=title.

Analyzer
The analyzer property allows us to define the name of the analyzer that should
be used to analyze our query. By default, our query will be analyzed by the same
analyzer that was used to analyze the field contents during indexing.

The default operator
The default_operator property which can be set to OR or AND allows us to specify
the default Boolean operator used for our query. By default, it is set to OR, which
means that a single query term match will be enough for a document to be returned.
Setting this parameter to AND for a query will result in the returning of documents
that match all the query terms.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the Elasticsearch Cluster

[38]

Query explanation
If we set the explain parameter to true, Elasticsearch will include additional
explain information with each document in the result—such as the shard, from
which the document was fetched, and detailed information about the scoring
calculation (we will talk more about it in the Understanding the explain information
section in Chapter 5, Make Your Search Better). Also remember not to fetch the explain
information during normal search queries because it requires additional resources
and adds performance degradation to the queries. For example, a single result can
look like the following code:

{

 "_shard" : 3,

 "_node" : "kyuzK62NQcGJyhc2gI1P2w",

 "_index" : "books",

 "_type" : "es",

 "_id" : "2",

 "_score" : 0.19178301, "_source" : {"title":"Mastering
 Elasticsearch", "published": 2013},

 "_explanation" : {

 "value" : 0.19178301,

 "description" : "weight(title:elasticsearch in 0)
 [PerFieldSimilarity], result of:",

 "details" : [{

 "value" : 0.19178301,

 "description" : "fieldWeight in 0, product of:",

 "details" : [{

 "value" : 1.0,

 "description" : "tf(freq=1.0), with freq of:",

 "details" : [{

 "value" : 1.0,

 "description" : "termFreq=1.0"

 }]

 }, {

 "value" : 0.30685282,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[39]

 "description" : "idf(docFreq=1, maxDocs=1)"

 }, {

 "value" : 0.625,

 "description" : "fieldNorm(doc=0)"

 }]

 }]

 }

}

The fields returned
By default, for each document returned, Elasticsearch will include the index name,
type name, document identifier, score, and the _source field. We can modify this
behavior by adding the fields parameter and specifying a comma-separated list of
field names. The field will be retrieved from the stored fields (if they exist) or from
the internal _source field. By default, the value of the fields parameter is _source.
An example can be like this fields=title.

We can also disable the fetching of the _source field by adding
the _source parameter with its value set to false.

Sorting the results
By using the sort parameter, we can specify custom sorting. The default behavior
of Elasticsearch is to sort the returned documents by their score in the descending
order. If we would like to sort our documents differently, we need to specify
the sort parameter. For example, adding sort=published:desc will sort
the documents by the published field in the descending order. By adding the
sort=published:asc parameter, we will tell Elasticsearch to sort the documents
on the basis of the published field in the ascending order.

If we specify custom sorting, Elasticsearch will omit the _score field calculation for
documents. This may not be the desired behavior in your case. If you want to still
keep a track of the scores for each document when using custom sort, you should
add the track_scores=true property to your query. Please note that tracking the
scores when doing custom sorting will make the query a little bit slower (you may
even not notice it) due to the processing power needed to calculate the score.

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the Elasticsearch Cluster

[40]

The search timeout
By default, Elasticsearch doesn't have timeout for queries, but you may want your
queries to timeout after a certain amount of time (for example, 5 seconds). Elasticsearch
allows you to do this by exposing the timeout parameter. When the timeout
parameter is specified, the query will be executed up to a given timeout value, and the
results that were gathered up to that point will be returned. To specify a timeout of 5
seconds, you will have to add the timeout=5s parameter to your query.

The results window
Elasticsearch allows you to specify the results window (the range of documents in
the results list that should be returned). We have two parameters that allow us to
specify the results window size: size and from. The size parameter defaults to 10
and defines the maximum number of results returned. The from parameter defaults
to 0 and specifies from which document the results should be returned. In order
to return five documents starting from the eleventh one, we will add the following
parameters to the query: size=5&from=10.

The search type
The URI query allows us to specify the search type by using the search_type
parameter, which defaults to query_then_fetch. There are six values that we
can use: dfs_query_then_fetch, dfs_query_and_fetch, query_then_fetch,
query_and_fetch, count, and scan. We'll learn more about search types in the
Understanding the querying process section in Chapter 3, Searching Your Data.

Lowercasing the expanded terms
Some of the queries use query expansion, such as the prefix query. We will discuss
this in the Query rewrite section of Chapter 3, Searching Your Data. We are allowed
to define whether the expanded terms should be lowercased or not by using the
lowercase_expanded_terms property. By default, the lowercase_expanded_terms
property is set to true, which means that the expanded terms will be lowercased.

Analyzing the wildcard and prefixes
By default, the wildcard queries and the prefix queries are not analyzed. If we want
to change this behavior, we can set the analyze_wildcard property to true.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 1

[41]

The Lucene query syntax
We thought that it will be good to know a bit more about what syntax can be used
in the q parameter passed in the URI query. Some of the queries in Elasticsearch
(such as the one currently discussed) support the Lucene query parsers syntax—the
language that allows you to construct queries. Let's take a look at it and discuss some
basic features. To read about the full Lucene query syntax, please go to the following
web page: http://lucene.apache.org/core/4_6_1/queryparser/org/apache/
lucene/queryparser/classic/package-summary.html.

A query that we pass to Lucene is divided into terms and operators by the query
parser. Let's start with the terms—you can distinguish them into two types—single
terms and phrases. For example, to query for a term book in the title field, we will
pass the following query:

title:book

To query for a phrase elasticsearch book in the title field, we will pass the
following query:

title:"elasticsearch book"

You may have noticed the name of the field in the beginning and in the term or
phrase later.

As we already said, the Lucene query syntax supports operators. For example, the
+ operator tells Lucene that the given part must be matched in the document. The -
operator is the opposite, which means that such a part of the query can't be present
in the document. A part of the query without the + or - operator will be treated as
the given part of the query that can be matched but it is not mandatory. So, if we
would like to find a document with the term book in the title field and without
the term cat in the description field, we will pass the following query:

+title:book -description:cat

We can also group multiple terms with parenthesis, as shown in the following query:

title:(crime punishment)

We can also boost parts of the query with the ^ operator and the boost value after it,
as shown in the following query:

title:book^4

www.it-ebooks.info

http://www.it-ebooks.info/

Getting Started with the Elasticsearch Cluster

[42]

Summary
In this chapter, we learned what full text search is and how Apache Lucene fits in
there. In addition to this, we are now familiar with the basic concepts of Elasticsearch
and its top-level architecture. We used the Elasticsearch REST API not only to index
data but also to update it, retrieve it, and finally delete it. Finally, we searched our
data using the simple URI query. In the next chapter, we'll focus on indexing our data.
We will see how Elasticsearch indexing works and what is the role of primary shard
and its replicas. We'll see how Elasticsearch handles the data that it doesn't know
or how to create our own mappings—the JSON structure that describes the structure
of our index. We'll also learn how to use batch indexing to speed up the indexing
process and what additional information can be stored along with our index to help
us achieve our goal. In addition, we will discuss what an index segment is, what
segment merging is, and how to tune the segment. Finally, we'll see how routing
works in Elasticsearch and what options we have when it comes to both indexing
and querying routing.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data
In the previous chapter, we learned the basics about full text search and
Elasticsearch. We also saw what Apache Lucene is. In addition to that, we saw
how to install Elasticsearch, what the standard directory layout is, and what to
pay attention to. We created an index, and we indexed and updated our data.
Finally, we used the simple URI query to get data from Elasticsearch. By the
end of this chapter, you will learn the following topics:

•	 Elasticsearch indexing
•	 Configuring your index structure mappings and knowing what field

types we are allowed to use
•	 Using batch indexing to speed up the indexing process
•	 Extending your index structure with additional internal information
•	 Understanding what segment merging is, how to configure it, and what

throttling is
•	 Understanding how routing works and how we can configure it to our needs

Elasticsearch indexing
We have our Elasticsearch cluster up and running, and we also know how to use
the Elasticsearch REST API to index our data, delete it, and retrieve it. We also
know how to use search to get our documents. If you are used to SQL databases,
you might know that before you can start putting the data there, you need to create
a structure, which will describe what your data looks like. Although Elasticsearch
is a schema-less search engine and can figure out the data structure on the fly, we
think that controlling the structure and thus defining it ourselves is a better way.
In the following few pages, you'll see how to create new indices (and how to delete
them). Before we look closer at the available API methods, let's see what the indexing
process looks like.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

[44]

Shards and replicas
As you recollect from the previous chapter, the Elasticsearch index is built of one
or more shards and each of them contains part of your document set. Each of these
shards can also have replicas, which are exact copies of the shard. During index
creation, we can specify how many shards and replicas should be created. We can
also omit this information and use the default values either defined in the global
configuration file (elasticsearch.yml) or implemented in Elasticsearch internals.
If we rely on Elasticsearch defaults, our index will end up with five shards and
one replica. What does that mean? To put it simply, we will end up with having
10 Lucene indices distributed among the cluster.

Are you wondering how we did the calculation and got 10
Lucene indices from five shards and one replica? The term
"replica" is somewhat misleading. It means that every shard
has its copy, so it means there are five shards and five copies.

Having a shard and its replica, in general, means that when we index a document, we
will modify them both. That's because to have an exact copy of a shard, Elasticsearch
needs to inform all the replicas about the change in shard contents. In the case of
fetching a document, we can use either the shard or its copy. In a system with many
physical nodes, we will be able to place the shards and their copies on different nodes
and thus use more processing power (such as disk I/O or CPU). To sum up, the
conclusions are as follows:

•	 More shards allow us to spread indices to more servers, which means
we can handle more documents without losing performance.

•	 More shards means that fewer resources are required to fetch a particular
document because fewer documents are stored in a single shard compared
to the documents stored in a deployment with fewer shards.

•	 More shards means more problems when searching across the index because
we have to merge results from more shards and thus the aggregation phase
of the query can be more resource intensive.

•	 Having more replicas results in a fault tolerance cluster, because when the
original shard is not available, its copy will take the role of the original shard.
Having a single replica, the cluster may lose the shard without data loss.
When we have two replicas, we can lose the primary shard and its single
replica and still everything will work well.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[45]

•	 The more the replicas, the higher the query throughput will be. That's because
the query can use either a shard or any of its copies to execute the query.

Of course, these are not the only relationships between the number of shards
and replicas in Elasticsearch. We will talk about most of them later in the book.

So, how many shards and replicas should we have for our indices? That depends.
We believe that the defaults are quite good but nothing can replace a good test.
Note that the number of replicas is less important because you can adjust it on a live
cluster after index creation. You can remove and add them if you want and have the
resources to run them. Unfortunately, this is not true when it comes to the number
of shards. Once you have your index created, the only way to change the number
of shards is to create another index and reindex your data.

Creating indices
When we created our first document in Elasticsearch, we didn't care about index
creation at all. We just used the following command:

curl -XPUT http://localhost:9200/blog/article/1 -d '{"title": "New
 version of Elasticsearch released!", "content": "...", "tags":
 ["announce", "elasticsearch", "release"] }'

This is fine. If such an index does not exist, Elasticsearch automatically creates
the index for us. We can also create the index ourselves by running the following
command:

curl -XPUT http://localhost:9200/blog/

We just told Elasticsearch that we want to create the index with the blog name.
If everything goes right, you will see the following response from Elasticsearch:

{"acknowledged":true}

When is manual index creation necessary? There are many situations. One of them
can be the inclusion of additional settings such as the index structure or the number
of shards.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

[46]

Altering automatic index creation
Sometimes, you can come to the conclusion that automatic index creation is
a bad thing. When you have a big system with many processes sending data
into Elasticsearch, a simple typo in the index name can destroy hours of script
work. You can turn off automatic index creation by adding the following line
in the elasticsearch.yml configuration file:

action.auto_create_index: false

Note that action.auto_create_index is more complex than it
looks. The value can be set to not only false or true. We can also use
index name patterns to specify whether an index with a given name can
be created automatically if it doesn't exist. For example, the following
definition allows automatic creation of indices with the names beginning
with a, but disallows the creation of indices starting with an. The other
indices aren't allowed and must be created manually (because of -*).
action.auto_create_index: -an*,+a*,-*

Note that the order of pattern definitions matters. Elasticsearch checks
the patterns up to the first pattern that matches, so if you move -an*
to the end, it won't be used because of +a*, which will be checked first.

Settings for a newly created index
The manual creation of an index is also necessary when you want to set some
configuration options, such as the number of shards and replicas. Let's look at
the following example:

curl -XPUT http://localhost:9200/blog/ -d '{
 "settings" : {

 "number_of_shards" : 1,

 "number_of_replicas" : 2

 }

}'

The preceding command will result in the creation of the blog index with one shard
and two replicas, so it makes a total of three physical Lucene indices. Also, there
are other values that can be set in this way; we will talk about those later in the book.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[47]

So, we already have our new, shiny index. But there is a problem; we forgot to provide
the mappings, which are responsible for describing the index structure. What can we
do? Since we have no data at all, we'll go for the simplest approach – we will just delete
the index. To do that, we will run a command similar to the preceding one, but instead
of using the PUT HTTP method, we use DELETE. So the actual command is as follows:

curl –XDELETE http://localhost:9200/posts

And the response will be the same as the one we saw earlier, as follows:

{"acknowledged":true}

Now that we know what an index is, how to create it, and how to delete it, we are
ready to create indices with the mappings we have defined. It is a very important
part because data indexation will affect the search process and the way in which
documents are matched.

Mappings configuration
If you are used to SQL databases, you may know that before you can start inserting
the data in the database, you need to create a schema, which will describe what your
data looks like. Although Elasticsearch is a schema-less search engine and can figure
out the data structure on the fly, we think that controlling the structure and thus
defining it ourselves is a better way. In the following few pages, you'll see how to
create new indices (and how to delete them) and how to create mappings that suit
your needs and match your data structure.

Note that we didn't include all the information about the available types
in this chapter and some features of Elasticsearch, such as nested type,
parent-child handling, storing geographical points, and search, are
described in the following chapters of this book.

Type determining mechanism
Before we start describing how to create mappings manually, we wanted to write
about one thing. Elasticsearch can guess the document structure by looking at JSON,
which defines the document. In JSON, strings are surrounded by quotation marks,
Booleans are defined using specific words, and numbers are just a few digits. This is
a simple trick, but it usually works. For example, let's look at the following document:

{
 "field1": 10,

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

[48]

 "field2": "10"
}

The preceding document has two fields. The field1 field will be determined as
a number (to be precise, as long type), but field2 will be determined as a string,
because it is surrounded by quotation marks. Of course, this can be the desired
behavior, but sometimes the data source may omit the information about the
data type and everything may be present as strings. The solution to this is to
enable more aggressive text checking in the mapping definition by setting the
numeric_detection property to true. For example, we can execute the
following command during the creation of the index:

curl -XPUT http://localhost:9200/blog/?pretty -d '{

 "mappings" : {

 "article": {

 "numeric_detection" : true

 }

 }

}'

Unfortunately, the problem still exists if we want the Boolean type to be guessed.
There is no option to force the guessing of Boolean types from the text. In such cases,
when a change of source format is impossible, we can only define the field directly
in the mappings definition.

Another type that causes trouble is a date-based one. Elasticsearch tries to guess
dates given as timestamps or strings that match the date format. We can define the
list of recognized date formats using the dynamic_date_formats property, which
allows us to specify the formats array. Let's look at the following command for
creating the index and type:

curl -XPUT 'http://localhost:9200/blog/' -d '{

 "mappings" : {

 "article" : {

 "dynamic_date_formats" : ["yyyy-MM-dd hh:mm"]

 }

 }

}'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[49]

The preceding command will result in the creation of an index called blog with the
single type called article. We've also used the dynamic_date_formats property
with a single date format that will result in Elasticsearch using the date core type
(please refer to the Core types section in this chapter for more information about
field types) for fields matching the defined format. Elasticsearch uses the joda-time
library to define date formats, so please visit http://joda-time.sourceforge.net/
api-release/org/joda/time/format/DateTimeFormat.html if you are interested
in finding out more about them.

Remember that the dynamic_date_format property
accepts an array of values. That means that we can
handle several date formats simultaneously.

Disabling field type guessing
Let's think about the following case. First we index a number, an integer.
Elasticsearch will guess its type and will set the type to integer or long (refer
to the Core types section in this chapter for more information about field types).
What will happen if we index a document with a floating point number into the
same field? Elasticsearch will just remove the decimal part of the number and store
the rest. Another reason for turning it off is when we don't want to add new fields to
an existing index—the fields that were not known during application development.

To turn off automatic field adding, we can set the dynamic property to false.
We can add the dynamic property as the type property. For example, if we would
like to turn off automatic field type guessing for the article type in the blog index,
our command will look as follows:

curl -XPUT 'http://localhost:9200/blog/' -d '{

 "mappings" : {

 "article" : {

 "dynamic" : "false",

 "properties" : {

 "id" : { "type" : "string" },

 "content" : { "type" : "string" },

 "author" : { "type" : "string" }

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

[50]

 }

 }

 }

}'

After creating the blog index using the preceding command, any field that is not
mentioned in the properties section (we will discuss this in the next section) will
be ignored by Elasticsearch. So any field apart from id, content, and author will
just be ignored. Of course, this is only true for the article type in the blog index.

Index structure mapping
The schema mapping (or in short, mappings) is used to define the index structure.
As you may recall, each index can have multiple types, but we will concentrate on a
single type for now—just for simplicity. Let's assume that we want to create an index
called posts that will hold data for blog posts. It could have the following structure:

•	 Unique identifier
•	 Name
•	 Publication date
•	 Contents

In Elasticsearch, mappings are sent as JSON objects in a file. So, let's create a
mapping file that will match the aforementioned needs—we will call it posts.json.
Its content is as follows:

{
 "mappings": {
 "post": {
 "properties": {
 "id": {"type":"long", "store":"yes",
 "precision_step":"0" },
 "name": {"type":"string", "store":"yes",
 "index":"analyzed" },
 "published": {"type":"date", "store":"yes",
 "precision_step":"0" },
 "contents": {"type":"string", "store":"no",
 "index":"analyzed" }
 }
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[51]

To create our posts index with the preceding file, run the following command
(assuming that we stored the mappings in the posts.json file):

curl -XPOST 'http://localhost:9200/posts' -d @posts.json

Note that you can store your mappings and set
a file named anyway you want.

And again, if everything goes well, we see the following response:

{"acknowledged":true}

Now we have our index structure and we can index our data. Let's take a break to
discuss the contents of the posts.json file.

Type definition
As you can see, the contents of the posts.json file are JSON objects and therefore
it starts and ends with curly brackets (if you want to learn more about JSON, please
visit http://www.json.org/). All the type definitions inside the mentioned file are
nested in the mappings object. You can define multiple types inside the mappings
JSON object. In our example, we have a single post type. But, for example, if we
would also like to include the user type, the file will look as follows:

{
 "mappings": {
 "post": {
 "properties": {
 "id": { "type":"long", "store":"yes",
 "precision_step":"0" },
 "name": { "type":"string", "store":"yes",
 "index":"analyzed" },
 "published": { "type":"date", "store":"yes",
 "precision_step":"0" },
 "contents": { "type":"string", "store":"no",
 "index":"analyzed" }
 }
 },
 "user": {
 "properties": {
 "id": { "type":"long", "store":"yes",
 "precision_step":"0" },
 "name": { "type":"string", "store":"yes",

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

[52]

 "index":"analyzed" }
 }
 }
 }
}

Fields
Each type is defined by a set of properties—fields that are nested inside the
properties object. So let's concentrate on a single field now; for example, the
contents field, whose definition is as follows:

"contents": { "type":"string", "store":"yes", "index":"analyzed" }

It starts with the name of the field, which is contents in the preceding case. After the
name of the field, we have an object defining the behavior of the field. The attributes
are specific to the types of fields we are using and we will discuss them in the next
section. Of course, if you have multiple fields for a single type (which is what we
usually have), remember to separate them with a comma.

Core types
Each field type can be specified to a specific core type provided by Elasticsearch.
The core types in Elasticsearch are as follows:

•	 String
•	 Number
•	 Date
•	 Boolean
•	 Binary

So, now let's discuss each of the core types available in Elasticsearch and the
attributes it provides to define their behavior.

Common attributes
Before continuing with all the core type descriptions, we would like to discuss
some common attributes that you can use to describe all the types (except for
the binary one).

•	 index_name: This defines the name of the field that will be stored in the
index. If this is not defined, the name will be set to the name of the object
that the field is defined with.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[53]

•	 index: This can take the values analyzed and no. Also, for string-based
fields, it can also be set to not_analyzed. If set to analyzed, the field will
be indexed and thus searchable. If set to no, you won't be able to search on
such a field. The default value is analyzed. In the case of string-based fields,
there is an additional option, not_analyzed. This, when set, will mean that
the field will be indexed but not analyzed. So, the field is written in the
index as it was sent to Elasticsearch and only a perfect match will be counted
during a search. Setting the index property to no will result in the disabling
of the include_in_all property of such a field.

•	 store: This can take the values yes and no and specifies if the original value
of the field should be written into the index. The default value is no, which
means that you can't return that field in the results (although, if you use the
_source field, you can return the value even if it is not stored), but if you have
it indexed, you can still search the data on the basis of it.

•	 boost: The default value of this attribute is 1. Basically, it defines how
important the field is inside the document; the higher the boost, the more
important the values in the field.

•	 null_value: This attribute specifies a value that should be written into the
index in case that field is not a part of an indexed document. The default
behavior will just omit that field.

•	 copy_to: This attribute specifies a field to which all field values will be copied.
•	 include_in_all: This attribute specifies if the field should be included

in the _all field. By default, if the _all field is used, all the fields will be
included in it. The _all field will be described in more detail in the Extending
your index structure with additional internal information section.

String
String is the most basic text type, which allows us to store one or more characters
inside it. A sample definition of such a field can be as follows:

"contents" : { "type" : "string", "store" : "no", "index" :
 "analyzed" }

In addition to the common attributes, the following attributes can also be set for
string-based fields:

•	 term_vector: This attribute can take the values no (the default one), yes,
with_offsets, with_positions, and with_positions_offsets. It defines
whether or not to calculate the Lucene term vectors for that field. If you are
using highlighting, you will need to calculate the term vector.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

[54]

•	 omit_norms: This attribute can take the value true or false. The default
value is false for string fields that are analyzed and true for string fields
that are indexed but not analyzed. When this attribute is set to true, it
disables the Lucene norms calculation for that field (and thus you can't use
index-time boosting), which can save memory for fields used only in filters
(and thus not being taken into consideration when calculating the score of
the document).

•	 analyzer: This attribute defines the name of the analyzer used for indexing
and searching. It defaults to the globally-defined analyzer name.

•	 index_analyzer: This attribute defines the name of the analyzer used
for indexing.

•	 search_analyzer: This attribute defines the name of the analyzer used
for processing the part of the query string that is sent to a particular field.

•	 norms.enabled: This attribute specifies whether the norms should be loaded
for a field. By default, it is set to true for analyzed fields (which means that
the norms will be loaded for such fields) and to false for non-analyzed fields.

•	 norms.loading: This attribute takes the values eager and lazy. The first
value means that the norms for such fields are always loaded. The second
value means that the norms will be loaded only when needed.

•	 position_offset_gap: This attribute defaults to 0 and specifies the gap in
the index between instances of the given field with the same name. Setting
this to a higher value may be useful if you want position-based queries (like
phrase queries) to match only inside a single instance of the field.

•	 index_options: This attribute defines the indexing options for the postings
list—the structure holding the terms (we will talk about this more in The
postings format section of this chapter). The possible values are docs (only
document numbers are indexed), freqs (document numbers and term
frequencies are indexed), positions (document numbers, term frequencies,
and their positions are indexed), and offsets (document numbers, term
frequencies, their positions, and offsets are indexed). The default value for this
property is positions for analyzed fields and docs for fields that are indexed
but not analyzed.

•	 ignore_above: This attribute defines the maximum size of the field in
characters. Fields whose size is above the specified value will be ignored
by the analyzer.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[55]

Number
This is the core type that gathers all numeric field types that are available to be
used. The following types are available in Elasticsearch (we specify them by using
the type property):

•	 byte: This type defines a byte value; for example, 1
•	 short: This type defines a short value; for example, 12
•	 integer: This type defines a integer value; for example, 134
•	 long: This type defines a long value; for example, 123456789
•	 float: This type defines a float value; for example, 12.23
•	 double: This type defines a double value; for example, 123.45

You can learn more about the mentioned Java types at
http://docs.oracle.com/javase/tutorial/
java/nutsandbolts/datatypes.html.

A sample definition of a field based on one of the numeric types is as follows:

"price" : { "type" : "float", "store" : "yes", "precision_step" : "4"
 }

In addition to the common attributes, the following ones can also be set for the
numeric fields:

•	 precision_step: This attribute specifies the number of terms generated
for each value in a field. The lower the value, the higher the number of terms
generated. For fields with a higher number of terms per value, range queries
will be faster at the cost of a slightly larger index. The default value is 4.

•	 ignore_malformed: This attribute can take the value true or false.
The default value is false. It should be set to true in order to omit badly
formatted values.

Boolean
The boolean core type is designed for indexing Boolean values (true or false).
A sample definition of a field based on the boolean type can be as follows:

"allowed" : { "type" : "boolean", "store": "yes" }

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

[56]

Binary
The binary field is a Base64 representation of the binary data stored in the index. You
can use it to store data that is normally written in binary form, such as images. Fields
based on this type are by default stored and not indexed, so you can only retrieve
them and cannot perform search operations on them. The binary type only supports
the index_name property. The sample field definition based on the binary field may
look like the following:

"image" : { "type" : "binary" }

Date
The date core type is designed to be used for date indexing. It follows a specific
format that can be changed and is stored in UTC by default.

The default date format understood by Elasticsearch is quite universal and allows the
specifying of the date and optionally the time, for example, 2012-12-24T12:10:22.
A sample definition of a field based on the date type is as follows:

"published" : { "type" : "date", "store" : "yes", "format" :
 "YYYY-mm-dd" }

A sample document that uses the preceding field is as follows:

{
 "name" : "Sample document",
 "published" : "2012-12-22"
}

In addition to the common attributes, the following ones can also be set for the fields
based on the date type:

•	 format: This attribute specifies the format of the date. The default value
is dateOptionalTime. For a full list of formats, please visit http://www.
elasticsearch.org/guide/en/elasticsearch/reference/current/
mapping-date-format.html.

•	 precision_step: This attribute specifies the number of terms generated for
each value in that field. The lower the value, the higher the number of terms
generated, and thus the faster the range queries (but with a higher index
size). The default value is 4.

•	 ignore_malformed: This attribute can take the value true or false.
The default value is false. It should be set to true in order to omit badly
formatted values.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[57]

Multifields
Sometimes, you would like to have the same field values in two fields; for example,
one for searching and one for sorting, or one analyzed with the language analyzer
and one only on the basis of whitespace characters. Elasticsearch addresses this
need by allowing the addition of the fields object to the field definition. It allows
the mapping of several core types into a single field and having them analyzed
separately. For example, if we would like to calculate faceting and search on our
name field, we can define the following field:

"name": {

 "type": "string",

 "fields": {

 "facet": { "type" : "string", "index": "not_analyzed" }

 }

}

The preceding definition will create two fields: we will refer to the first as name and the
second as name.facet. Of course, you don't have to specify two separate fields during
indexing—a single one named name is enough; Elasticsearch will do the rest, which
means copying the value of the field to all the fields from the preceding definition.

The IP address type
The ip field type was added to Elasticsearch to simplify the use of IPv4 addresses
in a numeric form. This field type allows us to search data that is indexed as an IP
address, sort on this data, and use range queries using IP values.

A sample definition of a field based on one of the numeric types is as follows:

"address" : { "type" : "ip", "store" : "yes" }

In addition to the common attributes, the precision_step attribute can also be
set for the numeric fields. This attribute specifies the number of terms generated for
each value in a field. The lower the value, the higher the number of terms generated.
For fields with a higher number of terms per value, range queries will be faster at the
cost of a slightly larger index. The default value is 4.

A sample document that uses the preceding field is as follows:

{
 "name" : "Tom PC",
 "address" : "192.168.2.123"
}

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

[58]

The token_count type
The token_count field type allows us to store index information about how many
words the given field has instead of storing and indexing the text provided to the
field. It accepts the same configuration options as the number type, but in addition
to that, it allows us to specify the analyzer by using the analyzer property.

A sample definition of a field based on the token_count field type looks as follows:

"address_count" : { "type" : "token_count", "store" : "yes" }

Using analyzers
As we mentioned, for the fields based on the string type, we can specify which
analyzer the Elasticsearch should use. As you remember from the Full-text searching
section of Chapter 1, Getting Started with the Elasticsearch Cluster, the analyzer is a
functionality that is used to analyze data or queries in a way we want. For example,
when we divide words on the basis of whitespaces and lowercase characters,
we don't have to worry about users sending words in lowercase or uppercase.
Elasticsearch allows us to use different analyzers at the time of indexing and
different analyzers at the time of querying—we can choose how we want our data
to be processed at each stage of the search process. To use one of the analyzers, we
just need to specify its name to the correct property of the field and that's all.

Out-of-the-box analyzers
Elasticsearch allows us to use one of the many analyzers defined by default. The
following analyzers are available out of the box:

•	 standard: This is a standard analyzer that is convenient for most European
languages (please refer to http://www.elasticsearch.org/guide/en/
elasticsearch/reference/current/analysis-standard-analyzer.html
for the full list of parameters).

•	 simple: This is an analyzer that splits the provided value depending on non-
letter characters and converts them to lowercase.

•	 whitespace: This is an analyzer that splits the provided value on the basis
of whitespace characters

•	 stop: This is similar to a simple analyzer, but in addition to the functionality
of the simple analyzer, it filters the data on the basis of the provided set of
stop words (please refer to http://www.elasticsearch.org/guide/en/
elasticsearch/reference/current/analysis-stop-analyzer.html for
the full list of parameters).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[59]

•	 keyword: This is a very simple analyzer that just passes the provided value.
You'll achieve the same by specifying a particular field as not_analyzed.

•	 pattern: This is an analyzer that allows flexible text separation by the use
of regular expressions (please refer to http://www.elasticsearch.org/
guide/en/elasticsearch/reference/current/analysis-pattern-
analyzer.html for the full list of parameters).

•	 language: This is an analyzer that is designed to work with a specific
language. The full list of languages supported by this analyzer can be
found at http://www.elasticsearch.org/guide/en/elasticsearch/
reference/current/analysis-lang-analyzer.html.

•	 snowball: This is an analyzer that is similar to standard, but additionally
provides the stemming algorithm (please refer to http://www.
elasticsearch.org/guide/en/elasticsearch/reference/current/
analysis-snowball-analyzer.html for the full list of parameters).

Stemming is the process of reducing inflected and derived words
to their stem or base form. Such a process allows for the reduction
of words, for example, with cars and car. For the mentioned
words, stemmer (which is an implementation of the stemming
algorithm) will produce a single stem, car. After indexing,
documents containing such words will be matched while using
any of them. Without stemming, documents with the word "cars"
will only be matched by a query containing the same word.

Defining your own analyzers
In addition to the analyzers mentioned previously, Elasticsearch allows us to define
new ones without the need to write a single line of Java code. In order to do that,
we need to add an additional section to our mappings file; that is, the settings
section, which holds useful information required by Elasticsearch during index
creation. The following is how we define our custom settings section:

"settings" : {
 "index" : {
 "analysis": {
 "analyzer": {
 "en": {
 "tokenizer": "standard",
 "filter": [
 "asciifolding",
 "lowercase",

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

[60]

 "ourEnglishFilter"
]
 }
 },
 "filter": {
 "ourEnglishFilter": {
 "type": "kstem"
 }
 }
 }
 }
}

We specified that we want a new analyzer named en to be present. Each analyzer
is built from a single tokenizer and multiple filters. A complete list of default filters
and tokenizers can be found at http://www.elasticsearch.org/guide/en/
elasticsearch/reference/current/analysis.html. Our en analyzer includes the
standard tokenizer and three filters: asciifolding and lowercase, which are the
ones available by default, and ourEnglishFilter, which is a filter we have defined.

To define a filter, we need to provide its name, its type (the type property), and any
number of additional parameters required by that filter type. The full list of filter
types available in Elasticsearch can be found at http://www.elasticsearch.org/
guide/en/elasticsearch/reference/current/analysis.html. This list changes
constantly, so we'll skip commenting on it.

So, the final mappings file with the analyzer defined will be as follows:

{
 "settings" : {
 "index" : {
 "analysis": {
 "analyzer": {
 "en": {
 "tokenizer": "standard",
 "filter": [
 "asciifolding",
 "lowercase",
 "ourEnglishFilter"
]
 }
 },
 "filter": {
 "ourEnglishFilter": {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[61]

 "type": "kstem"
 }
 }
 }
 }
 },
 "mappings" : {
 "post" : {
 "properties" : {
 "id": { "type" : "long", "store" : "yes",
 "precision_step" : "0" },
 "name": { "type" : "string", "store" : "yes", "index" :
 "analyzed", "analyzer": "en" }
 }
 }
 }
}

We can see how our analyzer works by using the Analyze API (http://www.
elasticsearch.org/guide/en/elasticsearch/reference/current/indices-
analyze.html). For example, let's look at the following command:

curl -XGET 'localhost:9200/posts/_analyze?pretty&field=post.name' -d
'robots cars'

The command asks Elasticsearch to show the content of the analysis of the given
phrase (robots cars) with the use of the analyzer defined for the post type and its
name field. The response that we will get from Elasticsearch is as follows:

{

 "tokens" : [{

 "token" : "robot",

 "start_offset" : 0,

 "end_offset" : 6,

 "type" : "<ALPHANUM>",

 "position" : 1

 }, {

 "token" : "car",

 "start_offset" : 7,

 "end_offset" : 11,

 "type" : "<ALPHANUM>",

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

[62]

 "position" : 2

 }]

}

As you can see, the robots cars phrase was divided into two tokens. In addition to
that, the robots word was changed to robot and the cars word was changed to car.

Analyzer fields
An analyzer field (_analyzer) allows us to specify a field value that will be used
as the analyzer name for the document to which the field belongs. Imagine that you
have a software running that detects the language the document is written in and
you store that information in the language field in the document. In addition to that,
you would like to use that information to choose the right analyzer. To do that,
just add the following lines to your mappings file:

"_analyzer" : {
 "path" : "language"
}

The mappings file that includes the preceding information is as follows:

{
 "mappings" : {
 "post" : {
 "_analyzer" : {
 "path" : "language"
 },
 "properties" : {
 "id": { "type" : "long", "store" : "yes",
 "precision_step" : "0" },
 "name": { "type" : "string", "store" : "yes",
 "index" : "analyzed" },
 "language": { "type" : "string", "store" : "yes",
 "index" : "not_analyzed"}
 }
 }
 }
}

Note that there has to be an analyzer defined with the same name as the value
provided in the language field or else the indexing will fail.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[63]

Default analyzers
There is one more thing to say about analyzers—the ability to specify the analyzer
that should be used by default if no analyzer is defined. This is done in the same way
as we configured a custom analyzer in the settings section of the mappings file, but
instead of specifying a custom name for the analyzer, a default keyword should be
used. So to make our previously defined analyzer the default, we can change the en
analyzer to the following:

{
 "settings" : {
 "index" : {
 "analysis": {
 "analyzer": {
 "default": {
 "tokenizer": "standard",
 "filter": [
 "asciifolding",
 "lowercase",
 "ourEnglishFilter"
]
 }
 },
 "filter": {
 "ourEnglishFilter": {
 "type": "kstem"
 }
 }
 }
 }
 }
}

Different similarity models
With the release of Apache Lucene 4.0 in 2012, all the users of this great full text
search library were given the opportunity to alter the default TF/IDF-based
algorithm (we've mentioned it in the Full-text searching section of Chapter 1, Getting
Started with the Elasticsearch Cluster. However, it was not the only change. Lucene
4.0 was shipped with additional similarity models, which basically allows us to use
different scoring formulas for our documents.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

[64]

Setting per-field similarity
Since Elasticsearch 0.90, we are allowed to set a different similarity for each of the
fields that we have in our mappings file. For example, let's assume that we have the
following simple mappings that we use in order to index blog posts:

{
 "mappings" : {
 "post" : {
 "properties" : {
 "id" : { "type" : "long", "store" : "yes",
 "precision_step" : "0" },
 "name" : { "type" : "string", "store" : "yes", "index" :
 "analyzed" },
 "contents" : { "type" : "string", "store" : "no",
 "index" : "analyzed" }
 }
 }
 }
}

To do this, we will use the BM25 similarity model for the name field and the contents
field. In order to do that, we need to extend our field definitions and add the
similarity property with the value of the chosen similarity name. Our changed
mappings will look like the following:

{
 "mappings" : {
 "post" : {
 "properties" : {
 "id" : { "type" : "long", "store" : "yes",
 "precision_step" : "0" },
 "name" : { "type" : "string", "store" : "yes",
 "index" : "analyzed", "similarity" : "BM25" },
 "contents" : { "type" : "string", "store" : "no",
 "index" : "analyzed", "similarity" : "BM25" }
 }
 }
 }
}

And that's all, nothing more is needed. After the preceding change, Apache
Lucene will use the BM25 similarity to calculate the score factor for the name
and contents fields.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[65]

Available similarity models
The three new similarity models available are as follows:

•	 Okapi BM25 model: This similarity model is based on a probabilistic
model that estimates the probability of finding a document for a given
query. In order to use this similarity in Elasticsearch, you need to use the
BM25 name. The Okapi BM25 similarity is said to perform best when dealing
with short text documents where term repetitions are especially hurtful
to the overall document score. To use this similarity, you need to set the
similarity property for a field to BM25. This similarity is defined out of
the box and doesn't need additional properties to be set.

•	 Divergence from randomness model: This similarity model is based on
the probabilistic model of the same name. In order to use this similarity in
Elasticsearch, you need to use the DFR name. It is said that the divergence
from randomness similarity model performs well on text that is similar to
natural language.

•	 Information-based model: This is the last model of the newly introduced
similarity models and is very similar to the divergence from randomness
model. In order to use this similarity in Elasticsearch, you need to use the
IB name. Similar to the DFR similarity, it is said that the information-based
model performs well on data similar to natural language text.

Configuring DFR similarity
In the case of the DFR similarity, we can configure the basic_model property
(which can take the value be, d, g, if, in, or ine), the after_effect property
(with values of no, b, or l), and the normalization property (which can be no,
h1, h2, h3, or z). If we choose a normalization value other than no, we need to
set the normalization factor. Depending on the chosen normalization value,
we should use normalization.h1.c (float value) for h1 normalization,
normalization.h2.c (float value) for h2 normalization, normalization.
h3.c (float value) for h3 normalization, and normalization.z.z (float value)
for z normalization. For example, the following is how the example similarity
configuration will look (we put this into the settings section of our mappings file):

 "similarity" : {
 "esserverbook_dfr_similarity" : {
 "type" : "DFR",
 "basic_model" : "g",
 "after_effect" : "l",
 "normalization" : "h2",
 "normalization.h2.c" : "2.0"

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

[66]

 }
 }

Configuring IB similarity
In case of IB similarity, we have the following parameters through which we can
configure the distribution property (which can take the value of ll or spl) and
the lambda property (which can take the value of df or tff). In addition to that,
we can choose the normalization factor, which is the same as for the DFR similarity,
so we'll omit describing it the second time. The following is how the example IB
similarity configuration will look (we put this into the settings section of our
mappings file):

 "similarity" : {
 "esserverbook_ib_similarity" : {
 "type" : "IB",
 "distribution" : "ll",
 "lambda" : "df",
 "normalization" : "z",
 "normalization.z.z" : "0.25"
 }
 }

The similarity model is a fairly complicated topic and will require
a whole chapter to be properly described. If you are interested in it,
please refer to our book, Mastering ElasticSearch, Packt Publishing, or go
to http://elasticsearchserverbook.com/elasticsearch-
0-90-similarities/ to read more about them.

The postings format
One of the most significant changes introduced with Apache Lucene 4.0 was the
ability to alter how index files are written. Elasticsearch leverages this functionality
by allowing us to specify the postings format for each field. You may want to change
how fields are indexed for performance reasons; for example, to have faster primary
key lookups.

The following postings formats are included in Elasticsearch:

•	 default: This is a postings format that is used when no explicit format is
defined. It provides on-the-fly stored fields and term vectors compression.
If you want to read about what to expect from the compression, please
refer to http://solr.pl/en/2012/11/19/solr-4-1-stored-fields-
compression/.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[67]

•	 pulsing: This is a postings format that encodes the post listing into the
terms array for high cardinality fields, which results in one less seek that
Lucene needs to perform when retrieving a document. Using this postings
format for high cardinality fields can speed up queries on such fields.

•	 direct: This is a postings format that loads terms into arrays during read
operations. These arrays are held in the memory uncompressed. This format
may give you a performance boost on commonly used fields, but should
be used with caution as it is very memory intensive, because the terms and
postings arrays needs to be stored in the memory. Please remember that since
all the terms are held in the byte array, you can have up to 2.1 GB of memory
used for this per segment.

•	 memory: This postings format, as its name suggests, writes all the data to
disk, but reads the terms and post listings into the memory using a structure
called FST (Finite State Transducers). You can read more about this
structure in a great post by Mike McCandless, available at http://blog.
mikemccandless.com/2010/12/using-finite-state-transducers-in.
html. Because the data is stored in memory, this postings format may result
in a performance boost for commonly used terms.

•	 bloom_default: This is an extension of the default postings format that
adds the functionality of a bloom filter written to disk. While reading, the
bloom filter is read and held into memory to allow very fast checking if a
given value exists. This postings format is very useful for high cardinality
fields such as the primary key. If you want to know more about what the
bloom filter is, please refer to http://en.wikipedia.org/wiki/Bloom_
filter. This postings format uses the bloom filter in addition to what the
default format does.

•	 bloom_pulsing: This is an extension of the pulsing postings format
and uses the bloom filter in addition to what the pulsing format does.

Configuring the postings format
The postings format is a per-field property, just like type or name. In order to
configure our field to use a different format than the default postings format,
we need to add a property called postings_format with the name of the chosen
postings format as a value. For example, if we would like to use the pulsing
postings format for the id field, the mappings will look as follows:

{
 "mappings" : {
 "post" : {
 "properties" : {
 "id" : { "type" : "long", "store" : "yes",

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

[68]

 "precision_step" : "0", "postings_format" : "pulsing" },
 "name" : { "type" : "string", "store" : "yes",
 "index" : "analyzed" },
 "contents" : { "type" : "string", "store" : "no",
 "index" : "analyzed" }
 }
 }
 }
}

Doc values
The doc values is the last field property we will discuss in this section. The doc
values format is another new feature introduced in Lucene 4.0. It allows us to define
that a given field's values should be written in a memory efficient, column-stride
structure for efficient sorting and faceting. The field with doc values enabled will
have a dedicated field data cache instances that doesn't need to be inverted (so that
they won't be stored in a way we described in the Full-text searching section in Chapter
1, Getting Started with the Elasticsearch Cluster) like standard fields. Therefore, it makes
the index refresh operation faster and allows you to store the field data for such fields
on disk and thus save heap memory for such fields.

Configuring the doc values
Let's extend our posts index example by adding a new field called votes. Let's assume
that the newly added field contains the number of votes a given post was given and we
want to sort on it. Because we are sorting on it, it is a good candidate for doc values. To
use doc values on a given field, we need to add the doc_values_format property to its
definition and specify the format. For example, our mappings will look as follows:

{
 "mappings" : {
 "post" : {
 "properties" : {
 "id" : { "type" : "long", "store" : "yes",
 "precision_step" : "0" },
 "name" : { "type" : "string", "store" : "yes",
 "index" : "analyzed" },
 "contents" : { "type" : "string", "store" : "no",
 "index" : "analyzed" },
 "votes" : { "type" : "integer",
 "doc_values_format" : "memory" }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[69]

 }
 }
}

As you can see, the definition is very simple. So let's see what options we have when
it comes to the value of the doc_values_format property.

Doc values formats
Currently, there are three values for the doc_values_format property that can be
used, as follows:

•	 default: This is a doc values format that is used when no format is specified.
It offers good performance with low memory usage.

•	 disk: This is a doc values format that stores the data on disk. It requires
almost no memory. However, there is a slight performance degradation
when using this data structure for operations like faceting and sorting.
Use this doc values format if you are struggling with memory issues while
using faceting or sorting operations.

•	 memory: This is a doc values format that stores data in memory. Using this
format will result in sorting and faceting functions that give performance
that is comparable to standard inverted index fields. However, because the
data structure is stored in memory, the index refresh operation will be faster,
which can help with rapidly changing indices and short index refresh values.

Batch indexing to speed up your
indexing process
In the first chapter, we've seen how to index a particular document into Elasticsearch.
Now, it's time to find out how to index many documents in a more convenient and
efficient way than doing it one by one.

Preparing data for bulk indexing
Elasticsearch allows us to merge many requests into one packet. These packets can
be sent as a single request. In this way, we can mix the following operations:

•	 Adding or replacing the existing documents in the index (index)
•	 Removing documents from the index (delete)
•	 Adding new documents to the index when there is no other definition of

the document in the index (create)

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

[70]

The format of the request was chosen for processing efficiency. It assumes that every
line of the request contains a JSON object with the description of the operation
followed by the second line with a JSON object itself. We can treat the first line as
a kind of information line and the second as the data line. The exception to this rule
is the delete operation, which contains only the information line. Let's look at the
following example:

{ "index": { "_index": "addr", "_type": "contact", "_id": 1 }}
{ "name": "Fyodor Dostoevsky", "country": "RU" }
{ "create": { "_index": "addr", "_type": "contact", "_id": 2 }}
{ "name": "Erich Maria Remarque", "country": "DE" }
{ "create": { "_index": "addr", "_type": "contact", "_id": 2 }}
{ "name": "Joseph Heller", "country": "US" }
{ "delete": { "_index": "addr", "_type": "contact", "_id": 4 }}
{ "delete": { "_index": "addr", "_type": "contact", "_id": 1 }}

It is very important that every document or action description be placed in one line
(ended by a newline character). This means that the document cannot be pretty-
printed. There is a default limitation on the size of the bulk indexing file, which is set
to 100 megabytes and can be changed by specifying the http.max_content_length
property in the Elasticsearch configuration file. This lets us avoid issues with possible
request timeouts and memory problems when dealing with requests that are too large.

Note that with a single batch indexing file, we can load the data
into many indices and documents can have different types.

Indexing the data
In order to execute the bulk request, Elasticsearch provides the _bulk endpoint.
This can be used as /_bulk, with the index name /index_name/_bulk, or even with
a type and index name /index_name/type_name/_bulk. The second and third
forms define the default values for the index name and type name. We can omit
these properties in the information line of our request and Elasticsearch will use the
default values.

Assuming we've stored our data in the documents.json file, we can run the
following command to send this data to Elasticsearch:

curl -XPOST 'localhost:9200/_bulk?pretty' --data-binary
 @documents.json

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[71]

The ?pretty parameter is of course not necessary. We've used this parameter only
for the ease of analyzing the response of the preceding command. In this case, using
curl with the --data-binary parameter instead of using -d is important. This is
because the standard –d parameter ignores newline characters, which, as we said
earlier, are important for parsing Elasticsearch's bulk request content. Now let's look
at the response returned by Elasticsearch:

{

 "took" : 139,

 "errors" : true,

 "items" : [{

 "index" : {

 "_index" : "addr",

 "_type" : "contact",

 "_id" : "1",

 "_version" : 1,

 "status" : 201

 }

 }, {

 "create" : {

 "_index" : "addr",

 "_type" : "contact",

 "_id" : "2",

 "_version" : 1,

 "status" : 201

 }

 }, {

 "create" : {

 "_index" : "addr",

 "_type" : "contact",

 "_id" : "2",

 "status" : 409,

 "error" : "DocumentAlreadyExistsException[[addr][3]
 [contact][2]: document already exists]"

 }

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

[72]

 }, {

 "delete" : {

 "_index" : "addr",

 "_type" : "contact",

 "_id" : "4",

 "_version" : 1,

 "status" : 404,

 "found" : false

 }

 }, {

 "delete" : {

 "_index" : "addr",

 "_type" : "contact",

 "_id" : "1",

 "_version" : 2,

 "status" : 200,

 "found" : true

 }

 }]

}

As we can see, every result is a part of the items array. Let's briefly compare these
results with our input data. The first two commands, named index and create,
were executed without any problems. The third operation failed because we wanted
to create a record with an identifier that already existed in the index. The next two
operations were deletions. Both succeeded. Note that the first of them tried to delete
a nonexistent document; as you can see, this wasn't a problem for Elasticsearch. As
you can see, Elasticsearch returns information about each operation, so for large bulk
requests, the response can be massive.

Even quicker bulk requests
Bulk operations are fast, but if you are wondering if there is a more efficient and
quicker way of indexing, you can take a look at the User Datagram Protocol (UDP)
bulk operations. Note that using UDP doesn't guarantee that no data will be lost
during communication with the Elasticsearch server. So, this is useful only in some
cases where performance is critical and more important than accuracy and having all
the documents indexed.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[73]

Extending your index structure with
additional internal information
Apart from the fields that are used to hold data, we can store additional information
along with the documents. We already talked about different mapping options
and what data type we can use. We would like to discuss in more detail some
functionalities of Elasticsearch that are not used every day, but can make your life
easier when it comes to data handling.

Each of the field types discussed in the following sections
should be defined on an appropriate type level—they are
not index wide

Identifier fields
As you may recall, each document indexed in Elasticsearch has its own identifier and
type. In Elasticsearch, there are two types of internal identifiers for the documents.

The first one is the _uid field, which is the unique identifier of the document in
the index and is composed of the document's identifier and document type. This
basically means that documents of different types that are indexed into the same
index can have the same document identifier, yet Elasticsearch will be able to
distinguish them. This field doesn't require any additional settings; it is always
indexed, but it's good to know that it exists.

The second field that holds the identifier is the _id field. This field stores the
actual identifier set during index time. In order to enable the _id field indexing
(and storing, if needed), we need to add the _id field definition just like any other
property in our mappings file (although, as said before, add it in the body of the type
definition). So, our sample book type definition will look like the following:

{
 "book" : {
 "_id" : {
 "index": "not_analyzed",
 "store" : "no"
 },
 "properties" : {
 .
 .
 .
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

[74]

 }
}

As you can see, in the preceding example, we coded that we want our _id field to be
indexed but not analyzed and we don't want to store the index.

In addition to specifying the identifier during indexing time, we can specify that we
want it to be fetched from one of the fields of the indexed documents (although it
will be slightly slower because of the additional parsing needed). In order to do that,
we need to specify the path property and set its value to the name of the field whose
value we want to set as the identifier. For example, if we have the book_id field in
our index and we want to use it as the value for the _id field, we can change the
preceding mappings file as follows:

{
 "book" : {
 "_id" : {
 "path": "book_id"
 },
 "properties" : {
 .
 .
 .
 }
 }
}

One last thing—remember that even when disabling the _id field, all the
functionalities requiring the document's unique identifier will still work,
because they will be using the _uid field instead.

The _type field
We already said that each document in Elasticsearch is at least described by its
identifier and type. By default, the document type is indexed but not analyzed
and stored. If we would like to store that field, we will change our mappings file
as follows:

{
 "book" : {
 "_type" : {
 "store" : "yes"
 },
 "properties" : {
 .

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[75]

 .
 .
 }
 }
}

We can also change the _type field to not be indexed, but then some queries such
as term queries and filters will not work.

The _all field
The _all field is used by Elasticsearch to store data from all the other fields in a
single field for ease of searching. This kind of field may be useful when we want to
implement a simple search feature and we want to search all the data (or only the
fields we copy to the _all field), but we don't want to think about field names and
things like that. By default, the _all field is enabled and contains all the data from
all the fields from the index. However, this field will make the index a bit bigger and
that is not always needed. We can either disable the _all field completely or exclude
the copying of certain fields to it. In order not to include a certain field in the _all
field, we will use the include_in_all property, which was discussed earlier in
this chapter. To completely turn off the _all field functionality, we will modify our
mappings file as follows:

{
 "book" : {
 "_all" : {
 "enabled" : "false"
 },
 "properties" : {
 .
 .
 .
 }
 }
}

In addition to the enabled property, the _all field supports the following ones:

•	 store

•	 term_vector

•	 analyzer

•	 index_analyzer

•	 search_analyzer

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

[76]

For information about the preceding properties, please refer to the Mappings
configuration section in this chapter.

The _source field
The _source field allows us to store the original JSON document that was sent to
Elasticsearch during indexation. By default, the _source field is turned on because
some of the Elasticsearch functionalities depend on it (for example, the partial
update feature). In addition to that, the _source field can be used as the source
of data for the highlighting functionality if a field is not stored. But if we don't
need such a functionality, we can disable the _source field as it causes some
storage overhead. In order to do that, we need to set the _source object's
enabled property to false, as follows:

{
 "book" : {
 "_source" : {
 "enabled" : false
 },
 "properties" : {
 .
 .
 .
 }
 }
}

Exclusion and inclusion
We can also tell Elasticsearch which fields we want to exclude from the _source
field and which fields we want to include. We do that by adding the includes
and excludes properties to the _source field definition. For example, if we want
to exclude all the fields in the author path from the _source field, our mappings
will look as follows:

{
 "book" : {
 "_source" : {
 "excludes" : ["author.*"]
 },
 "properties" : {
 .
 .
 .

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[77]

 }
 }
}

The _index field
Elasticsearch allows us to store the information about the index that the documents
are indexed to. We can do that by using the internal _index field. Imagine that we
create daily indices, we use aliasing, and we are interested in the daily index in
which the returned document is stored. In such cases, the _index field can be useful,
because it may help us identify the index the document comes from.

By default, the indexing of the _index field is disabled. In order to enable it, we need
to set the enabled property of the _index object to true, as follows:

{
 "book" : {
 "_index" : {
 "enabled" : true
 },
 "properties" : {
 .
 .
 .
 }
 }
}

The _size field
By default, the _size field is not enabled; it enables us to automatically index the
original size of the _source field and store it along with the documents. If we would
like to enable the _size field, we need to add the _size property and wrap the
enabled property with the value true. In addition to that, we can also set the _size
field to be stored by using the usual store property. So, if we want our mapping to
include the _size field and we want it to be stored, we will change our mappings file
to something like the following:

{
 "book" : {
 "_size" : {
 "enabled": true,
 "store" : "yes"
 },

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

[78]

 "properties" : {
 .
 .
 .
 }
 }
}

The _timestamp field
Disabled by default, the _timestamp field allows us to store when the document was
indexed. Enabling this functionality is as simple as adding the _timestamp section to
our mappings file and setting the enabled property to true, as follows:

{
 "book" : {
 "_timestamp" : {
 "enabled" : true
 },
 "properties" : {
 .
 .
 .
 }
 }
}

The _timestamp field is, by default, not stored, indexed, but not analyzed and you can
change these two parameters to match your needs. In addition to that, the _timestamp
field is just like the normal date field, so we can change its format just like we do with
usual date-based fields. In order to change the format, we need to specify the format
property with the desired format (please refer to the date core type description earlier
in this chapter to read more about date formats).

One more thing—instead of automatically creating the _timestamp field during
document indexation, we can add the path property and set it to the name of the field,
which should be used to get the date. So if we want our _timestamp field to be based
on the year field, we will modify our mappings file to something like the following:

{
 "book" : {
 "_timestamp" : {
 "enabled" : true,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[79]

 "path" : "year",
 "format" : "YYYY"
 },
 "properties" : {
 .
 .
 .
 }
 }
}

As you may have noticed, we also modify the format of the _timestamp field in
order to match the values stored in the year field.

If you use the _timestamp field and you let Elasticsearch create
it automatically, the value of that field will be set to the time of
indexation of that document. Please note that when using the
partial document update functionality, the _timestamp field
will also be updated.

The _ttl field
The _ttl field stands for time to live, a functionality that allows us to define the life
period of a document, after which it will be automatically deleted. As you may expect,
by default, the _ttl field is disabled. And to enable it, we need to add the _ttl JSON
object and set its enabled property to true, just as in the following example:

{
 "book" : {
 "_ttl" : {
 "enabled" : true
 },
 "properties" : {
 .
 .
 .
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

[80]

If you need to provide the default expiration time for documents, just add the
default property to the _ttl field definition with the desired expiration time. For
example, to have our documents deleted after 30 days, we will set the following:

{
 "book" : {
 "_ttl" : {
 "enabled" : true,
 "default" : "30d"
 },
 "properties" : {
 .
 .
 .
 }
 }
}

The _ttl value, by default, is stored and indexed, but not analyzed and you can
change these two parameters, but remember that this field needs to be not analyzed
to work.

Introduction to segment merging
In the Full-text searching section of Chapter 1, Getting Started with the Elasticsearch
Cluster, we mentioned segments and their immutability. We wrote that the Lucene
library, and thus Elasticsearch, writes data to certain structures that are written
once and never changed. This allows for some simplification, but also introduces
the need for additional work. One such example is deletion. Because a segment
cannot be altered, information about deletions must be stored alongside and
dynamically applied during search. This is done to eliminate deleted documents
from the returned result set. The other example is the inability to modify documents
(however, some modifications are possible, such as modifying numeric doc values).
Of course, one can say that Elasticsearch supports document updates (please refer to
the Manipulating data with the REST API section of Chapter 1, Getting Started with the
Elasticsearch Cluster). However, under the hood, the old document is deleted and
the one with the updated contents is indexed.

As time passes and you continue to index your data, more and more segments are
created. Because of that, the search performance may be lower and your index may
be larger than it should be—it still contains the deleted documents. This is when
segment merging comes into play.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[81]

Segment merging
Segment merging is the process during which the underlying Lucene library takes
several segments and creates a new segment based on the information found in
them. The resulting segment has all the documents stored in the original segments
except the ones that were marked for deletion. After the merge operation, the source
segments are deleted from the disk. Because segment merging is rather costly in
terms of CPU and I/O usage, it is crucial to appropriately control when and how
often this process is invoked.

The need for segment merging
You may ask yourself why you have to bother with segment merging. First of all,
the more segments the index is built of, the slower the search will be and the more
memory Lucene will use. The second is the disk space and resources, such as file
descriptors, used by the index. If you delete many documents from your index, until
the merge happens, those documents are only marked as deleted and not deleted
physically. So, it may happen that most of the documents that use our CPU and
memory don't exist! Fortunately, Elasticsearch uses reasonable defaults for segment
merging and it is very probable that no changes are necessary.

The merge policy
The merge policy describes when the merging process should be performed.
Elasticsearch allows us to configure the following three different policies:

•	 tiered: This is the default merge policy that merges segments of
approximately similar size, taking into account the maximum number of
segments allowed per tier.

•	 log_byte_size: This is a merge policy that, over time, will produce an index
that will be built of a logarithmic size of indices. There will be a few large
segments, a few merge factor smaller segments, and so on.

•	 log_doc: This policy is similar to the log_byte_size merge policy, but
instead of operating on the actual segment size in bytes, it operates on the
number of documents in the index.

Each of the preceding policies has their own parameters, which define their behavior
and whose default values can be overridden. In this book, we will skip the detailed
description. If you want to learn more, check our book, Mastering ElasticSearch, Packt
Publishing, or go to http://www.elasticsearch.org/guide/en/elasticsearch/
reference/current/index-modules-merge.html.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

[82]

The merge policy we want to use can be set using the index.merge.policy.type
property as follows:

index.merge.policy.type: tiered

It is worth mentioning that the value cannot be changed after index creation.

The merge scheduler
The merge scheduler tells Elasticsearch how the merge process should occur. There
are two possibilities:

•	 Concurrent merge scheduler: This is the default merge process that starts in
a separate thread, and the defined number of threads can do the merges in
parallel.

•	 Serial merge scheduler: This process of merging runs in the calling thread
(the one executing indexing). The merge process will block the thread until
the merge is finished.

The scheduler can be set using the index.merge.scheduler.type parameter. The
values that we can use are serial for the serial merge scheduler or concurrent for
the concurrent one. For example, consider the following scheduler:

index.merge.scheduler.type: concurrent

The merge factor
Each of the policies has several settings. We already told that we don't want to
describe them, but there is an exception – the merge factor, which specifies how often
segments are merged during indexing. With a smaller merge factor value, the searches
are faster and less memory is used, but that comes with the cost of slower indexing.
With larger values, it is the opposite—indexing is faster (because less merging being
done), but the searches are slower and more memory is used. This factor can be set
for the log_byte_size and log_doc merge policies using the index.merge.policy.
merge_factor parameter as follows:

index.merge.policy.merge_factor: 10

The preceding example will set the merge factor to 10, which is also the default
value. It is advised to use larger values of merge_factor for batch indexing
and lower values of this parameter for normal index maintenance.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[83]

Throttling
As we have already mentioned, merging may be expensive when it comes to
server resources. The merge process usually works in parallel to other operations,
so theoretically it shouldn't have too much influence. In practice, the number of
disk input/output operations can be so large that it will significantly affect the
overall performance. In such cases, throttling is something that may help. In fact,
this feature can be used for limiting the speed of the merge, but also may be used
for all the operations using the data store. Throttling can be set in the Elasticsearch
configuration file (the elasticsearch.yml file) or dynamically using the settings
API (refer to the The update settings API section of Chapter 8, Administrating Your
Cluster). There are two settings that adjust throttling: type and value.

To set the throttling type, set the indices.store.throttle.type property, which
allows us to use the following values:

•	 none: This value defines that no throttling is on
•	 merge: This value defines that throttling affects only the merge process
•	 all: This value defines that throttling is used for all data store activities

The second property—indices.store.throttle.max_bytes_per_sec—describes
how much the throttling limits I/O operations. As its name suggests, it tells us how
many bytes can be processed per second. For example, let's look at the following
configuration:

indices.store.throttle.type: merge
indices.store.throttle.max_bytes_per_sec: 10mb

In this example, we limit the merge operations to 10 megabytes per second. By
default, Elasticsearch uses the merge throttling type with the max_bytes_per_sec
property set to 20mb. That means that all the merge operations are limited to
20 megabytes per second.

Introduction to routing
By default, Elasticsearch will try to distribute your documents evenly among all
the shards of the index. However, that's not always the desired situation. In order
to retrieve the documents, Elasticsearch must query all the shards and merge the
results. However, if you can divide your data on some basis (for example, the
client identifier), you can use a powerful document and query distribution control
mechanism—routing. In short, it allows us to choose a shard that will be used to
index or search data.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

[84]

Default indexing
During indexing operations, when you send a document for indexing, Elasticsearch
looks at its identifier to choose the shard in which the document should be indexed.
By default, Elasticsearch calculates the hash value of the document's identifier and
on the basis of that, it puts the document in one of the available primary shards.
Then, those documents are redistributed to the replicas. The following diagram
shows a simple illustration of how indexing works by default:

Node One Node Two Node Three

Node Four Node Five Node Six

Shard 1 Shard 2 Shard 3

Shard 4 Shard 5 Shard 6

Rest Endpoint

Elasticsearch Cluster

Document

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[85]

Default searching
Searching is a bit different from indexing, because in most situations, you need to
query all the shards to get the data you are interested in. Imagine a situation when
you have the following mappings describing your index:

{
 "mappings" : {
 "post" : {
 "properties" : {
 "id" : { "type" : "long", "store" : "yes",
 "precision_step" : "0" },
 "name" : { "type" : "string", "store" : "yes",
 "index" : "analyzed" },
 "contents" : { "type" : "string", "store" : "no",
 "index" : "analyzed" },
 "userId" : { "type" : "long", "store" : "yes",
 "precision_step" : "0" }
 }
 }
 }
}

As you can see, our index consists of four fields—the identifier (the id field), name
of the document (the name field), contents of the document (the contents field), and
the identifier of the user to which the documents belong (the userId field). To get all
the documents for a particular user—one with userId equal to 12—you can run the
following query:

curl –XGET 'http://localhost:9200/posts/_search?q=userId:12'

In general, you will send your query to one of the Elasticsearch nodes and
Elasticsearch will do the rest. Depending on the search type (we will talk
more about it in Chapter 3, Searching Your Data), Elasticsearch will run your
query, which usually means that it will first query all the nodes for the identifier
and score of the matching documents. Then, it will send an internal query again,
but only to the relevant shards (the ones containing the needed documents) to
get the documents needed to build the response.

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

[86]

A very simplified view of how default routing works during searching is shown in
the following illustration:

Node One Node Two Node Three

Node Four Node Five Node Six

Shard 1 Shard 2 Shard 3

Shard 4 Shard 5 Shard 6

Rest Endpoint

Elasticsearch Cluster

User

Q
u
e
ry

What if we could put all the documents for a single user into a single shard
and query on that shard? Wouldn't that be wise for performance? Yes, that is
handy and that is what routing allows you do to.

Routing
Routing can control to which shard your documents and queries will be forwarded.
By now, you will probably have guessed that we can specify the routing value both
during indexing and during querying, and in fact if you decide to specify explicit
routing values, you'll probably do that during indexing and searching.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[87]

In our case, we will use the userId value to set routing during indexing and the
same value during searching. You can imagine that for the same userId value, the
same hash value will be calculated and thus all the documents for that particular
user will be placed in the same shard. Using the same value during search will result
in searching a single shard instead of the whole index.

Remember that when using routing, you should still add a filter for the same value
as the routing one. This is because you'll probably have more distinct routing values
than the number of shards your index will be built with. Because of that, a few distinct
values can point to the same shard, and if you omit filtering, you will get data not for a
single value you route on, but for all those that reside in a particular shard.

The following diagram shows a very simple illustration of how searching works with
a provided custom routing value:

Node One Node Two Node Three

Node Four Node Five Node Six

Shard 1 Shard 2 Shard 3

Shard 4 Shard 5 Shard 6

Rest Endpoint

Elasticsearch Cluster

User

Q
u
e
ry

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

[88]

As you can see, Elasticsearch will send our query to a single shard. Now let's look at
how we can specify the routing values.

The routing parameters
The simplest way (but not always the most convenient one) is to provide the routing
value using the routing parameter. When indexing or querying, you can add the
routing parameter to your HTTP or set it by using the client library of your choice.

So, in order to index a sample document to the previously shown index, we will use
the following lines of command:

curl -XPUT 'http://localhost:9200/posts/post/1?routing=12' -d '{

 "id": "1",

 "name": "Test document",

 "contents": "Test document",

 "userId": "12"

}'

This is how our previous query will look if we add the routing parameter:

curl -XGET
 'http://localhost:9200/posts/_search?routing=12&q=userId:12'

As you can see, the same routing value was used during indexing and querying.
We did that because we knew that during indexing we have used the value 12,
so we wanted to point our query to the same shard and therefore we used exactly
the same value.

Please note that you can specify multiple routing values separated by commas.
For example, if we want the preceding query to be additionally routed with the use
of the section parameter (if it existed) and we also want to filter by this parameter,
our query will look like the following:

curl -XGET
 'http://localhost:9200/posts/_search?routing=12,
 6654&q=userId:12+AND+section:6654'

Remember that routing is not the only thing that is required to get
results for a given user. That's because usually we have less shards
that have unique routing values. This means that we will have data
from multiple users in a single shard. So when using routing, you
should also filter the results. You'll learn more about filtering in the
Filtering your results section in Chapter 3, Searching Your Data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 2

[89]

Routing fields
Specifying the routing value with each request that we send to Elasticsearch works,
but it is not convenient. In fact, Elasticsearch allows us to define a field whose value
will be used as the routing value during indexing, so we only need to provide the
routing parameter during querying. To do that, we need to add the following
section to our type definition:

"_routing" : {
 "required" : true,
 "path" : "userId"
}

The preceding definition means that the routing value needs to be provided (the
"required": true property); without it, an index request will fail. In addition to
that, we specified the path attribute, which says which field value of the document
will be used as the routing value. In our case, the userId field value will be used.
These two parameters mean that each document we send for indexing needs to
have the userId field defined. This is convenient, because we can now use batch
indexing without the limitation of having all the documents from a single branch
using the same routing value (which would be the case with the routing parameter).
However, please remember that when using the routing field, Elasticsearch needs
to do some additional parsing, and therefore it's a bit slower than when using the
routing parameter.

After adding the routing part, the whole updated mappings file will be as follows:

{
 "mappings" : {
 "post" : {
 "_routing" : {
 "required" : true,
 "path" : "userId"
 },
 "properties" : {
 "id" : { "type" : "long", "store" : "yes",
 "precision_step" : "0" },
 "name" : { "type" : "string", "store" : "yes",
 "index" : "analyzed" },
 "contents" : { "type" : "string", "store" : "no",
 "index" : "analyzed" },
 "userId" : { "type" : "long", "store" : "yes",
 "precision_step" : "0" }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Indexing Your Data

[90]

 }
 }
}

If we want to create the posts index using the preceding mappings, use the
following command to index a single, test document:

curl -XPOST 'localhost:9200/posts/post/1' -d '{

 "id":1,

 "name":"New post",

 "contents": "New test post",

 "userId":1234567

}'

Elasticsearch will end up using 1234567 as the routing value for indexing.

Summary
In this chapter, we learned how Elasticsearch indexing works. We learned to create
our own mappings that define index structure and create indices using them. We
learned what batch indexing is and how to use it, and how we can index our data
efficiently. We also learned what additional information can be stored along with
the documents. In addition to that, we've seen what segment merging is, how to
configure it, and what throttling is. Finally, we used and configured routing.

In the next chapter, we will concentrate on searching. We will start with how to query
Elasticsearch and what the basic queries we can use are. In addition to that, we will use
filters and learn why they are important. We will see how we can validate our queries
and how to use the highlighting functionality. Finally, we will use compound queries,
we will get into querying internals, and we will sort our results.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data
In the previous chapter, we learned how Elasticsearch indexing works, how to create
our own mappings, and what data types we can use. We also stored additional
information in our index and used routing, both default and nondefault. By the
end of this chapter, we will have learned about the following topics:

•	 Querying Elasticsearch and choosing the data to be returned
•	 The working of the Elasticsearch querying process
•	 Understanding the basic queries exposed by Elasticsearch
•	 Filtering our results
•	 Understanding how highlighting works and how to use it
•	 Validating our queries
•	 Exploring compound queries
•	 Sorting our data

Querying Elasticsearch
So far, when we searched our data we used the REST API and a simple
query or the GET request. Similarly, when we changed the index, we also used
the REST API and sent the JSON-structured data to Elasticsearch, regardless of
the type of operation we wanted to perform—whether it was a mapping change
or document indexation. A similar situation happens when we want to send more
than a simple query to Elasticsearch—we structure it using JSON objects and send
it to Elasticsearch. This is called the query DSL. In a broader view, Elasticsearch
supports two kinds of queries: basic ones and compound ones. Basic queries such as
the term query are used for querying the actual data. We will cover these
in the Basic queries section of this chapter. The second type of query is the compound
query, such as the bool query, which can combine multiple queries. We will cover
these in the Compound queries section of this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[92]

However, this is not the whole picture. In addition to these two types of queries,
your query can have filter queries that are used to narrow down your results
with certain criteria. Unlike other queries, filter queries don't affect scoring
and are usually very efficient.

To make it even more complicated, queries can contain other queries. (Don't worry; we
will try to explain this!) Furthermore, some queries can contain filters and others can
contain both queries and filters. Although this is not everything, we will stick with this
working explanation for now. We will go over this in detail in the Compound queries
and Filtering your results sections of this chapter.

The example data
If not stated otherwise, the following mappings will be used for the rest of
the chapter:

{
 "book" : {
 "_index" : {
 "enabled" : true
 },
 "_id" : {
 "index": "not_analyzed",
 "store" : "yes"
 },
 "properties" : {
 "author" : {
 "type" : "string"
 },
 "characters" : {
 "type" : "string"
 },
 "copies" : {
 "type" : "long",
 "ignore_malformed" : false
 },
 "otitle" : {
 "type" : "string"
 },
 "tags" : {
 "type" : "string"
 },
 "title" : {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[93]

 "type" : "string"
 },
 "year" : {
 "type" : "long",
 "ignore_malformed" : false,
 "index" : "analyzed"
 },
 "available" : {
 "type" : "boolean"
 }
 }
 }
}

The string-based fields will be analyzed if not stated otherwise.

The preceding mappings (which are stored in the mapping.json file) were used to
create the library index. In order to run them, use the following commands:

curl -XPOST 'localhost:9200/library'

curl -XPUT 'localhost:9200/library/book/_mapping' -d @mapping.json

If not stated otherwise, the following data will be used for the rest of the chapter:

{ "index": {"_index": "library", "_type": "book", "_id": "1"}}
{ "title": "All Quiet on the Western Front","otitle": "Im Westen
 nichts Neues","author": "Erich Maria Remarque","year":
 1929,"characters": ["Paul Bäumer", "Albert Kropp", "Haie
 Westhus", "Fredrich Müller", "Stanislaus Katczinsky",
 "Tjaden"],"tags": ["novel"],"copies": 1, "available": true,
 "section" : 3}
{ "index": {"_index": "library", "_type": "book", "_id": "2"}}
{ "title": "Catch-22","author": "Joseph Heller","year":
 1961,"characters": ["John Yossarian", "Captain Aardvark",
 "Chaplain Tappman", "Colonel Cathcart", "Doctor
 Daneeka"],"tags": ["novel"],"copies": 6, "available" : false,
 "section" : 1}
{ "index": {"_index": "library", "_type": "book", "_id": "3"}}
{ "title": "The Complete Sherlock Holmes",
 "author": "Arthur Conan Doyle","year": 1936,"characters":
 ["Sherlock Holmes","Dr. Watson", "G. Lestrade"],"tags":
 [],"copies": 0, "available" : false, "section" : 12}
{ "index": {"_index": "library", "_type": "book", "_id": "4"}}

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[94]

{ "title": "Crime and Punishment","otitle": "Преступлéние и
 наказáние","author": "Fyodor Dostoevsky","year":
 1886,"characters": ["Raskolnikov", "Sofia Semyonovna
 Marmeladova"],"tags": [],"copies": 0, "available" : true}

We stored our data in the documents.json file, and we use the following command
to index it:

curl -s -XPOST 'localhost:9200/_bulk' --data-binary @documents.json

This command runs bulk indexing. You can learn more about it in the Batch
indexing to speed up your indexing process section in Chapter 2, Indexing Your Data.

A simple query
The simplest way to query Elasticsearch is to use the URI request query. We already
discussed it in the Searching with the URI request query section of Chapter 1, Getting
Started with the Elasticsearch Cluster. For example, to search for the word crime in
the title field, send a query using the following command:

curl -XGET 'localhost:9200/library/book/_search?q=title:crime&pretty=true'

This is a very simple, but limited, way of submitting queries to Elasticsearch. If we
look from the point of view of the Elasticsearch query DSL, the preceding query is
the query_string query. It searches for the documents that have the crime term in
the title field and can be rewritten as follows:

{
 "query" : {
 "query_string" : { "query" : "title:crime" }
 }
}

Sending a query using the query DSL is a bit different, but still not rocket science. We
send the GET HTTP request to the _search REST endpoint as before, and attach the
query to the request body. Let's take a look at the following command:

curl -XGET 'localhost:9200/library/book/_search?pretty=true' -d '{

 "query" : {

 "query_string" : { "query" : "title:crime" }

 }

}'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[95]

As you can see, we used the request body (the -d switch) to send the whole
JSON-structured query to Elasticsearch. The pretty=true request parameter tells
Elasticsearch to structure the response in such a way that we humans can read it
more easily. In response to the preceding command, we get the following output:

{

 "took" : 1,

 "timed_out" : false,

 "_shards" : {

 "total" : 5,

 "successful" : 5,

 "failed" : 0

 },

 "hits" : {

 "total" : 1,

 "max_score" : 0.15342641,

 "hits" : [{

 "_index" : "library",

 "_type" : "book",

 "_id" : "4",

 "_score" : 0.15342641, "_source" : { "title": "Crime and
 Punishment","otitle": "Преступлéние и наказáние","author":
 "Fyodor Dostoevsky","year": 1886,"characters":
 ["Raskolnikov", "Sofia Semyonovna Marmeladova"],"tags":
 [],"copies": 0, "available" : true}

 }]

 }

}

Nice! We got our first search results with the query DSL.

Paging and result size
As we expected, Elasticsearch allows us to control how many results we want to
get (at most) and from which result we want to start. The following are the two
additional properties that can be set in the request body:

•	 from: This property specifies the document that we want to have our results
from. Its default value is 0, which means that we want to get our results
from the first document.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[96]

•	 size: This property specifies the maximum number of documents we want
as the result of a single query (which defaults to 10). For example, if we
are only interested in faceting results and don't care about the documents
returned by the query, we can set this parameter to 0.

If we want our query to get documents starting from the tenth item on the list and
get 20 of items from there on, we send the following query:

{
 "from" : 9,
 "size" : 20,
 "query" : {
 "query_string" : { "query" : "title:crime" }
 }
}

Downloading the example code
You can download the example code files for all Packt books you
have purchased from your account at http://www.PacktPub.
com. If you purchased this book elsewhere, you can visit
http://www.PacktPub.com/support and register to have
the files e-mailed directly to you.

Returning the version value
In addition to all the information returned, Elasticsearch can return the version of the
document. To do this, we need to add the version property with the value of true
to the top level of our JSON object. So, the final query, which requests for version
information, will look as follows:

{
 "version" : true,
 "query" : {
 "query_string" : { "query" : "title:crime" }
 }
}

After running the preceding query, we get the following results:

{

 "took" : 2,

 "timed_out" : false,

 "_shards" : {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[97]

 "total" : 5,

 "successful" : 5,

 "failed" : 0

 },

 "hits" : {

 "total" : 1,

 "max_score" : 0.15342641,

 "hits" : [{

 "_index" : "library",

 "_type" : "book",

 "_id" : "4",

 "_version" : 1,

 "_score" : 0.15342641, "_source" : { "title": "Crime and
 Punishment","otitle": "Преступлéние и наказáние",
 "author": "Fyodor Dostoevsky","year": 1886,
 "characters": ["Raskolnikov", "Sofia Semyonovna
 Marmeladova"],"tags": [],"copies": 0, "available" : true}

 }]

 }

}

As you can see, the _version section is present for the single hit we got.

Limiting the score
For nonstandard use cases, Elasticsearch provides a feature that lets us filter the
results on the basis of the minimum score value that the document must have to be
considered a match. In order to use this feature, we must provide the min_score
value at the top level of our JSON object with the value of the minimum score. For
example, if we want our query to only return documents with a score higher than
0.75, we send the following query:

{
 "min_score" : 0.75,
 "query" : {
 "query_string" : { "query" : "title:crime" }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[98]

We get the following response after running the preceding query:

{

 "took" : 1,

 "timed_out" : false,

 "_shards" : {

 "total" : 5,

 "successful" : 5,

 "failed" : 0

 },

 "hits" : {

 "total" : 0,

 "max_score" : null,

 "hits" : []

 }

}

If you look at the previous examples, the score of our document was 0.15342641,
which is lower than 0.75, and thus we didn't get any documents in response.

Limiting the score doesn't make much sense, usually because comparing scores
between queries is quite hard. However, maybe in your case, this functionality
will be needed.

Choosing the fields that we want to return
With the use of the fields array in the request body, Elasticsearch allows us to define
which fields to include in the response. Remember that you can only return those fields
if they are marked as stored in the mappings used to create the index, or if the _source
field was used (Elasticsearch uses the _source field to provide the stored values).
So, for example, to return only the title and year fields in the results (for each
document), send the following query to Elasticsearch:

{
 "fields" : ["title", "year"],
 "query" : {
 "query_string" : { "query" : "title:crime" }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[99]

And in response, we get the following output:

{

 "took" : 2,

 "timed_out" : false,

 "_shards" : {

 "total" : 5,

 "successful" : 5,

 "failed" : 0

 },

 "hits" : {

 "total" : 1,

 "max_score" : 0.15342641,

 "hits" : [{

 "_index" : "library",

 "_type" : "book",

 "_id" : "4",

 "_score" : 0.15342641,

 "fields" : {

 "title" : ["Crime and Punishment"],

 "year" : [1886]

 }

 }]

 }

}

As you can see, everything worked as we wanted it to. There are three things we
would like to share with you, which are as follows:

•	 If we don't define the fields array, it will use the default value and return
the _source field if available

•	 If we use the _source field and request a field that is not stored, then
that field will be extracted from the _source field (however, this requires
additional processing)

•	 If we want to return all stored fields, we just pass an asterisk (*) as the
field name

From a performance point of view, it's better to return
the _source field instead of multiple stored fields.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[100]

The partial fields
In addition to choosing which fields are returned, Elasticsearch allows us to use
the so-called partial fields. They allow us to control how fields are loaded from
the _source field. Elasticsearch exposes the include and exclude properties of the
partial_fields object so we can include and exclude fields on the basis of these
properties. For example, for our query to include the fields that start with titl and
exclude the ones that start with chara, we send the following query:

{
 "partial_fields" : {
 "partial1" : {
 "include" : ["titl*"],
 "exclude" : ["chara*"]
 }
 },
 "query" : {
 "query_string" : { "query" : "title:crime" }
 }
}

Using the script fields
Elasticsearch allows us to use script-evaluated values that will be returned with
result documents. To use the script fields, we add the script_fields section to our
JSON query object and an object with a name of our choice for each scripted value
that we want to return. For example, to return a value named correctYear, which is
calculated as the year field minus 1800, we run the following query:

{
 "script_fields" : {
 "correctYear" : {
 "script" : "doc['year'].value - 1800"
 }
 },
 "query" : {
 "query_string" : { "query" : "title:crime" }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[101]

Using the doc notation, like we did in the preceding example, allows us to catch the
results returned, which thereby results in faster script execution, but it also leads to
higher memory consumption. We are also limited to single-valued and single term
fields. If we care about memory usage, or we are using more complicated field values,
we can always use the _source field. Our query using this field looks as follows:

{
 "script_fields" : {
 "correctYear" : {
 "script" : "_source.year - 1800"
 }
 },
 "query" : {
 "query_string" : { "query" : "title:crime" }
 }
}

The following response is returned by Elasticsearch for the preceding query:

{

 "took" : 1,

 "timed_out" : false,

 "_shards" : {

 "total" : 5,

 "successful" : 5,

 "failed" : 0

 },

 "hits" : {

 "total" : 1,

 "max_score" : 0.15342641,

 "hits" : [{

 "_index" : "library",

 "_type" : "book",

 "_id" : "4",

 "_score" : 0.15342641,

 "fields" : {

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[102]

 "correctYear" : [86]

 }

 }]

 }

}

As you can see, we got the calculated correctYear field in response.

Passing parameters to the script fields
Let's take a look at one more feature of the script fields: the passing of additional
parameters. Instead of having the value 1800 in the equation, we can use
a variable name and pass its value in the params section. If we do this, our
query will look as follows:

{
 "script_fields" : {
 "correctYear" : {
 "script" : "_source.year - paramYear",
 "params" : {
 "paramYear" : 1800
 }
 }
 },
 "query" : {
 "query_string" : { "query" : "title:crime" }
 }
}

As you can see, we added the paramYear variable as a part of the scripted equation
and provided its value in the params section.

You can learn more about the use of scripts in the Scripting capabilities of Elasticsearch
section of Chapter 5, Make Your Search Better.

Understanding the querying process
After reading the previous section, we now know how querying works in
Elasticsearch. You know that Elasticsearch, in most cases, needs to scatter
the query across multiple nodes, get the results, merge them, fetch for relevant
documents, and return the results. What we didn't talk about is three additional
things that define how queries behave: query rewrite, search type, and query
execution preference. We will now concentrate on these functionalities of
Elasticsearch and also try to show you how querying works.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[103]

Query logic
Elasticsearch is a distributed search engine, and so all functionality provided must
be distributed in its nature. It is exactly the same with querying. Since we want to
discuss some more advanced topics on how to control the query process, we first
need to know how it works.

By default, if we don't alter anything, the query process will consist of two phases as
shown in the following diagram:

Application

Elasticsearch Node

Elasticsearch Node

Elasticsearch Cluster

Shard 1

Shard 2

Scatter phase

Gather phase

Results

Query

When we send a query, we send it to one of the Elasticsearch nodes. What is
occurring now is a so-called scatter phase. The query is distributed to all the shards
that our index is built of. For example, if it is built of five shards and one replica,
then five physical shards will be queried (we don't need to query both a shard and
its replica because they contain the same data). Each of the queried shards will only
return the document identifier and the score of the document. The node that sent the
scatter query will wait for all the shards to complete their task, gather the results, and
sort them appropriately (in this case, from the top scoring to the lowest scoring ones).

After that, a new request will be sent to build the search results. However, for now,
the request will be sent only to those shards that held the documents to build the
response. In most cases, Elasticsearch won't send the request to all the shards but
only to its subset. This is because we usually don't get the entire result of the query
but only a portion of it. This phase is called the gather phase. After all the documents
have been gathered, the final response is built and returned as the query result.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[104]

Of course, the preceding behavior is the default in Elasticsearch and can be altered.
The following section will describe how to change this behavior.

Search types
Elasticsearch allows us to choose how we want our query to be processed internally.
We can do this by specifying the search type. There are different situations where
different search types are appropriate; you may only care about performance, while
sometimes, query relevance may be the most important factor. You should remember
that each shard is a small Lucene index, and in order to return more relevant results,
some information, such as frequencies, needs to be transferred between shards. To
control how queries are executed, we can pass the search_type request parameter
and set it to one of the following values:

•	 query_then_fetch: In the first step, the query is executed to get the
information needed to sort and rank the documents. This step is executed
against all the shards. Then, only the relevant shards are queried for the actual
content of the documents. Different from query_and_fetch, the maximum
number of results returned by this query type will be equal to the size
parameter. This is the search type used by default if no search type has been
provided with the query, and this is the query type we described earlier.

•	 query_and_fetch: This is usually the fastest and simplest search type
implementation. The query is executed against all the shards (of course, only
a single replica of a given primary shard will be queried) in parallel, and
all the shards return the number of results equal to the value of the size
parameter. The maximum number of returned documents will be equal to
the value of size multiplied by the number of shards.

•	 dfs_query_and_fetch: This is similar to the query_and_fetch search
type, but it contains an additional phase compared to query_and_fetch.
The additional part is the initial query phase that is executed to calculate
distributed term frequencies to allow more precise scoring of returned
documents and thus more relevant query results.

•	 dfs_query_then_fetch: As with the previous dfs_query_and_fetch search
type, the dfs_query_then_fetch search type is similar to its counterpart:
query_then_fetch. However, it contains an additional phase compared to
query_then_fetch, just like dfs_query_and_fetch.

•	 count: This is a special search type that only returns the number of
documents that matched the query. If you only need to get the number of
results but do not care about the documents, you should use this search type.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[105]

•	 scan: This is another special search type. Only use it if you expect your query
to return a large amount of results. It differs a bit from the usual queries
because after sending the first request, Elasticsearch responds with a scroll
identifier, similar to a cursor in relational databases. All the queries need to
be run against the _search/scroll REST endpoint and need to send the
returned scroll identifier in the request body. You can learn more about this
functionality in the The scroll API section of Chapter 6, Beyond Full-text Searching.

So if we want to use the simplest search type, we run the following command:

curl -XGET 'localhost:9200/library/book/_search?pretty=true&search_
type=query_and_fetch' -d '{

 "query" : {

 "term" : { "title" : "crime" }

 }

}'

Search execution preferences
In addition to the possibility of controlling how the query is executed, we can also
control the shards that we want to execute the query on. By default, Elasticsearch
uses shards and replicas, both the ones available on the node that we've sent the
request on and the other nodes in the cluster. And, the default behavior is in most
cases the best query preference method. However, there may be times when we
want to change the default behavior. For example, we may want the search to be
executed on only the primary shards. To do this, we can set the preference
request parameter to one of the following values shown in the table:

Parameter values Description
_primary This search operation will only be executed on the primary

shards, so the replicas won't be used. This can be useful
when we need to use the latest information from the index,
but our data is not replicated right away.

_primary_first This search operation will be executed on the primary
shards if they are available. If not, it will be executed on the
other shards.

_local This search operation will only be executed on the shards
available on the node that we are sending the request to (if
possible).

_only_node:node_id This search operation will be executed on the node with the
provided node identifier.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[106]

Parameter values Description
_prefer_node:node_id Elasticsearch will try to execute this search operation on

the node with the provided identifier. However, if the node
is not available, it will be executed on the nodes that are
available.

_shards:1,2 Elasticsearch will execute the operation on the shards
with the given identifiers (in this case, on the shards with
the identifiers 1 and 2). The _shards parameter can be
combined with other preferences, but the shard identifiers
need to be provided first, for example, _shards:1,
2;_local.

Custom value Any custom string value may be passed. The requests
provided with the same values will be executed on the
same shards.

For example, if we want to execute a query only on the local shards, we run the
following command:

curl -XGET 'localhost:9200/library/_search?preference=_local' -d '{

 "query" : {

 "term" : { "title" : "crime" }

 }

}'

The Search shards API
When discussing the search preference, we would also like to mention the Search
shards API exposed by Elasticsearch. This API allows us to check the shards that
the query will be executed on. In order to use this API, run a request against
the _search_shards REST endpoint. For example, to see how the query is
executed, we run the following command:

curl -XGET 'localhost:9200/library/_search_shards?pretty' -d
 '{"query":"match_all":{}}'

And, the response to the preceding command is as follows:

{

 "nodes" : {

 "N0iP_bH3QriX4NpqsqSUAg" : {

 "name" : "Oracle",

 "transport_address" : "inet[/192.168.1.19:9300]"

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[107]

 }

 },

 "shards" : [[{

 "state" : "STARTED",

 "primary" : true,

 "node" : "N0iP_bH3QriX4NpqsqSUAg",

 "relocating_node" : null,

 "shard" : 0,

 "index" : "library"

 }], [{

 "state" : "STARTED",

 "primary" : true,

 "node" : "N0iP_bH3QriX4NpqsqSUAg",

 "relocating_node" : null,

 "shard" : 1,

 "index" : "library"

 }], [{

 "state" : "STARTED",

 "primary" : true,

 "node" : "N0iP_bH3QriX4NpqsqSUAg",

 "relocating_node" : null,

 "shard" : 4,

 "index" : "library"

 }], [{

 "state" : "STARTED",

 "primary" : true,

 "node" : "N0iP_bH3QriX4NpqsqSUAg",

 "relocating_node" : null,

 "shard" : 3,

 "index" : "library"

 }], [{

 "state" : "STARTED",

 "primary" : true,

 "node" : "N0iP_bH3QriX4NpqsqSUAg",

 "relocating_node" : null,

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[108]

 "shard" : 2,

 "index" : "library"

 }]]

}

As you can see, in the response returned by Elasticsearch, we have the information
about the shards that will be used during the query process. Of course, with the
Search shards API, you can use all the parameters, such as routing or preference,
and see how it affects your search execution.

Basic queries
Elasticsearch has extensive search and data analysis capabilities that are exposed
in the form of different queries, filters, and aggregates, and so on. In this section,
we will concentrate on the basic queries provided by Elasticsearch.

The term query
The term query is one of the simplest queries in Elasticsearch. It just matches the
document that has a term in a given field—the exact, not analyzed term. The simplest
term query is as follows:

{
 "query" : {
 "term" : {
 "title" : "crime"
 }
 }
}

The preceding query will match the documents that have the crime term in the
title field. Remember that the term query is not analyzed, so you need to provide
the exact term that will match the term in the indexed document. Please note that in
our input data, we have the title field with the Crime and Punishment term, but
we are searching for crime because the Crime term becomes crime after analysis
during indexing.

In addition to the term we want to find, we can also include the boost attribute to
our term query; it will affect the importance of the given term. We will talk more
about boosts in the An introduction to Apache Lucene scoring section of Chapter 5, Make
Your Search Better. For now, we just need to remember that it changes the importance
of the given part of the query.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[109]

For example, to change our previous query and give a boost of 10.0 to our term
query, we send the following query:

{
 "query" : {
 "term" : {
 "title" : {
 "value" : "crime",
 "boost" : 10.0
 }
 }
 }
}

As you can see, the query changed a bit. Instead of a simple term value, we nested a
new JSON object that contains the value property and the boost property. The value
of the value property contains the term we are interested in, and the boost property
is the boost value we want to use.

The terms query
The terms query allows us to match documents that have certain terms in their
contents. The term query allowed us to match a single, not analyzed term, and the
terms query allows us to match multiples of these. For example, let's say that we
want to get all the documents that have the terms novel or book in the tags field.
To achieve this, we run the following query:

{
 "query" : {
 "terms" : {
 "tags" : ["novel", "book"],
 "minimum_match" : 1
 }
 }
}

The preceding query returns all the documents that have one or both of the searched
terms in the tags field. Why is that? It is because we set the minimum_match property
to 1; this basically means that one term should match. If we want the query to match
the document with all the provided terms, we set the minimum_match property to 2.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[110]

The match_all query
The match_all query is one of the simplest queries available in Elasticsearch.
It allows us to match all the documents in the index. If we want to get all the
documents from our index, we just run the following query:

{
 "query" : {
 "match_all" : {}
 }
}

We can also include boost in the query, which will be given to all the documents
matched by it. For example, if we want to add a boost of 2.0 to all the documents
in our match_all query, we send the following query to Elasticsearch:

{
 "query" : {
 "match_all" : {
 "boost" : 2.0
 }
 }
}

The common terms query
The common terms query is a modern Elasticsearch solution for improving
query relevance and precision with common words when we are not using stop
words (http://en.wikipedia.org/wiki/Stop_words). For example, crime and
punishment can be translated to three term queries and each of those term queries
have a cost in terms of performance (the more the terms, the lower the performance
of the query). However, the and term is a very common one, and its impact on the
document score will be very low. The solution is the common terms query that
divides the query into two groups. The first group is the one with important terms;
these are the ones that have lower frequency. The second group is the less important
terms that have higher frequency. The first query is executed first, and Elasticsearch
calculates the score for all the terms from the first group. This way, the low frequency
terms, which are usually the ones that have more importance, are always taken into
consideration. Then, Elasticsearch executes the second query for the second group of
terms but calculates the score only for the documents that were matched for the first
query. This way, the score is only calculated for the relevant documents and thus,
higher performance is achieved.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[111]

An example of the common terms query is as follows:

{
 "query" : {
 "common" : {
 "title" : {
 "query" : "crime and punishment",
 "cutoff_frequency" : 0.001
 }
 }
 }
}

The query can take the following parameters:

•	 query: This parameter defines the actual query contents.
•	 cutoff_frequency: This parameter defines the percentage (0.001 means 0.1

percent) or an absolute value (when the property is set to a value equal to
or larger than 1). High and low frequency groups are constructed using
this value. Setting this parameter to 0.001 means that the low frequency
terms group will be constructed for terms that have a frequency of 0.1
percent and lower.

•	 low_freq_operator: This parameter can be set to or or and (defaults to or).
It specifies the Boolean operator used to construct queries in the low frequency
term group. If we want all of the terms to be present in a document for it to
be considered a match, we should set this parameter to and.

•	 high_freq_operator: This parameter can be set to or or and (it defaults to
or). It specifies the Boolean operator used to construct queries in the high
frequency term group. If we want all of the terms to be present in a document
for it to be considered a match, we should set this parameter to and.

•	 minimum_should_match: Instead of using the low_freq_operator and
high_freq_operator parameters, we can use minimum_should_match. Just
like with other queries, it allows us to specify the minimum number of terms
that should be found in a document for it to be considered a match.

•	 boost: This parameter defines the boost given to the score of the documents.
•	 analyzer: This parameter defines the name of the analyzer that will be

used to analyze the query text and defaults to the default analyzer.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[112]

•	 disable_coord: This parameter value defaults to false and allows us to
enable or disable the score factor computation that is based on the fraction
of all the query terms that a document contains. Set it to true for less precise
scoring but slightly faster queries.

Unlike the term and terms queries, the common terms query is
analyzed by Elasticsearch.

The match query
The match query takes the values given in the query parameter, analyzes them,
and constructs the appropriate query out of them. When using a match query,
Elasticsearch will choose the proper analyzer for a field we've chosen, so we can be
sure that the terms passed to the match query will be processed by the same analyzer
that was used during indexing. Please remember that the match query (and the
multi_match query that will be explained later) doesn't support the Lucene query
syntax; however, it fits perfectly as a query handler for our search box. The simplest
match (and the default) query can look like the following:

{
 "query" : {
 "match" : {
 "title" : "crime and punishment"
 }
 }
}

The preceding query will match all the documents that have the terms, crime, and,
or punishment in the title field. However, the previous query is only the simplest
one; there are multiple types of match queries that we will discuss now.

The Boolean match query
The Boolean match query is a query that analyzes the provided text and makes
a Boolean query out of it. There are a few parameters that allow us to control the
behavior of the Boolean match queries; they are as follows:

•	 operator: This parameter can take the value of or or and and control
the Boolean operator that is used to connect the created Boolean clauses.
The default value is or. If we want all the terms in our query to match,
we use the and Boolean operator.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[113]

•	 analyzer: This parameter specifies the name of the analyzer that will be used
to analyze the query text and defaults to the default analyzer.

•	 fuzziness: Providing the value of this parameter allows us to construct
fuzzy queries. It should take values from 0.0 to 1.0 for a string type. While
constructing fuzzy queries, this parameter will be used to set the similarity.

•	 prefix_length: This parameter allows us to control the behavior of the
fuzzy query. For more information on the value of this parameter, refer to
the The fuzzy_like_this query section in this chapter.

•	 max_expansions: This parameter allows us to control the behavior of the
fuzzy query. For more information on the value of this parameter, please
refer to the The fuzzy_like_this query section in this chapter.

•	 zero_terms_query: This parameter allows us to specify the behavior of the
query when all the terms are removed by the analyzer (for example, because
of stop words). It can be set to none or all, with none as the default value.
When set to none, no documents will be returned when the analyzer
removes all the query terms. All the documents will be returned on
setting this parameter to all.

•	 cutoff_frequency: This parameter allows us to divide the query into
two groups: one with high frequency terms and one with low frequency
terms. Refer to the description of the common terms query to see how this
parameter can be used.

The parameters should be wrapped in the name of the field that we are running
the query for. So if we wish to run a sample Boolean match query against the title
field, we send a query as follows:

{
 "query" : {
 "match" : {
 "title" : {
 "query" : "crime and punishment",
 "operator" : "and"
 }
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[114]

The match_phrase query
A match_phrase query is similar to the Boolean query, but instead of constructing
the Boolean clauses from the analyzed text, it constructs the phrase query. The
following parameters are available for this query:

•	 slop: This is an integer value that defines how many unknown words can be
put between terms in the text query for a match to be considered a phrase.
The default value of this parameter is 0, which means that no additional
words are allowed.

•	 analyzer: This parameter specifies the name of the analyzer that will be used
to analyze the query text and defaults to the default analyzer.

A sample match_phrase query against the title field looks like the following code:

{
 "query" : {
 "match_phrase" : {
 "title" : {
 "query" : "crime punishment",
 "slop" : 1
 }
 }
 }
}

Note that we removed the and term from our query, but since the slop parameter
is set to 1, it will still match our document.

The match_phrase_prefix query
The last type of the match query is the match_phrase_prefix query. This query is
almost the same as the match_phrase query, but in addition, it allows prefix matches
on the last term in the query text. Also, in addition to the parameters exposed by the
match_phrase query, it exposes an additional one: the max_expansions parameter.
This controls how many prefixes will be rewritten to the last terms. Our example query
when changed to the match_phrase_prefix query will look like the following:

{
 "query" : {
 "match_phrase_prefix" : {
 "title" : {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[115]

 "query" : "crime and punishm",
 "slop" : 1,
 "max_expansions" : 20
 }
 }
 }
}

Note that we didn't provide the full crime and punishment phrase but only crime
and punishm, and the query still matches our document.

The multi_match query
The multi_match query is the same as the match query, but instead of running
against a single field, it can be run against multiple fields with the use of the fields
parameter. Of course, all the parameters you use with the match query can be used
with the multi_match query. So, if we want to modify our match query to be run
against the title and otitle fields, we run the following query:

{
 "query" : {
 "multi_match" : {
 "query" : "crime punishment",
 "fields" : ["title", "otitle"]
 }
 }
}

In addition to the previously mentioned parameters, the multi_match query exposes
the following additional parameters that allow more control over its behavior:

•	 use_dis_max: This parameter defines the Boolean value that allows us to
set whether the dismax (true) or boolean (false) queries should be used.
It defaults to true. You can read more about the dismax query in the
The dismax query section of this chapter.

•	 tie_breaker: This parameter is only used when the use_dis_max parameter
is set to true and allows us to specify the balance between lower and
maximum scoring query items. You can read more about it in the
The dismax query section of this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[116]

The query_string query
In comparison to the other queries available, the query_string query supports
the full Apache Lucene query syntax, which we discussed earlier in the The Lucene
query syntax section in Chapter 1, Getting Started with the Elasticsearch Cluster. It uses a
query parser to construct an actual query using the provided text. An example of the
query_string query is as follows:

{
 "query" : {
 "query_string" : {
 "query" : "title:crime^10 +title:punishment -otitle:cat
 +author:(+Fyodor +dostoevsky)",
 "default_field" : "title"
 }
 }
}

Because we are familiar with the basics of the Lucene query syntax, we can discuss
how the preceding query works. As you can see, we wanted to get the documents
that may have the term crime in the title field, and such documents should be
boosted with the value of 10. Next, we want only the documents that have the
punishment term in the title field and not the documents with the cat term in the
otitle field. Finally, we tell Lucene that we only want the documents that have the
Fyodor and dostoevsky terms in the author field.

Like most of the queries in Elasticsearch, the query_string query provides the
following parameters that allow us to control the query behavior:

•	 query: This parameter specifies the query text.
•	 default_field: This parameter specifies the default field that the query

will be executed against. It defaults to the index.query.default_field
property, which is set to _all by default.

•	 default_operator: This parameter specifies the default logical operator
(or or and) that is used when no operator is specified. The default value
of this parameter is or.

•	 analyzer: This parameter specifies the name of the analyzer that is used
to analyze the query provided in the query parameter.

•	 allow_leading_wildcard: This parameter specifies whether a wildcard
character is allowed as the first character of a term. It defaults to true.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[117]

•	 lowercase_expand_terms: This parameter specifies whether the terms that
are a result of a query rewrite should be lowercased. It defaults to true,
which means that the rewritten terms will be lowercased.

•	 enable_position_increments: This parameter specifies whether the
position increments should be turned on in the result query. It defaults
to true.

•	 fuzzy_max_expansions: This parameter specifies the maximum terms that
the fuzzy query will be expanded into if used. It defaults to 50.

•	 fuzzy_prefix_length: This parameter specifies the prefix length for the
generated fuzzy queries and defaults to 0. To learn more about it, refer to
the The fuzzy query section.

•	 fuzzy_min_sim: This parameter specifies the minimum similarity for the
fuzzy queries and defaults to 0.5. To learn more about it, refer to the
The fuzzy query section.

•	 phrase_slop: This parameter specifies the phrase slop value and defaults
to 0. To learn more about it, refer to the The match_phrase query section.

•	 boost: This parameter specifies the boost value that will be used and defaults
to 1.0.

•	 analyze_wildcard: This parameter specifies whether the terms generated
by the wildcard query should be analyzed. It defaults to false, which
means that the terms won't be analyzed.

•	 auto_generate_phrase_queries: This parameter specifies whether phrase
queries will be generated from the query automatically. It defaults to false,
which means that the phrase queries won't be generated automatically.

•	 minimum_should_match: This parameter controls how many generated
Boolean should clauses must match against a document for it to be consider
a hit. The value can be provided as a percentage, for example, 50%. This means
that at least 50 percent of the given terms should match. It can also be provided
as an integer value, such as 2, which means that at least two terms must match.

•	 lenient: This parameter takes the value of true or false. If set to true,
format-based failures will be ignored.

DisMax is an abbreviation of Disjunction Max. Disjunction refers to the fact that the
search is executed across multiple fields, and the fields can be given different boost
weights. Max means that only the maximum score for a given term will be included
in a final document score and not the sum of all the scores from all fields that have
the matched term (like a simple Boolean query would do).

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[118]

Note that Elasticsearch can rewrite the query_string query, and because of this,
Elasticsearch allows us to pass additional parameters that control the rewrite
method. However, for more details on this process, refer to the Understanding the
querying process section in this chapter.

Running the query_string query against multiple
fields
It is possible to run the query_string query against multiple fields. In order to do
this, one needs to provide the fields parameter in the query body, which holds the
array of field names. There are two methods of running the query_string query
against multiple fields; the default method uses the Boolean query to make queries
and the other method uses the dismax query.

In order to use the dismax query, you should add the use_dis_max property in the
query body and set it to true. An example query is as follows:

{
 "query" : {
 "query_string" : {
 "query" : "crime punishment",
 "fields" : ["title", "otitle"],
 "use_dis_max" : true
 }
 }
}

The simple_query_string query
The simple_query_string query uses one of the newest query parsers in Lucene:
SimpleQueryParser. Similar to the query_string query, it accepts the Lucene query
syntax as the query; however unlike it, the simple_query_string query never
throws an exception when an error is parsed. Instead of throwing an exception, it
discards the invalid parts of the query and runs the rest of the parts.

An example of the simple_query_string query is as follows:

{
 "query" : {
 "simple_query_string" : {
 "query" : "title:crime^10 +title:punishment -otitle:cat
 +author:(+Fyodor +dostoevsky)",

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[119]

 "default_operator" : "and"
 }
 }
}

This query supports parameters similar to the ones exposed by the query_string
query, and similarly, it can also be run against multiple fields using the fields
property.

The identifiers query
The identifiers query is a simple query that filters the returned documents to only
those queries with provided identifiers. This query works on the internal _uid field,
so it doesn't require the _id field to be enabled. The simplest version of such a query
looks like the following:

{
 "query" : {
 "ids" : {
 "values" : ["10", "11", "12", "13"]
 }
 }
}

This query only returns documents that have one of the identifiers present in the
values array. We can complicate the identifiers query a bit and also limit the
documents on the basis of their type. For example, if we want to only include
documents from the book type, we send the following query:

{
 "query" : {
 "ids" : {
 "type" : "book",
 "values" : ["10", "11", "12", "13"]
 }
 }
}

As you can see, we added the type property to our query and set its value to
the type we are interested in.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[120]

The prefix query
The prefix query is similar to the term query in terms of its configuration. The
prefix query allows us to match documents that have the value in a certain field
and starts with a given prefix. For example, if we want to find all the documents that
have values starting with cri in the title field, we run the following query:

{
 "query" : {
 "prefix" : {
 "title" : "cri"
 }
 }
}

Similar to the term query, we can also include the boost attribute to our prefix
query; this will affect the importance of the given prefix. For example, if we want to
change our previous query and give it a boost of 3.0, we send the following query:

{
 "query" : {
 "prefix" : {
 "title" : {
 "value" : "cri",
 "boost" : 3.0
 }
 }
 }
}

The prefix query is rewritten by Elasticsearch; therefore, Elasticsearch
allows us to pass an additional parameter by controlling the rewrite
method. However, for more details on this process, refer to the
Understanding the querying process section of this chapter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[121]

The fuzzy_like_this query
The fuzzy_like_this query is similar to the more_like_this query. It finds all the
documents that are similar to the provided text, but it works a bit differently than the
more_like_this query. It makes use of fuzzy strings and picks the best differencing
terms that were produced. For example, if we want to run a fuzzy_like_this query
against the title and otitle fields to find all the documents similar to the crime
punishment query, we run the following query:

{
 "query" : {
 "fuzzy_like_this" : {
 "fields" : ["title", "otitle"],
 "like_text" : "crime punishment"
 }
 }
}

The following query parameters are supported by the fuzzy_like_this query:

•	 fields: This parameter defines an array of fields against which the query
should be run. It defaults to the _all field.

•	 like_text: This is a required parameter that holds the text that we compare
the documents to.

•	 ignore_tf: This parameter specifies whether term frequencies should be
ignored during similarity computation. It defaults to false, which means
that the term frequencies will be used.

•	 max_query_terms: This parameter specifies the maximum number of query
terms that will be included in a generated query. It defaults to 25.

•	 min_similarity: This parameter specifies the minimum similarity that
differencing terms should have. It defaults to 0.5.

•	 prefix_length: This parameter specifies the length of the common prefix
of the differencing terms. It defaults to 0.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[122]

•	 boost: This parameter specifies the boost value that will be used when
boosting a query. It defaults to 1.0.

•	 analyzer: This parameter specifies the name of the analyzer that will be used
to analyze the text we provided.

The fuzzy_like_this_field query
The fuzzy_like_this_field query is similar to the fuzzy_like_this query, but
it only works against a single field. Because of this, it doesn't support the fields
property. Instead of specifying the fields that should be used for query analysis,
we should wrap the query parameters into that field name. Our example query to
a title field should look like the following:

{
 "query" : {
 "fuzzy_like_this_field" : {
 "title" : {
 "like_text" : "crime and punishment"
 }
 }
 }
}

All the other parameters from the fuzzy_like_this_field query work the same
for this query.

The fuzzy query
The fuzzy query is the third type of fuzzy query; it matches the documents on the
basis of the edit distance algorithm. The edit distance is calculated on the basis of
terms we provide in the query and against the searched documents. This query can
be expensive when it comes to CPU resources, but it can help us when we need
fuzzy matching, for example, when users make spelling mistakes. In our example,
let's assume that instead of crime, our user enters the word crme into the search box
and we want to run the simplest form of fuzzy query. Such a query would look like
the following:

{
 "query" : {
 "fuzzy" : {
 "title" : "crme"
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[123]

 }
}

And, the response for such a query would be as follows:

{

 "took" : 1,

 "timed_out" : false,

 "_shards" : {

 "total" : 5,

 "successful" : 5,

 "failed" : 0

 },

 "hits" : {

 "total" : 1,

 "max_score" : 0.15342641,

 "hits" : [{

 "_index" : "library",

 "_type" : "book",

 "_id" : "4",

 "_score" : 0.15342641, "_source" : { "title": "Crime and
 Punishment","otitle": "Преступлéние и наказáние",
 "author": "Fyodor Dostoevsky","year": 1886,
 "characters": ["Raskolnikov", "Sofia Semyonovna
 Marmeladova"],"tags": [],"copies": 0, "available" : true}

 }]

 }

}

Even though we made a typo, Elasticsearch managed to find the documents we were
interested in.

We can control the behavior of the fuzzy query using the following parameters:

•	 value: This parameter specifies the actual query.
•	 boost: This parameter specifies the boost value for the query. It defaults

to 1.0.
•	 min_similarity: This parameter specifies the minimum similarity a term

must have to count as a match. In the case of string fields, this value should
be between 0 and 1 inclusive. For numeric fields, this value can be greater
than one; for example, if the query value is equal to 20 and min_similarity
is set to 3, we get values from 17 to 23. For date fields, we can have the
min_similarity values that include 1d, 2d, 1m, and so on. These values
correspond to one day, two days, and one month, respectively.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[124]

•	 prefix_length: This parameter defines the length of the common prefix of
the differencing terms; it defaults to 0.

•	 max_expansions: This parameter specifies the maximum number of terms
that the query will be expanded to. The default value is unbounded.

The parameters should be wrapped in the name of the field that we are running
the query against. So if we want to modify the previous query and add additional
parameters, the query will look like the following code:

{
 "query" : {
 "fuzzy" : {
 "title" : {
 "value" : "crme",
 "min_similarity" : 0.2
 }
 }
 }
}

The wildcard query
The wildcard query allows us to use the * and ? wildcards in the values that we
search for. Apart from this, the wildcard query is very similar to the term query in
terms of its content. To send a query that matches all the documents with the value
of the cr?me term, where ? means any character, we send the following query:

{
 "query" : {
 "wildcard" : {
 "title" : "cr?me"
 }
 }
}

This will match the documents that have all the terms that match cr?me in the title
field. However, you can also include the boost attribute to your wildcard query; it
will affect the importance of each term that matches the given value. For example, if
we want to change our previous query and give a boost of 20.0 to our term query,
we send the following query:

{
 "query" : {
 "wildcard" : {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[125]

 "title" : {
 "value" : "cr?me",
 "boost" : 20.0
 }
 }
 }
}

Note that wildcard queries are not very performance-oriented
queries and should be avoided if possible; in particular, avoid
leading wildcards (the terms that start with wildcards). Also, note
that the wildcard query is rewritten by Elasticsearch, and because
of this, Elasticsearch allows us to pass an additional parameter that
controls the rewrite method. For more details on this process,
refer to the Understanding the querying process section of this chapter.

The more_like_this query
The more_like_this query allows us to get documents that are similar to the
provided text. Elasticsearch supports a few parameters to define how the more_
like_this query should work; they are as follows:

•	 fields: This parameter defines an array of fields that the query should be
run against. It defaults to the _all field.

•	 like_text: This is a required parameter that holds the text that we compare
the documents to.

•	 percent_terms_to_match: This parameter specifies the percentage of terms
from the query that need to match in a document for that document to be
considered similar. It defaults to 0.3, which means 30 percent.

•	 min_term_freq: This parameter specifies the minimum term frequency
(for the terms in the documents) below which terms will be ignored. It
defaults to 2.

•	 max_query_terms: This parameter specifies the maximum number of terms
that will be included in any generated query. It defaults to 25. A higher value
may mean higher precision, but lower performance.

•	 stop_words: This parameter defines an array of words that will be ignored
when comparing the documents and the query. It is empty by default.

•	 min_doc_freq: This parameter defines the minimum number of documents
in which the term has to be present to not be ignored. It defaults to 5, which
means that a term needs to be present in at least five documents.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[126]

•	 max_doc_freq: This parameter defines the maximum number of documents
in which a term may be present in order to not be ignored. By default, it
is unbounded.

•	 min_word_len: This parameter defines the minimum length of a single word
below which the word will be ignored. It defaults to 0.

•	 max_word_len: This parameter defines the maximum length of a single word
above which the word will be ignored. It is unbounded by default.

•	 boost_terms: This parameter defines the boost value that will be used
to boost each term. It defaults to 1.

•	 boost: This parameter defines the boost value that will be used to boost
the query. It defaults to 1.

•	 analyzer: This parameter defines the name of the analyzer that will be used
to analyze the text we provided.

An example of the more_like_this query is as follows:

{
 "query" : {
 "more_like_this" : {
 "fields" : ["title", "otitle"],
 "like_text" : "crime and punishment",
 "min_term_freq" : 1,
 "min_doc_freq" : 1
 }
 }
}

The more_like_this_field query
The more_like_this_field query is similar to the more_like_this query, but
it works only against a single field. Because of this, it doesn't support the fields
property. Instead of specifying the fields that should be used for query analysis,
we wrap the query parameters into the field name. So, our example query of the
title field is as follows:

{
 "query" : {
 "more_like_this_field" : {
 "title" : {
 "like_text" : "crime and punishment",
 "min_term_freq" : 1,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[127]

 "min_doc_freq" : 1
 }
 }
 }
}

All the other parameters from the more_like_this query work in the same way
for this query.

The range query
The range query allows us to find documents that have a field value within a certain
range and work both for numerical fields as well as for string-based fields (it just
maps to a different Apache Lucene query). The range query should be run against
a single field, and the query parameters should be wrapped in the field name.
The following parameters are supported by the range query:

•	 gte: The range query will match the documents with a value greater
than or equal to the ones provided with this parameter

•	 gt: The range query will match the documents with a value greater
than the one provided with this parameter

•	 lte: The range query will match the documents with a value lower
than or equal to the ones provided with this parameter

•	 lt: The range query will match the documents with a value lower
than the one provided with this parameter

So, for example, if we want to find all the books that have a value from 1700 to 1900
in the year field, we run the following query:

{
 "query" : {
 "range" : {
 "year" : {
 "gte" : 1700,
 "lte" : 1900
 }
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[128]

The dismax query
The dismax query is very useful as it generates a union of documents returned by all
of the subqueries and returns it as the result. The good thing about this query is the
fact that we can control how the lower scoring subqueries affect the final score of
the documents.

The final document score is calculated as the sum of scores of the maximum scoring
query and the sum of scores returned from the rest of the queries, multiplied by the
value of the tie parameter. So, the tie_breaker parameter allows us to control how
the lower scoring queries affect the final score. If we set the tie_breaker parameter
to 1.0, we get the exact sum, while setting the tie parameter to 0.1 results in only
10 percent of the scores (of all the scores apart from the maximum scoring query)
being added to the final score.

An example of the dismax query is as follows:

{
 "query" : {
 "dismax" : {
 "tie_breaker" : 0.99,
 "boost" : 10.0,
 "queries" : [
 {
 "match" : {
 "title" : "crime"
 }
 },
 {
 "match" : {
 "author" : "fyodor"
 }
 }
]
 }
 }
}

As you can see, we included the tie_breaker and boost parameters. In addition to
that, we specified the queries parameter that holds the array of queries that will be
run and used to generate the union of documents for results.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[129]

The regular expression query
The regular expression query allows us to use regular expressions as the query text.
Remember that the performance of such queries depends on the chosen regular
expression. If our regular expression matches many terms, the query will be slow.
The general rule is that the higher the volume of the terms matched by the regular
expression, the slower the query will be.

An example of the regular expression query is as follows:

{
 "query" : {
 "regexp" : {
 "title" : {
 "value" : "cr.m[ae]",
 "boost" : 10.0
 }
 }
 }
}

The preceding query will result in Elasticsearch rewriting the query to a number of
term queries depending on the content of our index that matches the given regular
expression. The boost parameter seen in the query specifies the boost value for the
generated queries.

The full regular expression syntax accepted by Elasticsearch
can be found at http://www.elasticsearch.org/
guide/en/elasticsearch/reference/current/
query-dsl-regexp-query.html#regexp-syntax.

Compound queries
In the Basic queries section of this chapter, we discussed the simplest queries exposed
by Elasticsearch. However, the simple ones are not the only queries that Elasticsearch
provides. The compound queries, as we call them, allow us to connect multiple
queries together or alter the behavior of other queries. You may wonder if you
need such functionality. A simple exercise to determine this would be to combine
a simple term query with a phrase query in order to get better search results.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[130]

The bool query
The bool query allows us to wrap a virtually unbounded number of queries
and connect them with a logical value using one of the following sections:

•	 should: The bool query when wrapped into this section may or may not
match—the number of should sections that have to match is controlled
by the minimum_should_match parameter

•	 must: The bool query when wrapped into this section must match in order
for the document to be returned

•	 must_not: The bool query when wrapped into this section must not match
in order for the document to be returned

Each of these sections can be present multiple times in a single bool query.
This allows us to build very complex queries that have multiple levels of nesting
(you can include the bool query in another bool query). Remember that the score
of the resulting document will be calculated by taking a sum of all the wrapped
queries that the document matched.

In addition to the preceding sections, we can add the following parameters to
the query body to control its behavior:

•	 boost: This parameter specifies the boost used in the query, defaulting to
1.0. The higher the boost, the higher the score of the matching document.

•	 minimum_should_match: The value of this parameter describes the minimum
number of should clauses that have to match in order for the checked
document to be counted as a match. For example, it can be an integer
value such as 2 or a percentage value such as 75%. For more information,
refer to http://www.elasticsearch.org/guide/en/elasticsearch/
reference/current/query-dsl-minimum-should-match.html.

•	 disable_coord: This parameter defaults to false and allows us to enable
or disable the score factor computation that is based on the fraction of all
the query terms that a document contains. We should set it to true for less
precise scoring, but slightly faster queries.

Imagine that we want to find all the documents that have the term crime in the
title field. In addition, the documents may or may not have a range of 1900 to 2000
in the year field and may not have the nothing term in the otitle field. Such a
query made with the bool query will look like the following code:

{
 "query" : {
 "bool" : {
 "must" : {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[131]

 "term" : {
 "title" : "crime"
 }
 },
 "should" : {
 "range" : {
 "year" : {
 "from" : 1900,
 "to" : 2000
 }
 }
 },
 "must_not" : {
 "term" : {
 "otitle" : "nothing"
 }
 }
 }
 }
}

Note that the must, should, and must_not sections can
contain a single query or an array of multiple queries.

The boosting query
The boosting query wraps around two queries and lowers the score of the
documents returned by one of the queries. There are three sections of the boosting
query that need to be defined—the positive section that holds the query whose
document score will be left unchanged, the negative section whose resulting
documents will have their score lowered, and the negative_boost section that
holds the boost value that will be used to lower the second section's query score.
The advantage of the boosting query is that the results of both the queries included
in it (the negative and the positive ones) will be present in the results, although the
scores of some queries will be lowered. For example, if we were to use the bool
query with the must_not section, we wouldn't get the results for such a query.

Let's assume that we want to have the results of a simple term query for the term
crime in the title field and want the score of such documents to not be changed.
However, we also want to have the documents that range from 1800 to 1900 in
the year field and the scores of documents returned by such a query to have an
additional boost of 0.5. Such a query will look like the following:

{
 "query" : {

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[132]

 "boosting" : {
 "positive" : {
 "term" : {
 "title" : "crime"
 }
 },
 "negative" : {
 "range" : {
 "year" : {
 "from" : 1800,
 "to" : 1900
 }
 }
 },
 "negative_boost" : 0.5
 }
 }
}

The constant_score query
The constant_score query wraps another query (or filter) and returns a constant
score for each document returned by the wrapped query (or filter). It allows us to
strictly control the score value assigned for a document matched by a query or filter.
For example, if we want to have a score of 2.0 for all the documents that have the
term crime in the title field, we send the following query to Elasticsearch:

{
 "query" : {
 "constant_score" : {
 "query" : {
 "term" : {
 "title" : "crime"
 }
 },
 "boost" : 2.0
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[133]

The indices query
The indices query is useful when executing a query against multiple indices. It
allows us to provide an array of indices (the indices property) and two queries, one
that will be executed if we query the index from the list (the query property) and the
second that will be executed on all the other indices (the no_match_query property).
For example, assume we have an alias name, books, holding two indices—library
and users—and we want to use this alias; however, we want to run different queries
on those indices. To do this, we send the following query:

{
 "query" : {
 "indices" : {
 "indices" : ["library"],
 "query" : {
 "term" : {
 "title" : "crime"
 }
 },
 "no_match_query" : {
 "term" : {
 "user" : "crime"
 }
 }
 }
 }
}

In the preceding query, the query described in the query property was run against
the library index and no_match_query was run against all the other indices present
in the cluster.

The no_match_query property can also have a string value instead of a query. This
string value can either be all or none and will default to all. If the no_match_query
property is set to all, the documents from the indices that don't match will be
returned. Setting the no_match_query property to none will result in no documents
from the indices that don't match.

Some of the queries exposed by Elasticsearch, such as the custom_score
query, the custom_boost_factor query, and the custom_filters_
score query, are replaced by the function_score query, which we
describe in the The function_score query section of Chapter 5, Make Your
Search Better. We decided to omit the description of these queries as they
will probably be removed in the future versions of Elasticsearch.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[134]

Filtering your results
We already know how to build queries and search for data using different criteria
and queries. We are also familiar with scoring (refer to the Scoring and query relevance
section of Chapter 1, Getting Started with the Elasticsearch Cluster), which tells us
which document is more important in a given query and how our query text affects
ordering. However, sometimes we may want to choose only a subset of our index
without influencing the final score. This is where filters should be used (of course,
this is not the only reason why).

To be perfectly honest, use filters whenever possible. Filters don't affect scoring,
and score calculation complicates searches and requires CPU power. On the other
hand, filtering is a relatively simple operation. Due to the fact that filtering is applied
on the contents of the whole index, the result of the filtering is independent of the
documents that were found and the relationship between them. Filters can easily
be cached, further improving the overall performance of the filtered queries.

In the following sections about filters, we've used the post_filter parameter to
keep the examples as simple as possible. However, remember that if possible, you
should always use the filtered query instead of post_filter because query
execution using filtered will be faster.

Using filters
To use a filter in any search, just add a filter section on the same level as the query
section. You can also omit the query section completely if you only want to have
filters. Let's take an example query that searches for Catch-22 in the title field
and add a filter to it as follows:

{
 "query" : {
 "match" : { "title" : "Catch-22" }
 },
 "post_filter" : {
 "term" : { "year" : 1961 }
 }
}

This returned all the documents with the given title, but that result was narrowed
only to the books published in 1961. There is also a second way to include a filter
in our query: using the filtered query. So our preceding query can be rewritten
as follows:

{
 "query": {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[135]

 "filtered" : {
 "query" : {
 "match" : { "title" : "Catch-22" }
 },
 "filter" : {
 "term" : { "year" : 1961 }
 }
 }
 }
}

If you run both the queries by sending the curl -XGET localhost:9200/library/
book/_search?pretty -d @query.json command, you will see that both the
responses are exactly the same (except, perhaps, the response time):

{

 "took" : 1,

 "timed_out" : false,

 "_shards" : {

 "total" : 5,

 "successful" : 5,

 "failed" : 0

 },

 "hits" : {

 "total" : 1,

 "max_score" : 0.2712221,

 "hits" : [{

 "_index" : "library",

 "_type" : "book",

 "_id" : "2",

 "_score" : 0.2712221, "_source" : { "title": "Catch-
 22","author": "Joseph Heller","year": 1961,
 "characters": ["John Yossarian", "Captain Aardvark",
 "Chaplain Tappman", "Colonel Cathcart",
 "Doctor Daneeka"],"tags": ["novel"],
 "copies": 6, "available" : false}

 }]

 }

}

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[136]

This suggests that both forms are equivalent. This is not true because of the different
orders that the filter and search are applied in. In the first case, filters are applied to
all the documents found by the query. In the second case, the documents are filtered
before the query is run. This yields better performance. As mentioned earlier, filters
are fast, so a filtered query is more efficient. We will return to this in the Faceting
section of Chapter 6, Beyond Full-text Searching.

Filter types
We now know how to use filters. We also know what the differences between the
mentioned filtering methods are. Let's now take a look at the filter types provided
by Elasticsearch.

The range filter
The range filter allows us to limit searching to only those documents where the
value of a field is between the given boundaries. For example, to construct a filter
that will filter the results to the books published only between 1930 and 1990,
we have the following part of the query:

{
 "post_filter" : {
 "range" : {
 "year" : {
 "gte": 1930,
 "lte": 1990
 }
 }
 }
}

Using gte and lte, we indicate that the left and right boundaries of the field are
inclusive. If we want to exclude any of the bounds, we can use the gt and lt version
of the parameter. For example, if we want to have documents from 1930 (including
the ones with this value) to 1990 (excluding the ones with this value), we construct
the following filter:

{
 "post_filter" : {
 "range" : {
 "year" : {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[137]

 "gte": 1930,
 "lt": 1990
 }
 }
 }
}

Let's summarize this as follows:

•	 gt: This means greater than
•	 lt: This means lower than
•	 gte: This means greater or equals to
•	 lte: This means lower or equals to

You can also use the execution parameter. This is a hint to the engine on how to
execute the filter. The available values are fielddata and index. The rule of thumb
is that the fielddata value should increase performance (and memory usage) when
there are many values in the range, and when there are less values in the range, the
index value should be better.

There is also a second variant of this filter: numeric_filter. It is a specialized version
that has been designed to filter on the range values that are numerical. This filter is
faster but comes with a requirement for additional memory usage—Elasticsearch
needs to load the values of a field that we filter on. Note that sometimes these values
will be loaded independent of the range filter. In such cases, there is no reason not
to use this filter. This happens if we use the same field for faceting or sorting.

The exists filter
The exists filter is a very simple one. It filters out documents that don't have
a value in the given field. For example, consider the following code:

{
 "post_filter" : {
 "exists" : { "field": "year" }
 }
}

The preceding filter results in a query that returns documents with a value in
the year field.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[138]

The missing filter
The missing filter is the opposite of the exists filter; it filters out documents with a
value in a given field. However, it has a few additional features. Besides selecting the
documents where the specified fields are missing, we can define what Elasticsearch
should treat as an empty field. This helps in situations where the input data contains
tokens such as null, EMPTY, and not-defined. Let's change our previous example to
find all the documents without the year field defined or the ones that have the year
field equal to 0. So, the modified filter will look like the following:

 {
 "post_filter" : {
 "missing" : {
 "field": "year",
 "null_value": 0,
 "existence": true
 }
 }
 }

In the preceding example, you see two parameters in addition to the previous ones.
The existence parameter tells Elasticsearch that it should check the documents
with a value that exists in the specified field, and the null_value parameter defines
the additional value to be treated as empty. If you didn't define null_value, the
existence value will be set by default; so, you can omit existence in this case.

The script filter
Sometimes, we want to filter our documents by a computed value. A good example
for our case can be to filter out all the books that were published more than a century
ago. We do this using the script filter, as follows:

{
 "post_filter" : {
 "script" : {
 "script" : "now - doc['year'].value > 100",
 "params" : {
 "now" : 2012
 }
 }
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[139]

As you can see, we used a simple script to calculate the value and filter data in this
calculation. We will talk more about the scripting capabilities of Elasticsearch in the
Scripting capabilities of Elasticsearch section of Chapter 5, Make Your Search Better.

The type filter
The type filter is dedicated to limiting documents by type. It can be useful when our
query is run against several indices or an index with numerous types. For example,
if we want to limit the returned documents to the ones with the book type, we use
the following filter:

 {
 "post_filter" : {
 "type": {
 "value" : "book"
 }
 }
 }

The limit filter
The limit filter limits the number of documents returned by a single shard.
This should not be confused with the size parameter. For example, let's take
a look at the following filter:

{
 "post_filter" : {
 "limit" : {
 "value" : 1
 }
 }
}

When we use the default settings for a number of shards, the preceding filter returns
up to five documents. This is because indices in Elasticsearch are divided into five
shards by default. Each shard is queried separately, and each shard may return one
document at most.

The identifiers filter
The ids filter helps when we have to filter out several concrete documents.
For example, if we need to exclude one document with an identifier that is
equal to 1, the filter will look like the following code:

{
 "post_filter": {

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[140]

 "ids" : {
 "type": ["book"],
 "values": [1]
 }
 }
}

Note that the type parameter is not required. However, it is useful when we
are searching among several indices to specify a type that we are interested in.

If this is not enough
So far, we discussed a few examples of the filters used in Elasticsearch. However,
this is only the tip of the iceberg. You can wrap almost every query into a filter.
For example, let's take a look at the following query:

{
 "query" : {
 "multi_match" : {
 "query" : "novel erich",
 "fields" : ["tags", "author"]
 }
 }
}

The preceding example shows a simple multi_match query that we are
already familiar with. This query can be rewritten as a filter, as follows:

{
 "post_filter" : {
 "query" : {
 "multi_match" : {
 "query" : "novel erich",
 "fields" : ["tags", "author"]
 }
 }
 }
}

Of course, the only difference in the result will be the scoring. Every document
returned by the filter will have a score of 1.0. Note that Elasticsearch has a few
dedicated filters that act this way (for example, the term query and the term filter).
So, you don't have to always use wrapped query syntax. In fact, you should always
use a dedicated version wherever possible.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[141]

The following dedicated filters are available in Elasticsearch:

•	 The bool filter
•	 The geo_shape filter
•	 The has_child filter
•	 The has_parent filter
•	 The ids filter
•	 The indices filter
•	 The match_all filter
•	 The nested filter
•	 The prefix filter
•	 The range filter
•	 The regexp filter
•	 The term filter
•	 The terms filter

Combining filters
Now, it's time to combine some filters together. The first option is to use the bool
filter, which can group filters on the same basis as described in The bool query section.
The second option is to use and, or, and not filters. The and filter takes an array
of filters and returns the documents that match all of the filters in the array.
The or filter also takes an array of filters, but it only returns the documents
matching any of the defined filters. In the case of the not filter, the returned
documents are the ones that were not matched by the enclosed filter. Of course,
all these filters may be nested, as shown in the following example:

{
 "post_filter": {
 "not": {
 "and": [
 {
 "term": {
 "title": "Catch-22"
 }
 },
 {
 "or": [

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[142]

 {
 "range": {
 "year": {
 "gte": 1930,
 "lte": 1990
 }
 }
 },
 {
 "term": {
 "available": true
 }
 }
]
 }
]
 }
 }
}

A word about the bool filter
Of course, you should ask about the difference between the bool filter and the and,
or, and not filters. The first thing is that the filters can be used interchangeably.
Of course, it is true from the perspective of the returned results but not
the performance.

If we look at the Elasticsearch internals, we will see that for every filter, a structure
called bitset is built. It holds information about whether a subsequent document in
the index matches the filter. The bitset can easily be cached and reused for all the
queries using the same filter. This is an easy and efficient task for Elasticsearch.

In conclusion, use the bool filter whenever possible. Unfortunately, real life is not
so simple. Some types of filters do not have the ability to create the bitset directly.
In this rare situation, the bool filter will be less effective. You already know of two
of these filters: the numeric range filter and the script filter. The third is a whole
group of filters that use geographic coordinates; we will visit these in the Geo section
of Chapter 6, Beyond Full-text Searching.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[143]

Named filters
Looking at how complicated setting filters may be, sometimes it would be useful
to know which filters were used to determine that a document should be returned
by a query. Fortunately, it is possible to give every filter a name. This name will be
returned with a document that was matched during the query. Let's check how this
works. The following query will return every book that is available and tagged as
novel or every book from the nineteenth century:

{
 "query": {
 "filtered" : {
 "query": { "match_all" : {} },
 "filter" : {
 "or" : [
 { "and" : [
 { "term": { "available" : true } },
 { "term": { "tags" : "novel" } }
]},
 { "range" : { "year" : { "gte": 1800, "lte" : 1899 } } }
]
 }
 }
 }
}

We used the filtered version of the query because this is the only version where
Elasticsearch can add information about the filters that were used. Let's rewrite this
query to add a name to each filter as follows:

{
 "query": {
 "filtered" : {
 "query": { "match_all" : {} },
 "filter" : {
 "or" : {
 "filters" : [
 {
 "and" : {

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[144]

 "filters" : [
 {
 "term": {
 "available" : true,
 "_name" : "avail"
 }
 },
 {
 "term": {
 "tags" : "novel",
 "_name" : "tag"
 }
 }
],
 "_name" : "and"
 }
 },
 {
 "range" : {
 "year" : {
 "gte": 1800,
 "lte" : 1899
 },
 "_name" : "year"
 }
 }
],
 "_name" : "or"
 }
 }
 }
 }
 }
}

As you can see, we added the _name property to every filter. In the case of the and
and or filters, we needed to change the syntax. So, we wrapped the enclosed filters
by an additional object so that JSON is properly formatted. After sending a query
to Elasticsearch, we should get a response similar to the following one:

{

 "took" : 2,

 "timed_out" : false,

 "_shards" : {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[145]

 "total" : 2,

 "successful" : 2,

 "failed" : 0

 },

 "hits" : {

 "total" : 2,

 "max_score" : 1.0,

 "hits" : [{

 "_index" : "library",

 "_type" : "book",

 "_id" : "1",

 "_score" : 1.0, "_source" : { "title": "All Quiet on the
 Western Front","otitle": "Im Westen nichts Neues",
 "author": "Erich Maria Remarque","year": 1929,
 "characters": ["Paul Bäumer", "Albert Kropp",
 "Haie Westhus", "Fredrich Müller",
 "Stanislaus Katczinsky", "Tjaden"],
 "tags": ["novel"],"copies": 1, "available": true},

 "matched_queries" : ["or", "tag", "avail", "and"]

 }, {

 "_index" : "library",

 "_type" : "book",

 "_id" : "4",

 "_score" : 1.0, "_source" : { "title": "Crime and
 Punishment","otitle": "Преступлéние и наказáние",
 "author": "Fyodor Dostoevsky","year": 1886,
 "characters": ["Raskolnikov", "Sofia Semyonovna
 Marmeladova"],"tags": [],"copies": 0, "available" : true},

 "matched_queries" : ["or", "year", "avail"]

 }]

 }

}

You can see that in addition to standard information, each document contains a table
with the name of the filters that were matched for that particular document.

Remember that in most cases, the filtered query will be faster
than the post_filter query. Therefore, the filtered query
should be used instead of post_filter whenever possible.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[146]

Caching filters
The last thing to be mentioned about filters in this chapter is caching. Caching
increases the speed of the queries that use filters, but at the cost of memory
and query time, during the first execution of such a filter. Because of this,
the best candidates for caching are the filters that can be reused, for example,
the ones that we will use frequently that also include the parameters' values.

Caching can be turned on for the and, bool, and or filters (but usually, it is a better
idea to cache the enclosed filters instead). In this case, the required syntax is the
same as described in the named filters, as follows:

{
 "post_filter" : {
 "script" : {
 "_cache": true,
 "script" : "now - doc['year'].value > 100",
 "params" : {
 "now" : 2012
 }
 }
 }
}

Some filters don't support the _cache parameter because their results are always
cached. By default, the following filters are the ones that are always cached:

•	 exists

•	 missing

•	 range

•	 term

•	 terms

This behavior can be modified and caching can be turned off using the
following code:

{
 "post_filter": {
 "term": {
 "_cache": false,
 "year": 1961
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[147]

 }
}

Caching is not able to sense the ids, match_all, and limit filters.

Highlighting
You have probably heard of highlighting, or even if you are not familiar with the
name, you've probably seen highlighted results on the usual web pages you visit.
Highlighting is the process of showing which word or words from the query were
matched in the resulting documents. For example, if we want to do a search on
Google for the word lucene, we will see it in bold in the list of results as shown
in the following screenshot:

In this chapter, we will see how to use the Elasticsearch highlighting capabilities
to enhance our application with highlighted results.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[148]

Getting started with highlighting
There is no better way of showing how highlighting works besides creating a query
and looking at the results returned by Elasticsearch. So let's assume that we want
to highlight the words that were matched in the title field of our documents
to enhance our users' search experience. We search for the crime word again,
and to get the results of the highlighting, we send the following query:

{
 "query" : {
 "term" : {
 "title" : "crime"
 }
 },
 "highlight" : {
 "fields" : {
 "title" : {}
 }
 }
}

The response for such a query should be like the following:

{

 "took" : 2,

 "timed_out" : false,

 "_shards" : {

 "total" : 5,

 "successful" : 5,

 "failed" : 0

 },

 "hits" : {

 "total" : 1,

 "max_score" : 0.19178301,

 "hits" : [{

 "_index" : "library",

 "_type" : "book",

 "_id" : "4",

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[149]

 "_score" : 0.19178301, "_source" : { "title": "Crime and
 Punishment","otitle": "Преступлéние и наказáние",
 "author": "Fyodor Dostoevsky","year": 1886,

 "characters": ["Raskolnikov", "Sofia Semyonovna
 Marmeladova"],"tags": [],"copies": 0, "available" : true},

 "highlight" : {

 "title" : ["Crime and Punishment"]

 }

 }]

 }

}

As you can see, apart from the standard information we got from Elasticsearch,
there is a new section called highlight. Elasticsearch used the HTML tag
at the beginning of the highlighting section and its closing counterpart to close
the section. This is the default behavior of Elasticsearch, but we will learn how
to change it.

Field configuration
In order to perform highlighting, the original content of the field needs to be
present—we have to set the fields that we will use for highlighting either to be
stored, or we should use the _source field with those fields included.

Under the hood
Elasticsearch uses Apache Lucene under the hood, and highlighting is one
of the features of that library. Lucene provides three types of highlighting
implementations: the standard one, which we just used; the second one called
FastVectorHighlighter, which needs term vectors and positions in order to
work; and the third one called PostingsHighlighter, which we will discuss at
the end of this chapter. Elasticsearch chooses the correct highlighter implementation
automatically—if the field is configured with the term_vector property set to
with_positions_offsets, FastVectorHighlighter will be used.

However, you have to remember that having term vectors will cause your
index to be larger, but the highlighting will take less time to be executed.
Also, FastVectorHighlighter is recommended for fields that store a lot
of data in them.

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[150]

Configuring HTML tags
As we already mentioned, it is possible to change the default HTML tags to the ones
we would like to use. For example, let's assume that we want to use the standard
HTML tag for highlighting. In order to do this, we should set the pre_tags and
post_tags properties (these are arrays) to and . Since the two mentioned
properties are arrays, we can include more than one tag, and Elasticsearch will use
each of the defined tags to highlight different words. So, our example query will be
like the following:

{
 "query" : {
 "term" : {
 "title" : "crime"
 }
 },
 "highlight" : {
 "pre_tags" : [""],
 "post_tags" : [""],
 "fields" : {
 "title" : {}
 }
 }
}

The result returned by Elasticsearch to the preceding query will be as follows:

{

 "took" : 2,

 "timed_out" : false,

 "_shards" : {

 "total" : 5,

 "successful" : 5,

 "failed" : 0

 },

 "hits" : {

 "total" : 1,

 "max_score" : 0.19178301,

 "hits" : [{

 "_index" : "library",

 "_type" : "book",

 "_id" : "4",

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[151]

 "_score" : 0.19178301, "_source" : { "title": "Crime and
 Punishment","otitle": "Преступлéние и наказáние",
 "author": "Fyodor Dostoevsky","year": 1886,
 "characters": ["Raskolnikov", "Sofia Semyonovna
 Marmeladova"],"tags": [],"copies": 0, "available" : true},

 "highlight" : {

 "title" : ["Crime and Punishment"]

 }

 }]

 }

}

As you can see, the Crime word in the title field was surrounded by the tags
of our choice.

Controlling the highlighted fragments
Elasticsearch allows us to control the number of highlighted fragments returned
and their size, and exposes the two properties we are allowed to use. The first one,
number_of_fragments, defines the number of fragments returned by Elasticsearch
and defaults to 5. Setting this property to 0 causes the whole field to be returned,
which can be handy for short fields; however, it can be expensive for longer fields.
The second property, fragment_size, lets us specify the maximum length of the
highlighted fragments in characters and defaults to 100.

Global and local settings
The highlighting properties discussed earlier can both be set on a global basis
and on a per-field basis. The global ones will be used for all the fields that don't
override them and should be placed on the same level as the fields section
of your highlighting, as follows:

{
 "query" : {
 "term" : {
 "title" : "crime"
 }
 },
 "highlight" : {
 "pre_tags" : [""],
 "post_tags" : [""],
 "fields" : {
 "title" : {}

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[152]

 }
 }
}

We can also set the properties for each field. For example, if we want to keep
the default behavior for all the fields except for our title field, we use the
following code:

{
 "query" : {
 "term" : {
 "title" : "crime"
 }
 },
 "highlight" : {
 "fields" : {
 "title" : {
 "pre_tags" : [""], "post_tags" : [""]
 }
 }
 }
}

As you can see, instead of placing the properties on the same level as the fields
section, we placed it inside the empty JSON object that specifies the title field
behavior. Of course, each field can be configured using different properties.

Require matching
Sometimes, there may be a need (especially when using multiple highlighted fields)
to show only the fields that match our query. In order to cause such behavior,
we need to set the require_field_match property to true. Setting this property
to false will cause all the terms to be highlighted even if a field didn't match
the query.

To see how this works, let's create a new index called users and index a
single document there. We will do this by sending the following command:

curl -XPUT 'http://localhost:9200/users/user/1' -d '{

 "name" : "Test user",

 "description" : "Test document"

}'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[153]

Now, let's assume that we want to highlight the hits in both the name
and description fields; our query could look like the following code:

{
 "query" : {
 "term" : {
 "name" : "test"
 }
 },
 "highlight" : {
 "fields" : {
 "name" : { "pre_tags" : [""], "post_tags" : [""]
 },
 "description" : { "pre_tags" : [""], "post_tags" : [
 ""] }
 }
 }
}

The result of the preceding query will be as follows:

{

 "took" : 3,

 "timed_out" : false,

 "_shards" : {

 "total" : 5,

 "successful" : 5,

 "failed" : 0

 },

 "hits" : {

 "total" : 1,

 "max_score" : 0.19178301,

 "hits" : [{

 "_index" : "users",

 "_type" : "user",

 "_id" : "1",

 "_score" : 0.19178301, "_source" : {"name" : "Test
 user","description" : "Test document"},

 "highlight" : {

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[154]

 "description" : ["Test document"],

 "name" : ["Test user"]

 }

 }]

 }

}

Note that even though we only matched the name field, we got the results of the
highlighting in both the fields. In most cases, we want to avoid this. So now, let's
modify our query to use the require_field_match property as follows:

{
 "query" : {
 "term" : {
 "name" : "test"
 }
 },
 "highlight" : {
 "require_field_match" : "true",
 "fields" : {
 "name" : { "pre_tags" : [""], "post_tags" : [""]
 },
 "description" : { "pre_tags" : [""], "post_tags" : [
 ""] }
 }
 }
}

Let's take a look at the modified query results as follows:

{

 "took" : 2,

 "timed_out" : false,

 "_shards" : {

 "total" : 5,

 "successful" : 5,

 "failed" : 0

 },

 "hits" : {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[155]

 "total" : 1,

 "max_score" : 0.19178301,

 "hits" : [{

 "_index" : "users",

 "_type" : "user",

 "_id" : "1",

 "_score" : 0.19178301, "_source" : {"name" : "Test
 user","description" : "Test document"},

 "highlight" : {

 "name" : ["Test user"]

 }

 }]

 }

}

As you can see, Elasticsearch returned only the field that was matched, in our case,
the name field.

The postings highlighter
It is time to discuss the third highlighter available in Elasticsearch. It was added in
Elasticsearch 0.90.6 and is slightly different from the previous ones. Let's see these
differences in the following example. PostingsHighlighter is automatically used
when a field definition has the index_options attribute set to offsets. So again, to
illustrate how PostingsHighlighter works, we will create a simple index with a
proper mapping. We will do this using the following commands:

curl -XPUT 'localhost:9200/hl_test'

curl -XPOST 'localhost:9200/hl_test/doc/_mapping' -d '{

 "doc" : {

 "properties" : {

 "contents" : {

 "type" : "string",

 "fields" : {

 "ps" : { "type" : "string", "index_options" : "offsets" }

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[156]

 }

 }

 }

 }

}'

Remember that similar to FastVectorHighlighter, the offsets
required for PostingsHighlighter will result in an increase in
the index size. However, this will be a smaller increase than using
term vectors. In addition to that, indexing offsets is faster than
indexing term vectors, and PostingsHighligher is better when
it comes to query performance.

If everything goes well, we will have a new index and the mappings. The mappings
have two fields defined: one named contents and the second one named contents.
ps. In this second case, we turn on the offsets by using the index_options property.
This means that Elasticsearch will use the standard highlighter for the contents field
and the postings highlighter for the contents.ps field.

To see the difference, we will index a single document with a fragment from
Wikipedia that describes the history of Birmingham. We do this by running the
following command:

curl -XPUT localhost:9200/hl_test/doc/1 -d '{

 "contents" : "Birmingham''s early history is that of a remote and
 marginal area. The main centers of population, power and wealth
 in the pre-industrial English Midlands lay in the fertile and
 accessible river valleys of the Trent, the Severn and the Avon.
 The area of modern Birmingham lay in between, on the upland
 Birmingham Plateau and within the densely wooded and sparsely
 populated Forest of Arden."

}'

The last step is to send a query using both the highlighters. We can do this in a single
request using the following command:

curl 'localhost:9200/hl_test/_search?pretty' -d '{

 "query": {

 "term": {

 "contents": "modern"

 }

 },

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[157]

 "highlight": {

 "fields": {

 "contents": {},

 "contents.ps" : {}

 }

 }

}'

If everything is all right, we will find the following snippet in response:

 "highlight" : {

 "contents" : [" valleys of the Trent, the Severn and the
 Avon. The area of modern Birmingham lay in
 between, on the upland"],

 "contents.ps" : ["The area of modern Birmingham lay
 in between, on the upland Birmingham Plateau and within the
 densely wooded and sparsely populated Forest of Arden."]

 }

As you see, both highlighters found the occurrence of the desired word.
The difference is that the postings highlighter returns the smarter snippet—it
checks for the sentence boundaries.

Let's try one more query using the following command:

curl 'localhost:9200/hl_test/_search?pretty' -d '{

 "query": {

 "match_phrase": {

 "contents": "centers of"

 }

 },

 "highlight": {

 "fields": {

 "contents": {},

 "contents.ps": {}

 }

 }

}'

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[158]

We searched for a particular phrase, centers of. As you may expect, the results
for these two highlighters will differ. For standard highlighting, you will find the
following phrase in response:

"Birmingham's early history is that of a remote and marginal area.
 The main centers of population"

As you can clearly see, the standard highlighter divided the given phrase and
highlighted individual terms. Not all occurrences of the centers and of terms
were highlighted and only the ones that form the phrase were.

On the other hand, the postings highlighter returned the following highlighted
fragment:

"Birmingham's early history is that of a remote and marginal
 area.",

"The main centers of population, power and wealth
 in the pre-industrial English Midlands lay in the fertile and
 accessible river valleys of the Trent, the Severn and the
 Avon.",

"The area of modern Birmingham lay in between, on the upland
 Birmingham Plateau and within the densely wooded and sparsely
 populated Forest of Arden."

This is the significant difference; the postings highlighter highlighted all the terms
that match the terms from the query and not only those that formed the phrase.

Validating your queries
Sometimes, the queries that your application sends to Elasticsearch are generated
automatically from multiple criteria or even worse; they are generated by some kind
of wizard, where the end user can create complicated queries. The issue is that
sometimes it is not easy to tell if the query is correct or not. To help with this,
Elasticsearch exposes the validate API.

Using the validate API
The validate API is very simple. Instead of sending the query to the _search
endpoint, we send it to the _validate/query endpoint. And that's it. Let's look
at the following query:

{
 "query" : {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[159]

 "bool" : {
 "must" : {
 "term" : {
 "title" : "crime"
 }
 },
 "should" : {
 "range : {
 "year" : {
 "from" : 1900,
 "to" : 2000
 }
 }
 },
 "must_not" : {
 "term" : {
 "otitle" : "nothing"
 }
 }
 }
 }
}

This query has already been used in this book. We know that everything is right
with this query, but let's check it with the following command (we've stored the
query in the query.json file):

curl -XGET 'localhost:9200/library/_validate/query?pretty' -d
 @query.json

The query seems all right, but let's look at what the validate API has to say.
The response returned by Elasticsearch is as follows:

{

 "valid" : false,

 "_shards" : {

 "total" : 1,

 "successful" : 1,

 "failed" : 0

 }

}

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[160]

Let's take a look at the valid attribute. It is set to false. Something has gone wrong.
Let's execute the query validation once again with the explain parameter added in
the query as follows:

curl -XGET 'localhost:9200/library/_validate/query?pretty&explain' --
 data-binary @query.json

Now, the result returned from Elasticsearch is more verbose, as follows:

{

 "valid" : false,

 "_shards" : {

 "total" : 1,

 "successful" : 1,

 "failed" : 0

 },

 "explanations" : [{

 "index" : "library",

 "valid" : false,

 "error" : "org.elasticsearch.index.query.QueryParsingException:
 [library] Failed to parse;
 org.elasticsearch.common.jackson.core.JsonParseException:
 Illegal unquoted character ((CTRL-CHAR, code 10)): has to be
 escaped using backslash to be included in name\n at [Source:
 [B@6456919f; line: 10, column: 18]"

 }]

}

Now everything is clear. In our example, we improperly quoted the range attribute.

You may wonder why we used the --data-binary parameter in our
curl query. This parameter properly preserves the new line character
when sending a query to Elasticsearch. This means that the line and
column number will be intact, and it'll be easier to find errors. In the
other cases, the –d parameter is more convenient because it's shorter.

The validate API can also detect other errors, for example, the incorrect format of a
number or other mapping-related issues. Unfortunately, for our application, it is not
easy to detect what the problem is because of a lack of structure in the error messages.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[161]

Sorting data
We now know how to build queries and filter the results. We also know what the
search types are and why they matter. We can send these queries to Elasticsearch and
analyze the returned data. For now, this data was organized in the order determined
by the scoring. This is exactly what we want in most cases. The search operation
should give us the most relevant documents first. However, what we can do if we
want to use our search more like a database or set a more sophisticated algorithm
to order data? Let's check what Elasticsearch can do with a sorting function.

Default sorting
Let's look at the following query that returns all the books with at least one of
the specified words:

{
 "query" : {
 "terms" : {
 "title" : ["crime", "front", "punishment"],
 "minimum_match" : 1
 }
 }
}

Under the hood, Elasticsearch sees this as follows:

{
 "query" : {
 "terms" : {
 "title" : ["crime", "front", "punishment"],
 "minimum_match" : 1
 }
 },
 "sort" : { "_score" : "desc" }
}

Note the highlighted section in the preceding query. This is the default sorting used
by Elasticsearch. More verbose, this fragment may be shown as follows:

 "sort" : [
 { "_score" : "desc" }
]

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[162]

The preceding section defines how the documents should be sorted in the results list.
In this case, Elasticsearch will show the documents with the highest score on top of
the results list. The simplest modification is to reverse the ordering by changing the
sort section to the following one:

 "sort" : [
 { "_score" : "asc" }
]

Selecting fields used for sorting
Default sorting is boring, isn't it? So, let's change it to sort one of the fields present in
the documents as follows:

 "sort" : [
 { "title" : "asc" }
]

Unfortunately, this doesn't work as expected. Although Elasticsearch sorted the
documents, the ordering is somewhat strange. Look closer at the response. With
every document, Elasticsearch returns information about the sorting; for example,
for the Catch-22 book, the returned document looks like the following code:

{

 "_index": "library",

 "_type": "book",

 "_id": "2",

 "_score": null,

 "_source": {

 "title": "Catch-22",

 "author": "Joseph Heller",

 "year": 1961,

 "characters": [

 "John Yossarian",

 "Captain Aardvark",

 "Chaplain Tappman",

 "Colonel Cathcart",

 "Doctor Daneeka"

],

 "tags": [

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[163]

 "novel"

],

 "copies": 6,

 "available": false,

 "section": 1

 },

 "sort": [

 "22"

]

}

If you compare the title field and the returned sorting information, everything
should be clear. Elasticsearch, during the analysis process, splits the field into several
tokens. Since sorting is done using a single token, Elasticsearch chooses one of those
produced tokens. It does the best that it can by sorting these tokens alphabetically
and choosing the first one. This is the reason why, in the sorting value, we find only
a single word instead of the whole contents of the title field. In your spare time,
you can check how Elasticsearch will behave when sorting on the characters field.

In general, it is a good idea to have a not analyzed field for sorting. We can use
fields with multiple values for sorting, but in most cases, it doesn't make much
sense and has limited usage. As an example of using two different fields, one for
sorting and another for searching, let's change our title field. The changed title
field definition could look like the following code:

"title" : {
 "type": "string",
 "fields": {
 "sort": { "type" : "string", "index": "not_analyzed" }
 }
}

After changing the title field in the mappings, we've shown in the beginning of
the chapter that we can try sorting the title.sort field and see whether it will
work. To do this, we will need to send the following query:

{
 "query" : {
 "match_all" : { }
 },
 "sort" : [
 {"title.sort" : "asc" }

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[164]

]
}

Now, it works properly. As you can see, we used the new field, title.sort.
We've set it to be not analyzed; so, there is a single value for that field in the index.

In the response from Elasticsearch, every document contains information about
the value used for sorting; it is as follows:

 "_index" : "library",

 "_type" : "book",

 "_id" : "1",

 "_score" : null, "_source" : { "title": "All Quiet on the
 Western Front","otitle": "Im Westen nichts Neues",
 "author": "Erich Maria Remarque","year":
 1929,"characters": ["Paul Bäumer", "Albert Kropp",
 "Haie Westhus", "Fredrich Müller", "Stanislaus
 Katczinsky", "Tjaden"],"tags": ["novel"],"copies": 1,
 "available": true, "section" : 3},

 "sort" : ["All Quiet on the Western Front"]

Note that sort, in request and response, is given as an array. This suggests that we
can use several different orderings. Elasticsearch will use the following elements from
the list to determine ordering between documents that have the same previous field
value. So, if we have the same value in the title field, documents will be sorted by
the next field that we specify.

Specifying the behavior for missing fields
What about when some of the documents that match the query don't have the field
we want to sort on? By default, documents without the given field are returned first
in the case of ascending order and last in the case of descending order. However,
sometimes this is not exactly what we want to achieve.

When we use sorting on numeric fields, we can change the default Elasticsearch
behavior for documents with missing fields. For example, let's take a look at the
following query:

{
 "query" : {
 "match_all" : { }
 },
 "sort" : [

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[165]

 { "section" : { "order" : "asc", "missing" : "_last" } }
]
}

Note the extended form of the sort section of our query. We've added the missing
parameter to it. By setting the missing parameter to _last, Elasticsearch will place
the documents without the given field at the bottom of the results list. Setting the
missing parameter to _first will result in Elasticsearch placing the documents
without the given field at the top of the results list. It is worth mentioning that
besides the _last and _first values, Elasticsearch allows us to use any number.
In such a case, a document without a defined field will be treated as the document
with this given value.

Dynamic criteria
As we've mentioned in the previous section, Elasticsearch allows us to sort using
fields that have multiple values. We can control how the comparison is made using
scripts for sorting. We do that by showing Elasticsearch how to calculate the value
that should be used for sorting. Let's assume that we want to sort by the first value
indexed in the tags field. Let's take a look at the following example query:

{
 "query" : {
 "match_all" : { }
 },
 "sort" : {
 "_script" : {
 "script" : "doc['tags'].values.length > 0 ?
 doc['tags'].values[0] : '\u19999'",
 "type" : "string",
 "order" : "asc"
 }
 }
}

In the preceding example, we replaced every nonexistent value by the Unicode
code of a character that should be low enough in the list. The main idea of this code
is to check if our array contains at least a single element. If it does, then the first value
from the array is returned. If the array is empty, we return the Unicode character that
should be placed at the bottom of the results list. Besides the script parameter, this
option of sorting requires us to specify the order (ascending, in our case) and type
parameters that will be used for the comparison (we return string from our script).

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[166]

Collation and national characters
If we want to use languages other than English, we can face the problem of an incorrect
order of characters. It happens because many languages have a different alphabetical
order defined. Elasticsearch supports many languages, but proper collation requires
an additional plugin. It's easy to install and configure, but we will discuss this further
in the Elasticsearch plugins section in Chapter 8, Administrating Your Cluster.

Query rewrite
Queries such as the prefix query and the wildcard query—basically, any query
that is said to be multiterm—use query rewriting. Elasticsearch does this because of
performance reasons. The rewrite process is about changing the original, expensive
query to a set of queries that are far less expensive from the Lucene point of view.

An example of the rewrite process
The best way to illustrate how the rewrite process is carried out internally is to look
at an example and see what terms are used instead of the original query term. Let's
suppose that we have the following data in our index:

curl -XPOST 'localhost:9200/library/book/1' -d '{"title": "Solr 4
 Cookbook"}'

curl -XPOST 'localhost:9200/library/book/2' -d '{"title": "Solr 3.1
 Cookbook"}'

curl -XPOST 'localhost:9200/library/book/3' -d '{"title": "Mastering
 Elasticsearch"}'

What we want is to find all the documents that start with the letter s. It's as simple as
that; we run the following query against our library index:

curl -XGET 'localhost:9200/library/_search?pretty' -d '{

 "query" : {

 "prefix" : {

 "title" : "s",

 "rewrite" : "constant_score_boolean"

 }

 }

}'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[167]

Here, we used a simple prefix query. We mentioned that we want to find all the
documents containing the s letter in the title field. We also used the rewrite
property to specify the query rewrite method, but let's skip it for now as we will
discuss the possible values of this parameter in the latter part of this section.

As a response to the preceding query, we get the following output:

{

 "took" : 22,

 "timed_out" : false,

 "_shards" : {

 "total" : 5,

 "successful" : 5,

 "failed" : 0

 },

 "hits" : {

 "total" : 2,

 "max_score" : 1.0,

 "hits" : [{

 "_index" : "library",

 "_type" : "book",

 "_id" : "2",

 "_score" : 1.0, "_source" : {"title": "Solr 3.1 Cookbook"}

 }, {

 "_index" : "library",

 "_type" : "book",

 "_id" : "1",

 "_score" : 1.0, "_source" : {"title": "Solr 4 Cookbook"}

 }]

 }

}

As you can see, in response, we got the two documents that have the contents of the
title field that begin with the desired character. If we take a look at the Lucene-
level query, we notice that the prefix query has been rewritten into a query similar
to the following one:

ConstantScore(title:solr)

www.it-ebooks.info

http://www.it-ebooks.info/

Searching Your Data

[168]

This is because solr is the only term that starts with the letter s. And this is what
query rewrite is all about: to find the relevant terms, and instead of running an
expensive query, just rewrite it to something more performance friendly.

Query rewrite properties
As we already said, we can use the rewrite parameter of any multiterm query (such
as the Elasticsearch prefix and wildcard queries) to control how we want the query
to be rewritten. We place the rewrite parameter inside the JSON object responsible
for the actual query, as follows:

{
 "query" : {
 "prefix" : {
 "title" : "s",
 "rewrite" : "constant_score_boolean"
 }
 }
}

Now, let's look at the options we have when it comes to the value of this parameter:

•	 scoring_boolean: This rewrite method translates each generated term into
a Boolean should clause in the Boolean query. This query rewrite method
may be CPU intensive (because the score for each term is calculated and
stored), and queries that have many terms may exceed the Boolean query
limit, which is set to 1024. Also, this query stores the computed score.

•	 constant_score_boolean: This rewrite method is similar to the scoring_
boolean rewrite method described earlier, but it is less demanding of the
CPU because the scoring is not computed. Instead of that, each term receives
a score equal to the query boost, which is 1 by default, and can be set using
the boost property. Similar to the scoring_boolean rewrite method, this
method can also hit the maximum limit of the Boolean clauses.

•	 constant_score_filter: As Apache Lucene Javadocs states, this rewrite
method rewrites the query by creating a private filter by visiting each
term in a sequence and marking all the documents for that term. Matching
documents are given a constant score equal to the query boost. This method
is faster than the scoring_boolean and constant_score_boolean methods
when the number of matching terms or documents is large.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 3

[169]

•	 top_terms_N: This is a rewrite method that translates each generated term
into a Boolean should clause in a Boolean query and keeps the scores as
computed by the query. However, unlike the scoring_boolean rewrite
method, it only keeps the N number of top scoring terms to avoid hitting the
maximum limit of the Boolean clauses.

•	 top_terms_boost_N: This is a rewrite method similar to top_terms_N.
However, unlike the top_terms_N rewrite method, the scores are only
computed as the boost and not the query.

When the rewrite property is set to either constant_score_
auto or not set at all, the value of constant_score_filter
or constant_score_boolean will be used depending on the
query and how it is constructed.

Before we finish the query rewrite part of this chapter, we should ask ourselves
one last question, "When do we use which type of rewrite?". The answer to such a
question depends largely on our use case, but just to summarize if we can live with
lower precision (but higher performance), we can go for the top N rewrite method.
If we need high precision (but lower performance), we choose the Boolean approach.

Summary
In this chapter, we learned how Elasticsearch querying works and how to choose
the data we want returned. We saw how query rewrite works, what the search types
are, and what search preference is. We learned about the basic queries available in
Elasticsearch and filtered our results using filters. In addition to this, we discussed
the highlighting functionality, which allowed us to highlight matches in our
documents, and we validated our queries. We learned about compound queries
that can group multiple queries together, and finally, we saw how to configure
sorting to match our needs.

In the next chapter, we'll focus on indices again, but not only on indices. We'll learn
how to index tree-like structures. We will see how to index data that is not flat by
storing JSON objects in Elasticsearch, and how to modify the structure of an already
created index. We'll also see how to handle relationships between documents using
nested documents and parent-child functionality.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Index
Structure

In the previous chapter, we learned many things about querying Elasticsearch. We
saw how to choose fields that will be returned and learned how querying works in
Elasticsearch. In addition to that, we now know the basic queries that are available
and how to filter our data. What's more, we saw how to highlight the matches in
our documents and how to validate our queries. In the end, we saw the compound
queries of Elasticsearch and learned how to sort our data. By the end of this chapter,
you will have learned the following topics:

•	 Indexing tree-like structured data
•	 Indexing data that is not flat
•	 Modifying your index structure when possible
•	 Indexing data with relationships by using nested documents
•	 Indexing data with relationships between them by using the

parent-child functionality

Indexing tree-like structures
Trees are everywhere. If you develop a shop application, you would probably
have categories. If you look at the filesystem, the files and directories are arranged
in tree-like structures. This book can also be represented as a tree: chapters contain
topics and topics are divided into subtopics. As you can imagine, Elasticsearch is
also capable of indexing tree-like structures. Let's check how we can navigate
through this type of data using path_analyzer.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Index Structure

[172]

Data structure
First, let's create a simple index structure by using the following lines of code:

curl -XPUT 'localhost:9200/path' -d '{
 "settings" : {
 "index" : {
 "analysis" : {
 "analyzer" : {
 "path_analyzer" : { "tokenizer" : "path_hierarchy" }
 }
 }
 }
 },
 "mappings" : {
 "category" : {
 "properties" : {
 "category" : {
 "type" : "string",
 "fields" : {
 "name" : { "type" : "string",
 "index" : "not_analyzed" },
 "path" : { "type" : "string",
 "analyzer" : "path_analyzer",
 "store" : true }
 }
 }
 }
 }
 }
}'

As you can see, we have a single type created—the category type. We will use it
to store the information about the location of our document in the tree structure.
The idea is simple—we can show the location of the document as a path, in the
exact same manner as files and directories are presented on your hard disk drive.
For example, in an automotive shop we can have /cars/passenger/sport, /cars/
passenger/camper, or /cars/delivery_truck/. However, we need to index
this path in three ways. We will use a field named name, which doesn't have
any additional processing, and an additional field called path, which will use
path_analyzer, which we defined. We will also leave the original value as it is,
just in case we want to search it.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[173]

Analysis
Now, let's see what Elasticsearch will do with the category path during the
analysis process. To see this, we will use the following command line, which uses
the analysis API described in the Understanding field analysis section in Chapter 5,
Make Your Search Better:

curl -XGET 'localhost:9200/path/_analyze?field=category.path&pretty' -d
'/cars/passenger/sport'

The following results were returned by Elasticsearch:

{

 "tokens" : [{

 "token" : "/cars",

 "start_offset" : 0,

 "end_offset" : 5,

 "type" : "word",

 "position" : 1

 }, {

 "token" : "/cars/passenger",

 "start_offset" : 0,

 "end_offset" : 15,

 "type" : "word",

 "position" : 1

 }, {

 "token" : "/cars/passenger/sport",

 "start_offset" : 0,

 "end_offset" : 21,

 "type" : "word",

 "position" : 1

 }]

}

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Index Structure

[174]

As we can see, our category path /cars/passenger/sport was processed by
Elasticsearch and divided into three tokens. Thanks to this, we can simply find
every document that belongs to a given category or its subcategories using the
term filter. An example of using filters is as follows:

{
 "filter" : {
 "term" : { "category.path" : "/cars" }
 }
}

Note that we also have the original value indexed in the category.name field. This is
handy when we want to find documents from a particular path, ignoring documents
that are deeper in the hierarchy.

Indexing data that is not flat
Not all data is flat like the data we have been using so far in this book. Of course,
if we are building the system that Elasticsearch will be a part of, we can create
a structure that is convenient for Elasticsearch. Of course, the structure can't always
be flat, because not all use cases allow that. Let's see how to create mappings that use
fully-structured JSON objects.

Data
Let's assume that we have the following data (we will store it in the file named
structured_data.json):

{
 "book" : {
 "author" : {
 "name" : {
 "firstName" : "Fyodor",
 "lastName" : "Dostoevsky"
 }
 },
 "isbn" : "123456789",
 "englishTitle" : "Crime and Punishment",
 "year" : 1886,
 "characters" : [
 {
 "name" : "Raskolnikov"
 },

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[175]

 {
 "name" : "Sofia"
 }
],
 "copies" : 0
 }
}

As you can see in the preceding code, the data is not flat; it contains arrays and
nested objects. If we would like to create mappings and use the knowledge that
we've obtained so far, we will have to flatten the data. However, Elasticsearch
allows some degree of structure to be present in the documents and we should
be able to create mappings that will be able to handle the preceding example.

Objects
The preceding example shows the structured JSON file. As you can see, the root object
in our example file is book. The book object has some additional, simple properties,
such as englishTitle. Those will be indexed as normal fields. In addition to that,
it has the characters array type, which we will discuss in the next paragraph.
For now, let's focus on author. As you can see, author is an object, which has
another object nested within it—the name object, which has two properties,
firstName and lastName.

Arrays
We already used the array type data, but we didn't discuss it in detail. By default,
all fields in Lucene and thus in Elasticsearch are multivalued, which means that they
can store multiple values. In order to send such fields to be indexed, we use the JSON
array type, which is nested within opening and closing square brackets []. As you can
see in the preceding example, we used the array type for characters within the book.

Mappings
To index arrays, we just need to specify the properties for such fields inside the array
name. So, in our case in order to index the characters data, we would need to add
the following mappings:

"characters" : {
 "properties" : {
 "name" : {"type" : "string", "store" : "yes"}
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Index Structure

[176]

Nothing strange, we just nest the properties section inside the array's name (which
is characters in our case) and we define the fields there. As a result of the preceding
mappings, we would get characters.name as a multivalued field in the index.

Similarly, for the author object, we will call the section with the same name as it
is present in the data, but in addition to the properties section, we also inform
Elasticsearch that it should expect an object type by adding the type property with
the value as object. We have the author object, but it also has the name object
nested within it, so we just nest another object inside it. So, our mappings for the
author field would look like the following:

"author" : {
 "type" : "object",
 "properties" : {
 "name" : {
 "type" : "object",
 "properties" : {
 "firstName" : {"type" : "string", "index" : "analyzed"},
 "lastName" : {"type" : "string", "index" : "analyzed"}
 }
 }
 }
}

The firstName and lastName fields appear in the index as author.name.firstName
and author.name.lastName.

The rest of the fields are simple core types, so I'll skip discussing them as they were
already discussed in the Mappings configuration section of Chapter 2, Indexing Your Data.

Final mappings
So, our final mappings file, which we've named structured_mapping.json, looks
as follows:

{
 "book" : {
 "properties" : {
 "author" : {
 "type" : "object",
 "properties" : {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[177]

 "name" : {
 "type" : "object",
 "properties" : {
 "firstName" : {"type" : "string", "store": "yes"},
 "lastName" : {"type" : "string", "store": "yes"}
 }
 }
 }
 },
 "isbn" : {"type" : "string", "store": "yes"},
 "englishTitle" : {"type" : "string", "store": "yes"},
 "year" : {"type" : "integer", "store": "yes"},
 "characters" : {
 "properties" : {
 "name" : {"type" : "string", "store": "yes"}
 }
 },
 "copies" : {"type" : "integer", "store": "yes"}
 }
 }
}

As you can see, we set the store property to yes for all of the fields. This is just
to show you that the fields were properly indexed.

Sending the mappings to Elasticsearch
Now that we have done our mappings, we would like to test if all of them actually
work. This time we will use a slightly different technique to create an index and put
the mappings. First, let's create the library index using the following command line:

curl -XPUT 'localhost:9200/library'

Now, let's send our mappings for the book type, using the following command line:

curl -XPUT 'localhost:9200/library/book/_mapping' -d @structured_mapping.
json

We can now index our example data using the following command line:

curl -XPOST 'localhost:9200/library/book/1' -d @structured_data.json

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Index Structure

[178]

To be or not to be dynamic
As we already know, Elasticsearch is schemaless, which means it can index
data without the need to create the mappings upfront. The dynamic behavior
of Elasticsearch is turned on by default, but there may be situations where you may
want to turn it off for some parts of your index. In order to do that, you should add
the dynamic property to the given field and set it to false. This should be done on
the same level of nesting as the type property for objects that shouldn't be dynamic.
For example, if we would like our author and name objects to not be dynamic,
we should modify the relevant part of the mappings file so that it looks similar
to the following lines of code:

"author" : {
 "type" : "object",
 "dynamic" : false,
 "properties" : {
 "name" : {
 "type" : "object",
 "dynamic" : false,
 "properties" : {
 "firstName" : {"type" : "string", "index" : "analyzed"},
 "lastName" : {"type" : "string", "index" : "analyzed"}
 }
 }
 }
}

However, please remember that in order to add new fields for such objects
we will have to update the mappings.

You can also turn off the dynamic mappings functionality
by adding the index.mapper.dynamic property to your
elasticsearch.yml configuration file and setting it to false.

Using nested objects
Nested objects can come in handy in certain situations. Basically, with nested
objects, Elasticsearch allows us to connect multiple documents together—one main
document and multiple dependent ones. The main document and the nested ones
will be indexed together and they will be placed in the same segment of the index
(actually, in the same block), which guarantees the best performance we can get
for data structure. The same goes for changing the document; unless you are using
the update API, you need to index the parent document and all the other nested
documents at the same time.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[179]

If you would like to read more about how nested objects work
on the Lucene level, there is a very good blog post by Mike
McCandless at http://blog.mikemccandless.com/2012/01/
searching-relational-content-with.html.

Now, let's get to our example use case. Imagine that we have a shop with clothes
and we store the size and color of each t-shirt. Our standard, nonnested mappings
will look similar to the following lines of code (stored in cloth.json):

{
 "cloth" : {
 "properties" : {
 "name" : {"type" : "string"},
 "size" : {"type" : "string", "index" : "not_analyzed"},
 "color" : {"type" : "string", "index" : "not_analyzed"}
 }
 }
}

Imagine that we have a red t-shirt only in the XXL size and a black one only in the
XL size in our shop. So our example document will look like the following code:

{
 "name" : "Test shirt",
 "size" : ["XXL", "XL"],
 "color" : ["red", "black"]
}

However, there is a problem with this data structure. What if one of our clients
searches our shop in order to find the XXL t-shirt in black? Let's check that by
running the following query (we assume that we've used our mappings to create
the index and we've indexed our example document):

curl -XGET 'localhost:9200/shop/cloth/_search?pretty=true' -d '{

 "query" : {

 "bool" : {

 "must" : [

 {

 "term" : { "size" : "XXL" }

 },

 {

 "term" : { "color" : "black" }

 }

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Index Structure

[180]

]

 }

 }

}'

We should get no results right? But, in fact, Elasticsearch returned the
following document:

{

 (…)

 "hits" : {

 "total" : 1,

 "max_score" : 0.4339554,

 "hits" : [{

 "_index" : "shop",

 "_type" : "cloth",

 "_id" : "1",

 "_score" : 0.4339554,

 "_source" : { "name" : "Test shirt",

 "size" : ["XXL", "XL"],

 "color" : ["red", "black"]}

 }]

 }

}

This is because the document was compared; we have the value we are searching for in
the size field and in the color field. Of course, this is not what we would like to get.

So, let's modify our mappings to use nested objects to separate color and size to
different, nested documents. The final mapping looks like the following (we store
these mappings in the cloth_nested.json file):

{
 "cloth" : {
 "properties" : {
 "name" : {"type" : "string", "index" : "analyzed"},
 "variation" : {
 "type" : "nested",
 "properties" : {
 "size" : {"type" : "string", "index" : "not_analyzed"},
 "color" : {"type" : "string", "index" : "not_analyzed"}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[181]

 }
 }
 }
 }
}

As you can see, we've introduced a new object, variation, inside our cloth type,
which is a nested one (the type property set to nested). It basically says that we
will want to index nested documents. Now, let's modify our document. We will add
the variation object to it and that object will store objects with two properties: size
and color. So, our example product will look as follows:

{
 "name" : "Test shirt",
 "variation" : [
 { "size" : "XXL", "color" : "red" },
 { "size" : "XL", "color" : "black" }
]
}

We've structured the document so that each size and its matching color is a separate
document. However, if you would run our previous query, it wouldn't return any
documents. This is because in order to query for nested documents, we need to use
a specialized query. So, now our query looks as follows (of course we've created
our index and type again):

curl -XGET 'localhost:9200/shop/cloth/_search?pretty=true' -d '{

 "query" : {

 "nested" : {

 "path" : "variation",

 "query" : {

 "bool" : {

 "must" : [

 { "term" : { "variation.size" : "XXL" } },

 { "term" : { "variation.color" : "black" } }

]

 }

 }

 }

 }

}'

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Index Structure

[182]

And now, the preceding query wouldn't return the indexed document, because
we don't have a nested document that has a size equal to XXL and the color black.

Let's get back to the query for a second to discuss it briefly. As you can see, we've
used the nested query in order to search in the nested documents. The path property
specifies the name of the nested object (yes, we can have multiple). As you can see,
we just included a standard query section under the nested type. Please also note
that we specified the full path for the field names in the nested objects, which is
handy when you have multilevel nesting, which is also possible.

If you would like to filter your data on the basis of nested objects, you
can do it—there is a nested filter, which has the same functionality
as the nested query. Please refer to the Filtering your results section in
Chapter 3, Searching Your Data, for more information about filtering.

Scoring and nested queries
There is an additional property when it comes to handling nested documents during
queries. In addition to the path property, there is the score_mode property, which
allows us to define how the score is calculated from the nested queries. Elasticsearch
allows us to set this property to one of the following values:

•	 avg: This is the default value; using it for the score_mode property will result
in Elasticsearch taking the average value calculated from the scores of the
defined nested queries. The calculated average will be included in the score
of the main query.

•	 total: This value is used for the score_mode property and it will result in
Elasticsearch taking a sum of the scores for each nested query and including
it in the score of the main query.

•	 max: This value is used for the score_mode property and it will result
in Elasticsearch taking the score of the maximum scoring nested query
and including it in the score of the main query.

•	 none: This value is used for the score_mode property and it will result
in no score being taken from the nested query.

Using the parent-child relationship
In the previous section, we discussed the ability to index nested documents along
with the parent one. However, even though the nested documents are indexed
as separate documents in the index, we can't change a single nested document
(unless we use the update API). However, Elasticsearch allows us to have a real
parent-child relationship and we will look at it in the following section.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[183]

Index structure and data indexing
Let's use the same example that we used when discussing the nested
documents—the hypothetical cloth store. However, what we would like
to have is the ability to update sizes and colors without the need to index
the whole document after each change.

Parent mappings
The only field we need to have in our parent document is name. We don't need
anything more than that. So, in order to create our cloth type in the shop index,
we will run the following commands:

curl -XPOST 'localhost:9200/shop'

curl -XPUT 'localhost:9200/shop/cloth/_mapping' -d '{

 "cloth" : {

 "properties" : {

 "name" : {"type" : "string"}

 }

 }

}'

Child mappings
To create child mappings, we need to add the _parent property with the name
of the parent type—cloth, in our case. So, the command that will create the
variation type would look as follows:

curl -XPUT 'localhost:9200/shop/variation/_mapping' -d '{

 "variation" : {

 "_parent" : { "type" : "cloth" },

 "properties" : {

 "size" : {"type" : "string", "index" : "not_analyzed"},

 "color" : {"type" : "string", "index" : "not_analyzed"}

 }

 }

}'

And, that's all. You don't need to specify which field will be used to connect child
documents to the parent ones because, by default, Elasticsearch will use the unique
identifier for that. If you remember from the previous chapters, the information
about a unique identifier is present in the index by default.

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Index Structure

[184]

The parent document
Now, we are going to index our parent document. It's very simple; to do that,
we just run the usual indexing command, for example, the one as follows:

curl -XPOST 'localhost:9200/shop/cloth/1' -d '{

 "name" : "Test shirt"

}'

If you look at the preceding command, you'll notice that our document will be
given the identifier 1.

The child documents
To index child documents, we need to provide information about the parent
document with the use of the parent request parameter and set that parameter
value to the identifier of the parent document. So, to index two child documents
to our parent document, we would need to run the following command lines:

curl -XPOST 'localhost:9200/shop/variation/1000?parent=1' -d '{

 "color" : "red",

 "size" : "XXL"

}'

Also, we need to run the following command lines to index the second
child document:

curl -XPOST 'localhost:9200/shop/variation/1001?parent=1' -d '{

 "color" : "black",

 "size" : "XL"

}'

And that's all. We've indexed two additional documents, which are of a new type,
but we've specified that our documents have a parent—the document with an
identifier of 1.

Querying
We've indexed our data and now we need to use appropriate queries to match
documents with the data stored in their children. Of course, we can also run queries
against the child documents and check their parent's existence. However, please
note that when running queries against parents, child documents won't be returned,
and vice versa.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[185]

Querying data in the child documents
So, if we would like to get clothes that are of the XXL size and in red, we would
run the following command lines:

curl -XGET 'localhost:9200/shop/_search?pretty' -d '{

 "query" : {

 "has_child" : {

 "type" : "variation",

 "query" : {

 "bool" : {

 "must" : [

 { "term" : { "size" : "XXL" } },

 { "term" : { "color" : "red" } }

]

 }

 }

 }

 }

}'

The query is quite simple; it is of the has_child type, which tells Elasticsearch that
we want to search in the child documents. In order to specify which type of children
we are interested in, we specify the type property with the name of the child type.
Then we have a standard bool query, which we've already discussed. The result of
the query will contain only parent documents, which in our case will look as follows:

{

 (...)

 "hits" : {

 "total" : 1,

 "max_score" : 1.0,

 "hits" : [{

 "_index" : "shop",

 "_type" : "cloth",

 "_id" : "1",

 "_score" : 1.0, "_source" : { "name" : "Test shirt" }

 }]

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Index Structure

[186]

 }

}

The top children query
In addition to the has_child query, Elasticsearch exposes one additional query that
returns parent documents, but is run against the child documents—the top_children
query. That query can be used to run against a specified number of child documents.
Let's look at the following query:

{
 "query" : {
 "top_children" : {
 "type" : "variation",
 "query" : {
 "term" : { "size" : "XXL" }
 },
 "score" : "max",
 "factor" : 10,
 "incremental_factor" : 2
 }
 }
}

The preceding query will be run first against a total of 100 child documents
(factor multiplied by the default size parameter of 10). If there are 10 parent
documents found (because of the default size parameter being equal to 10), then
those will be returned and the query execution will end. However, if fewer parents
are returned and there are still child documents that were not queried, another 20
documents will be queried (the incremental_factor parameter multiplied by the
result's size), and so on, until the requested amount of parent documents will be
found or there are no child documents left to be queried.

The top_children query offers the ability to specify how the score should be
calculated with the use of the score parameter, with the value of max (maximum
of all the scores of child queries), sum (sum of all the scores of child queries),
or avg (average of all the scores of child queries) as the possible ones.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[187]

Querying data in the parent documents
If you would like to return child documents that match a given data in the parent
document, you should use the has_parent query. It is similar to the has_child
query; however, instead of the type property, we specify the parent_type property
with the value of the parent document type. For example, the following query will
return both the child documents that we've indexed, but not the parent document:

curl -XGET 'localhost:9200/shop/_search?pretty' -d '{

 "query" : {

 "has_parent" : {

 "parent_type" : "cloth",

 "query" : {

 "term" : { "name" : "test" }

 }

 }

 }

}'

The response from Elasticsearch should be similar to the following one:

{

 (...)

 "hits" : {

 "total" : 2,

 "max_score" : 1.0,

 "hits" : [{

 "_index" : "shop",

 "_type" : "variation",

 "_id" : "1000",

 "_score" : 1.0, "_source" : {"color" : "red","size" : "XXL"}

 }, {

 "_index" : "shop",

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Index Structure

[188]

 "_type" : "variation",

 "_id" : "1001",

 "_score" : 1.0, "_source" : {"color" : "black","size" : "XL"}

 }]

 }

}

The parent-child relationship and filtering
If you would like to use the parent-child queries as filters, you can; there are has_
child and has_parent filters that have the same functionality as queries with
corresponding names. Actually, Elasticsearch wraps those filters in the constant score
query to allow them to be used as queries.

Performance considerations
When using the Elasticsearch parent-child functionality, you have to be aware of
the performance impact that it has. The first thing you need to remember is that the
parent and the child documents need to be stored in the same shard in order for the
queries to work. If you happen to have a high number of children for a single parent,
you may end up with shards not having a similar number of documents. Because
of that, your query performance can be lower on one of the nodes, resulting in the
whole query being slower. Also, please remember that the parent-child queries will
be slower than the ones that run against documents that don't have a relationship
between them.

The second very important thing is that when running queries, like the has_child
query, Elasticsearch needs to preload and cache the document identifiers.
Those identifiers will be stored in the memory and you have to be sure that
you have given Elasticsearch enough memory to store those identifiers.
Otherwise, you can expect OutOfMemory exceptions to be thrown and your
nodes or the whole cluster not being operational.

Finally, as we mentioned, the first query will preload and cache the document
identifiers. This takes time. In order to improve the performance of initial queries
that use the parent-child relationship, Warmer API can be used. You can find more
information about how to add warming queries to Elasticsearch in the Warming up
section of Chapter 8, Administrating Your Cluster.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[189]

Modifying your index structure with the
update API
In the previous chapters, we discussed how to create index mappings and index the
data. But what if you already have the mappings created and data indexed, but want
to modify the structure of the index? This is possible to some extent. For example, by
default, if we index a document with a new field, Elasticsearch will add that field to
the index structure. Let's now look at how to modify the index structure manually.

The mappings
Let's assume that we have the following mappings for our users index stored in the
user.json file:

{
 "user" : {
 "properties" : {
 "name" : {"type" : "string"}
 }
 }
}

As you can see, it is very simple. It just has a single property that will hold the
username. Now, let's create an index called users, and use the previous mappings
to create our own type. To do that, we will run the following commands:

curl -XPOST 'localhost:9200/users'

curl -XPUT 'localhost:9200/users/user/_mapping' -d @user.json

If everything functions correctly, we will have our index and type created. So now,
let's try to add a new field to the mappings.

Adding a new field
In order to illustrate how to add a new field to our mappings, we assume that we
want to add a phone number to the data stored for each user. In order to do that,
we need to send an HTTP PUT command to the /index_name/type_name/_mapping
REST endpoint with the proper body that will include our new field. For example,
to add the phone field, we would run the following command:

curl -XPUT 'http://localhost:9200/users/user/_mapping' -d '{

 "user" : {

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Index Structure

[190]

 "properties" : {

 "phone" : {"type" : "string",
 "store" : "yes",
 "index" : "not_analyzed"}

 }

 }

}'

And again, if everything functions correctly, we should have a new field added
to our index structure. To ensure everything is all right, we can run the GET HTTP
request to the _mapping REST endpoint and Elasticsearch will return the appropriate
mappings. An example command to get the mappings for our user type in the users
index could look as follows:

curl -XGET 'localhost:9200/users/user/_mapping?pretty'

After adding a new field to the existing type, we need to index all
the documents again, because Elasticsearch didn't update them
automatically. This is crucial to remember. You can use your
primary source of data to do that or use the _source field to get
the original data from it and index it once again.

Modifying fields
So now, our index structure contains two fields: name and phone. We indexed
some data, but after a while, we decided that we want to search on the phone field
and we would like to change the index property from not_analyzed to analyzed.
So, we run the following command:

curl -XPUT 'http://localhost:9200/users/user/_mapping' -d '{

 "user" : {

 "properties" : {

 "phone" : {"type" : "string",
 "store" : "yes",
 "index" : "analyzed"}

 }

 }

}'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 4

[191]

After running the preceding command lines, Elasticsearch returns the
following output:

{"error":"MergeMappingException[Merge failed with failures {[mapper
[phone] has different index values, mapper [phone] has different 'norms.
enabled' values, mapper [phone] has different tokenize values, mapper
[phone] has different index_analyzer]}]","status":400}

This is because we can't change the not_analyzed field to analyzed. And not only
that, in most cases you won't be able to update the fields mapping. This is a good
thing, because if we would be allowed to change such settings, we would confuse
Elasticsearch and Lucene. Imagine that we already have many documents with the
phone field set to not_analyzed and we are allowed to change the mappings to
analyzed. Elasticsearch wouldn't change the data that was already indexed, but the
queries that are analyzed would be processed with a different logic and thus you
wouldn't be able to properly find your data.

However, to give you some examples of what is prohibited and what is not, we
will mention some of the operations for both cases. For example, the following
modifications can be safely made:

•	 Adding a new type definition
•	 Adding a new field
•	 Adding a new analyzer

The following modifications are prohibited or will not work:

•	 Changing the type of the field (for example from text to numeric)
•	 Changing stored to field to not to be stored and vice versa
•	 Changing the value of the indexed property
•	 Changing the analyzer of already indexed documents

Please remember that the preceding mentioned examples of allowed and not allowed
updates do not mention all of the possibilities of the Update API usage and you have
to try for yourself if the update you are trying to do will work.

If you want to ignore conflicts and just put the new mappings, you can set
the ignore_conflicts parameter to true. This will cause Elasticsearch
to overwrite your mappings with the one you send. So, our preceding
command with the additional parameter would look as follows:
curl -XPUT 'http://localhost:9200/users/user/_
mapping?ignore_conflicts=true' -d '...'

www.it-ebooks.info

http://www.it-ebooks.info/

Extending Your Index Structure

[192]

Summary
In this chapter, we learned how to index tree-like structures using Elasticsearch.
In addition to that, we indexed data that is not flat and modified the structure of
already-created indices. Finally, we learned how to handle relationships by using
nested documents and by using the Elasticsearch parent-child functionality.

In the next chapter, we'll focus on making our search even better. We will see
how Apache Lucene scoring works and why it matters so much. We will learn
how to use the Elasticsearch function-score query to adjust the importance of our
documents using different functions and we'll leverage the provided scripting
capabilities. We will search the content in different languages and discuss when
index time-boosting makes sense. We'll use synonyms to match words with the
same meaning and we'll learn how to check why a given document was found
by a query. Finally, we'll influence queries with boosts, and we will learn how
to understand the score calculation done by Elasticsearch.

www.it-ebooks.info

http://www.it-ebooks.info/

Make Your Search Better
In the previous chapter, we learned how Elasticsearch indexing works when it
comes to data that is not flat. We saw how to index tree-like structures. In addition
to that, we indexed data that had an object-oriented structure. We also learned how
to modify the structure of already created indices. Finally, we saw how to handle
relationships in Elasticsearch by using nested documents as well as the parent-child
functionality. By the end of this chapter, you will have learned the following topics:

•	 Apache Lucene scoring
•	 Using the scripting capabilities of Elasticsearch
•	 Indexing and searching data in different languages
•	 Using different queries to influence the score of the returned documents
•	 Using index-time boosting
•	 Words having the same meaning
•	 Checking why a particular document was returned
•	 Checking score calculation details

An introduction to Apache Lucene scoring
When talking about queries and their relevance, we can't omit information about
scoring and where it comes from. But what is the score? The score is a parameter
that describes the relevance of a document against a query. In the following section,
we will discuss the default Apache Lucene scoring mechanism, the TF/IDF algorithm,
and how it affects the returned document.

The TF/IDF algorithm is not the only available algorithm exposed by
Elasticsearch. For more information about available models, refer to
the Different similarity models section in Chapter 2, Indexing Your Data,
and our book, Mastering ElasticSearch, Packt Publishing.

www.it-ebooks.info

http://www.it-ebooks.info/

Make Your Search Better

[194]

When a document is matched
When a document is returned by Lucene, it means that Lucene matched the query
we sent and that document has been given a score. The higher the score, the more
relevant the document is from the search engine point of view. However, the score
calculated for the same document on two different queries will be different.
Because of that, comparing scores between queries usually doesn't make much
sense. However, let's get back to the scoring. Multiple factors are taken into
account to calculate the score property for a document, which are as follows:

•	 Document boost: This is the boost value given to a document
during indexing.

•	 Field boost: This is the boost value given to a field during querying
and indexing.

•	 Coord: This is the coordination factor that is based on the number of terms
the document has. It is responsible for giving more value to the documents
that contain more search terms compared to other documents.

•	 Inverse document frequency: This is a term-based factor that tells
the scoring formula how rare the given term is. The higher the inverse
document frequency, the rarer the term.

•	 Length norm: This is a field-based factor for normalization based on the
number of terms the given field contains. The longer the field, the smaller
boost this factor will give. It basically means that shorter documents will
be favored.

•	 Term frequency: This is a term-based factor that describes how many
times the given term occurs in a document. The higher the term frequency,
the higher the score of the document.

•	 Query norm: This is a query-based normalization factor that is calculated
as the sum of the squared weight of each of the query terms. Query norm
is used to allow score comparison between queries, which is not always
easy and possible.

Default scoring formula
The practical formula for the TF/IDF algorithm looks as follows:

() () () ()()2(,) (,) () ,
t inq

score q d coord q d queryNorm q tf t in d idf t boost t norm t d= ∗ ∗ ∗ ∗ ∗∑

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[195]

To adjust your query relevance, you don't need to remember the details of the
equation, but it is very important to at least know how it works. We can see that
the score factor for the document is a function of query q and document d. There
are also two factors that are not dependent directly on the query terms, coord and
queryNorm. These two elements of the formula are multiplied by the sum calculated
for each term in the query. The sum, on the other hand, is calculated by multiplying
the term frequency for the given term, its inverse document frequency, term boost,
and the norm, which is the length norm we've discussed earlier.

Note that the preceding formula is a practical one. You can find more
information about the conceptual formula in the Lucene Javadocs,
which is available at http://lucene.apache.org/core/4_7_0/
core/org/apache/lucene/search/similarities/
TFIDFSimilarity.html.

The good thing about the preceding rules is that you don't need to remember
all of them. What you should be aware of is what matters when it comes to the
document score. Basically, the following are a few rules that are derived from
the preceding equation:

•	 The more rare the term matched is, the higher score the document will have.
•	 The smaller the document fields are, the higher the score the document

will have.
•	 The higher the boost for fields is, the higher the score the document will have.
•	 As we can see, Lucene will give the higher score to the documents that have

the highest number of query terms matched in the document contents and
have shorter fields (less terms indexed). Also, rarer terms will be favored
instead of the common ones.

Relevancy matters
In most of the cases, we want to get the best matching documents. However, the
most relevant documents don't always mean the same. Some use cases define very
strict rules on why a given document should be at a higher level on the results list.
For example, one can say that in addition for the document to be a perfect match in
terms of the TF/IDF similarity, we have customers, who pay for their documents
to be higher in the results. Depending on the customer plan, we want to give more
importance to such documents. In such cases, we would want the documents for the
customers that pay the most to be at the top in our search results. Of course, this is not
relevant in TF/IDF.

www.it-ebooks.info

http://www.it-ebooks.info/

Make Your Search Better

[196]

This is a very simple example, but Elasticsearch queries can become really
complicated. We will discuss those queries in the Influencing scores with
query boosts section of this chapter.

When working on search relevance, you should always remember that it is not
a one-time process. Your data will change with time and your queries will need
to be adjusted accordingly. In most cases, tuning query relevancy will be constant
work. You will need to react to your business rules and needs, to how users behave,
and so on. It is very important to remember that this is not a one-time process which
you can forget about once you set it.

Scripting capabilities of Elasticsearch
Elasticsearch has a few functionalities where scripts can be used. You've already
seen examples such as updating documents, filtering, and searching. Regardless
of the fact that this seems to be advanced, we will take a look at the possibilities
offered by Elasticsearch, because scripts are priceless for some use cases.

If we look at any request made to Elasticsearch that uses scripts, we will notice
some similar properties, which are as follows:

•	 Script: This property contains the actual script code.
•	 Lang: This property defines the field that provides information about the

script language. If it is omitted, Elasticsearch assumes mvel.
•	 Params: This object contains parameters and their values. Every defined

parameter can be used inside the script by specifying that parameter name.
Using parameters, we can write cleaner code. Scripts using parameters are
executed faster than code with embedded constants because of caching.

Objects available during script execution
During different operations, Elasticsearch allows us to use different objects in
the scripts. To develop a script that fits our use case, we should be familiar with
those objects.

For example, during a search operation the following objects are available:

•	 _doc (also available as doc): This is an instance of the org.elasticsearch.
search.lookup.DocLookup object. It gives us access to the current document
found with the calculated score and field values.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[197]

•	 _source: This is an instance of the org.elasticsearch.search.lookup.
SourceLookup object. This object provides access to the source of the
current document and the values defined in that source.

•	 _fields: This is an instance of the org.elasticsearch.search.lookup.
FieldsLookup object. Again, it can be used to access the values of
document fields.

On the other hand, during a document update operation, Elasticsearch exposes
only the ctx object with the _source property, which provides access to the
current document.

As we have previously seen, several methods are mentioned in the context of
document fields and their values. Let's now look at the following examples of how
to get the value for the title field. In the brackets, you can see what Elasticsearch
will return for one of our example documents from the library index:

•	 _doc.title.value (crime)
•	 _source.title (Crime and Punishment)
•	 _fields.title.value (null)

A bit confusing, isn't it? During indexing, a field value is sent to Elasticsearch as
a part of the _source document. Elasticsearch can store this information and does
that by default. In addition to that, the document is parsed and every field may
be stored in an index if it is marked as stored (that is, if the store property is set
to true; otherwise, by default, the fields are not stored). Finally, the field value
may be configured as indexed. This means that the field value is analyzed, divided
into tokens, and placed in the index. To sum up, one field may be stored in an index
as follows:

•	 A part of the _source document
•	 A stored and unparsed value
•	 An indexed value that is parsed into tokens

In scripts, we have access to all these representations except updating. You may
wonder which version we should use. Well, if we want access to the processed form,
the answer would be as simple as _doc. What about _source and _fields? In most
cases, _source is a good choice. It is usually fast and needs less disk operations than
reading the original field values from the index.

www.it-ebooks.info

http://www.it-ebooks.info/

Make Your Search Better

[198]

MVEL
Elasticsearch can use several languages for scripting. When not explicitly declared,
it assumes that MVEL (MVFLEX Expression Language) is used. MVEL is fast,
easy to use and embed, and a simple but powerful expression language used in
open source projects. It allows us to use Java objects, automatically maps properties
to a getter/setter call, converts simple types and maps collections, and maps to
arrays and associative arrays. For more information about MVEL, refer to
http://mvel.codehaus.org/Language+Guide+for+2.0.

Using other languages
Using MVEL for scripting is a simple and sufficient solution, but if you would like to
use something different, you can choose among JavaScript, Python, or Groovy. Before
using other languages, we must install an appropriate plugin. You can read more
about plugins in the Elastisearch Plugins section of Chapter 8, Administering Your Cluster.
For now, we'll just run the following command from the Elasticsearch directory:

bin/plugin -install elasticsearch/elasticsearch-lang-
 javascript/2.0.0.RC1

The preceding command will install a plugin that will allow us to use JavaScript.
The only change we should make in the request is to add the additional information
of the language we are using for scripting, and, of course, modify the script itself
to be correct in the new language. Look at the following example:

{
 "query" : {
 "match_all" : { }
 },
 "sort" : {
 "_script" : {
 "script" : "doc.tags.values.length > 0 ? doc.tags.values[0]
 :'\u19999';",
 "lang" : "javascript",
 "type" : "string",
 "order" : "asc"
 }
 }
}

As you can see, we used JavaScript for scripting instead of the default MVEL.
The lang parameter informs Elasticsearch about the language being used.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[199]

Using our own script library
Usually, scripts are small and it is quite convenient to put them in the request.
But sometimes applications grow and you want to give the developers something
that they can reuse in their modules. If the scripts are large and complicated, it is
generally better to place them in files and only refer them in API requests. The first
thing to do is to place our script in the proper place with a proper name. Our tiny
script should be placed in the Elasticsearch directory, config/scripts. Let's name
our example script file text_sort.js. Note that the extension of the file should
indicate the language used for scripting; in our case, we will use JavaScript.

The content of this example file is very simple and looks as follows:

doc.tags.values.length > 0 ? doc.tags.values[0] :'\u19999';

And the query using the preceding script will look as follows:

{
 "query" : {
 "match_all" : { }
 },
 "sort" : {
 "_script" : {
 "script" : "text_sort",
 "type" : "string",
 "order" : "asc"
 }
 }
}

As you can see, we can now use text_sort as the script name. In addition, we can
omit the script language; Elasticsearch will figure it out from the file extension.

Using native code
In case the scripts are too slow or you don't like scripting languages, Elasticsearch
allows you to write Java classes and use them instead of scripts.

The factory implementation
We need to implement at least two classes to create a new native script. The first
one is a factory for our script. For now, let's focus on it. The following sample code
illustrates the factory for our script:

package pl.solr.elasticsearch.examples.scripts;

import java.util.Map;

www.it-ebooks.info

http://www.it-ebooks.info/

Make Your Search Better

[200]

import org.elasticsearch.common.Nullable;
import org.elasticsearch.script.ExecutableScript;
import org.elasticsearch.script.NativeScriptFactory;

public class HashCodeSortNativeScriptFactory implements
 NativeScriptFactory {

 @Override
 public ExecutableScript newScript(@Nullable Map<String, Object>
 params) {
 return new HashCodeSortScript(params);
 }

}

The essential parts are highlighted in the code snippet. This class should implement
the org.elasticsearch.script.NativeScriptFactory class. The interface forces
us to implement the newScript() method. It takes parameters defined in the API
call and returns an instance of our script.

Implementing the native script
Now let's look at the implementation of our script. The idea is simple—our script
will be used for sorting. Documents will be ordered by the hashCode() value of the
chosen field. Documents without a field defined will be the first. We know the logic
doesn't make too much sense, but it is good for presentation as it is simple.
The source code for our native script looks as follows:

package pl.solr.elasticsearch.examples.scripts;

import java.util.Map;
import org.elasticsearch.script.AbstractSearchScript;

public class HashCodeSortScript extends AbstractSearchScript {
 private String field = "name";

 public HashCodeSortScript(Map<String, Object> params) {
 if (params != null && params.containsKey("field")) {
 this.field = params.get("field").toString();
 }
 }

 @Override
 public Object run() {
 Object value = source().get(field);

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[201]

 if (value != null) {
 return value.hashCode();
 }
 return 0;
 }

}

First of all, our class inherits from the org.elasticsearch.script.
AbstractSearchScript class and implements the run() method. This is where
we get the appropriate values from the current document, process it according
to our strange logic, and return the result. You may notice the source() call.
Yes, it is exactly the same _source parameter that we met in the non-native scripts.
The doc() and fields() methods are also available and they follow the same logic
we described earlier.

The thing worth looking at is how we've used the parameters. We assume that
a user can put the field parameter, telling us which document field will be used
for manipulation. We also provide a default value for this parameter.

Installing scripts
Now it's time to install our native script. After packing the compiled classes as a
JAR archive, we should put it in the Elasticsearch lib directory. This makes our code
visible to the class loader. What we should then do is register our script. This can be
done by using the settings API call or by adding a single line to the elasticsearch.
yml configuration file. We've chosen to put the script in the elasticsearch.yml
configuration file by adding the following line to the mentioned file:

script.native.native_sort.type:
 pl.solr.elasticsearch.examples.scripts.
 HashCodeSortNativeScriptFactory

Note the native_sort fragment. This is the script name that will be used during
requests and will be passed to the script parameter. The value for this property
is the full classname of the factory we implemented and will be used for script
initialization. The last thing we need is to restart Elasticsearch.

Running the script
We've restarted Elasticsearch so that we can start sending the queries that use our
native script. For example, we will send a query that uses our previously indexed
data from the library index. This example query looks as follows:

{
 "query" : {

www.it-ebooks.info

http://www.it-ebooks.info/

Make Your Search Better

[202]

 "match_all" : { }
 },
 "sort" : {
 "_script" : {
 "script" : "native_sort",
 "params" : {
 "field" : "otitle"
 },
 "lang" : "native",
 "type" : "string",
 "order" : "asc"
 }
 }
}

Note the params part of the query. In this call, we want to sort on the otitle field.
We provide the script name native_sort and the script language native. This is
required. If everything goes well, we should see our results sorted by our custom
sort logic. If we will look at the response from Elasticsearch, we will see that
documents without the otitle field are at the first few positions of the results
list and their sort value is 0.

Searching content in different languages
Till now, when discussing language analysis, we've talked mostly in theory. We
didn't see an example regarding language analysis, handling multiple languages
that our data can consist of, and so on. Now this will change, as we will discuss
how we can handle data in multiple languages.

Handling languages differently
As you already know, Elasticsearch allows us to choose different analyzers for
our data. We can have our data divided on the basis of whitespaces, have them
lowercased, and so on. This can usually be done with the data regardless of the
language—you should have the same tokenization on the basis of whitespaces
for English, German, and Polish (that doesn't apply to Chinese, though). However,
what if you want to find documents that contain words such as cat and cats by only
sending the word cat to Elasticsearch? This is where language analysis comes into
play with stemming algorithms for different languages, which allow the analyzed
words to be reduced into their root forms

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[203]

And now the worst part—we can't use one general stemming algorithm for all the
languages in the world; we have to choose one appropriate language. The following
sections in the chapter will help you with some parts of the language analysis process.

Handling multiple languages
There are a few ways of handling multiple languages in Elasticsearch, and all of
them have some pros and cons. We won't be discussing everything, but just for
the purpose of giving you an idea, a few of those methods are as follows:

•	 Storing documents in different languages as different types
•	 Storing documents in different languages in separate indices
•	 Storing different versions of fields in a single document so that they contain

different languages

However, we will focus on a single method that allows us to store documents in
different languages in a single index. We will focus on a problem where we have a
single type of document, but they may come from all over the world, and thus can
be written in multiple languages. Also, we would like to enable our users to use all
the analysis capabilities, such as stemming and stop words for different languages,
not only for English.

Note that stemming algorithms perform differently for different
languages—both in terms of analysis performance and the resulting
terms. For example, English stemmers are very good, but you can run
into issues with European languages, such as German.

Detecting the language of the documents
If you don't know the language of your documents and queries (and this is mostly
the case), you can use software for language detection that can be used to detect
(with some probability) the language of your documents and queries.

If you use Java, you can use one of the few available language detection libraries.
Some of them are as follows:

•	 Apache Tika (http://tika.apache.org/)
•	 Language detection (http://code.google.com/p/language-detection/)

The language detection library claims to have over 99 percent precision for 53
languages; that's a lot if you ask us.

www.it-ebooks.info

http://www.it-ebooks.info/

Make Your Search Better

[204]

You should remember, though, that data language detection will be more precise
for longer text. However, because the text of queries is usually short, you'll probably
have some degree of errors during query language identification.

Sample document
Let's start with introducing a sample document, which is as follows:

{
 "title" : "First test document",
 "content" : "This is a test document",
 "lang" : "english"
}

As you can see, the document is pretty simple; it contains the following three fields:

•	 Title: This field holds the title of the document
•	 Content: This field holds the actual content of the document
•	 Lang: This field defines the identified language

The first two fields are created from our user's documents and the third one is
the language that our hypothetical user has chosen when he or she uploaded
the document.

To inform Elasticsearch which analyzer should be used, we map the lang field to
one of the analyzers that exist in Elasticsearch (a full list of these analyzers can be
found at http://www.elasticsearch.org/guide/en/elasticsearch/reference
/current/analysis-lang-analyzer.html), and if the user enters a language that
is not supported, we don't specify the lang field at all so that Elasticsearch uses the
default analyzer.

The mappings
Let's now look at the mappings created to hold the preceding documents (we've stored
them in the mappings.json file), as follows:

{
 "mappings" : {
 "doc" : {
 "_analyzer" : {
 "path" : "lang"
 },
 "properties" : {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[205]

 "title" : {
 "type" : "string",
 "index" : "analyzed",
 "store" : "no",
 "fields" : {
 "default" : {
 "type" : "string",
 "index" : "analyzed",
 "store" : "no",
 "analyzer" : "simple"
 }
 }
 },
 "content" : {
 "type" : "string",
 "index" : "analyzed",
 "store" : "no",
 "fields" : {
 "default" : {
 "type" : "string",
 "index" : "analyzed",
 "store" : "no",
 "analyzer" : "simple"
 }
 }
 },
 "lang" : {
 "type" : "string",
 "index" : "not_analyzed",
 "store" : "yes"
 }
 }
 }
 }
}

In the preceding mappings, we are most interested in the analyzer definition and the
title and description fields (if you are not familiar with any aspect of mappings,
refer to the Mappings configuration section of Chapter 2, Indexing Your Data). We want
the analyzer to be based on the lang field. Therefore, we need to add a value in the
lang field that is equal to one of the names of the analyzers known to Elasticsearch
(the default one or another defined by us).

www.it-ebooks.info

http://www.it-ebooks.info/

Make Your Search Better

[206]

After that comes the definitions of two fields that hold the actual data. As you can
see, we used the multifield definition in order to index the title and description
fields. The first one of the multifields is indexed with the analyzer specified by
the lang field (because we didn't specify the exact analyzer name, the one defined
globally will be used). We will use that field when we know in which language the
query is specified. The second of the multifields uses a simple analyzer and will be
used to search when a query language is unknown. However, the simple analyzer
is only an example and you can also use a standard analyzer or any other of
your choice.

In order to create a sample index called docs that use our mappings, we will use
the following command:

curl -XPUT 'localhost:9200/docs' -d @mappings.json

Querying
Now let's see how we can query our data. We can divide the querying situation into
two different cases.

Queries with the identified language
The first case is when we have our query language identified. Let's assume that
the identified language is English and we know that English matches the english
analyzer. In such cases, our query is as follows:

curl -XGET 'localhost:9200/docs/_search?pretty=true ' -d '{

 "query" : {

 "match" : {

 "content" : {

 "query" : "documents",

 "analyzer" : "english"

 }

 }

 }

}'

Note the analyzer parameter, which indicates which analyzer we want to use.
We set that parameter to the name of the analyzer corresponding to the identified
language. Note that the term we are looking for is documents, while the term in the
document is document, but the english analyzer should take care of it and find that
document. The response returned by Elasticsearch will be as follows:

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[207]

{

 "took" : 2,

 "timed_out" : false,

 "_shards" : {

 "total" : 5,

 "successful" : 5,

 "failed" : 0

 },

 "hits" : {

 "total" : 1,

 "max_score" : 0.19178301,

 "hits" : [{

 "_index" : "docs",

 "_type" : "doc",

 "_id" : "1",

 "_score" : 0.19178301

 }]

 }

}

Queries with unknown languages
Now let's assume that we don't know the language used for the user's query. In such
cases, we can't use the field analyzed with the analyzer specified by our lang field,
because we don't want to analyze the query with an analyzer that is language specific.
In that case, we will use our standard simple analyzer, and we will send the query
to the contents.default field instead of content. The query will be as follows:

curl -XGET 'localhost:9200/docs/_search?pretty=true ' -d '{

 "query" : {

 "match" : {

 "content.default" : {

 "query" : "documents",

 "analyzer" : "simple"

 }

 }

 }

}'

www.it-ebooks.info

http://www.it-ebooks.info/

Make Your Search Better

[208]

However, we didn't get any results this time, because the simple analyzer can't deal
with a singular form of a word when we are searching with a plural form.

Combining queries
To additionally boost the documents that perfectly match with our default analyzer,
we can combine the two preceding queries with the bool query, as follows:

curl -XGET 'localhost:9200/docs/_search?pretty=true ' -d '{

 "query" : {

 "bool" : {

 "minimum_should_match" : 1,

 "should" : [

 {

 "match" : {

 "content" : {

 "query" : "documents",

 "analyzer" : "english"

 }

 }

 },

 {

 "match" : {

 "content.default" : {

 "query" : "documents",

 "analyzer" : "simple"

 }

 }

 }

]

 }

 }

}'

For the document to be returned, at least one of the defined queries must match.
If they both match, the document will have a higher score value and will be placed
higher in the results.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[209]

There is one additional advantage of the preceding combined query—if our language
analyzer won't find a document (for example, when the analysis is different from the
one used during indexing), the second query has a chance to find the terms that are
tokenized only by whitespace characters and lowercased.

Influencing scores with query boosts
In the previous chapter, we learned what scoring is and how Elasticsearch calculates
it. When an application grows, the need for improving the quality of search also
increases. We call it the search experience. We need to gain knowledge about what
is more important to the user and see how users use the search functionality. This
leads to various conclusions; for example, we see that some parts of the documents
are more important than the others or that particular queries emphasize one field at
the cost of others. This is where boosting can be used.

The boost
Boost is an additional value used in the process of scoring. We already know it can
be applied to the following:

•	 query: This is a way to inform the search engine that the given query is a
part of the complex query and is more significant than the others.

•	 field: Several document fields are important for the user. For example,
searching e-mails by Bill should probably list those from Bill first, followed
by those with Bill in the subject, and then the e-mails mentioning Bill in
the content.

The values assigned by us to a query or field are only one of the factors used when
we calculate the resulting score and we are aware of this. We will now look at a few
examples of query boosting.

Adding boost to queries
Let's imagine that our index has two documents. The first document is as follows:

{
 "id" : 1,
 "to" : "John Smith",
 "from" : "David Jones",
 "subject" : "Top secret!"
}

www.it-ebooks.info

http://www.it-ebooks.info/

Make Your Search Better

[210]

And, the second document is as follows:

{
 "id" : 2,
 "to" : "David Jones",
 "from" : "John Smith",
 "subject" : "John, read this document"
}

This data is simple, but it should describe our problem very well. Now, let's assume
we have the following query:

{
 "query" : {
 "query_string" : {
 "query" : "john",
 "use_dis_max" : false
 }
 }
}

In this case, Elasticsearch will create a query for the _all field and will find documents
that contain the desired words. We also said that we don't want the disjunction query
to be used by specifying the use_dis_max parameter to false (if you don't remember
the disjunction query, refer to the The dismax query and The query_string query sections
in Chapter 3, Searching Your Data). As we can easily guess, both of our records will be
returned and the record with the identifier equal to 2 will be returned first. This is
because of the two occurrences of John in the from and subject fields. Let's check
this out in the following result:

 "hits" : {

 "total" : 2,

 "max_score" : 0.13561106,

 "hits" : [{

 "_index" : "messages",

 "_type" : "email",

 "_id" : "2",

 "_score" : 0.13561106, "_source" :

 { "id" : 1, "to" : "David Jones", "from" :

 "John Smith", "subject" : "John, read this document"}

 }, {

 "_index" : "messages",

 "_type" : "email",

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[211]

 "_id" : "1",

 "_score" : 0.11506981, "_source" :

 { "id" : 2, "to" : "John Smith", "from" :

 "David Jones", "subject" : "Top secret!" }

 }]

 }

Is everything all right? Technically, yes. But I think that the second document should
be positioned as the first one in the result list, because when searching for something,
the most important factor (in many cases) is matching people, rather than the subject
of the message. You may disagree, but this is exactly why full-text searching relevance
is a difficult topic—sometimes, it is hard to tell which ordering is better for a particular
case. What can we do? First, let's rewrite our query to implicitly inform Elasticsearch
what fields should be used for searching, as follows:

{
 "query" : {
 "query_string" : {
 "fields" : ["from", "to", "subject"],
 "query" : "john",
 "use_dis_max" : false
 }
 }
}

This is not exactly the same query as the previous one. If we run it, we will get the
same results (in our case), but if you will look carefully, you will notice differences
in scoring. In the previous example, Elasticsearch only used one field, _all. Now we
are searching in three fields. This means that several factors, such as field lengths, are
changed. Anyway, this is not so important in our case. Under the hood, Elasticsearch
generates a complex query made up of three queries—one to each field. Of course,
the score contributed by each query depends on the number of terms found in this
field and the length of this field. Let's introduce some differences between the fields.
Compare the following query to the preceding one:

{
 "query" : {
 "query_string" : {
 "fields" : ["from^5", "to^10", "subject"],
 "query" : "john",
 "use_dis_max" : false
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Make Your Search Better

[212]

Look at the highlighted parts (^5 and ^10). In this manner, we can tell Elasticsearch
how important a given field is. We see that the most important field is the to field,
and the from field is less important. The subject field has a default value for boost,
which is 1.0. Always remember that this value is only one of the various factors.
You may be wondering why we choose 5, and not 1000 or 1.23. Well, this
value depends on the effect we want to achieve, what query we have, and most
importantly, what data we have in our index. Typically, when data changes in the
meaningful parts, we should probably check and tune our relevance once again.

Finally, let's look at a similar example, but using the bool query, as follows:

{
 "query" : {
 "bool" : {
 "should" : [
 { "term" : { "from": { "value" : "john", "boost" : 5 }}},
 { "term" : { "to": { "value" : "john", "boost" : 10 }}},
 { "term" : { "subject": { "value" : "john" }}}
]
 }
 }
}

Modifying the score
The preceding example shows how to affect the result list by boosting particular query
components. Another technique is to run a query and affect the score of the matched
documents. In the following sections, we will summarize the possibilities offered by
Elasticsearch. In the examples, we will use the library data that we already used in
Chapter 3, Searching Your Data.

The constant_score query
A constant_score query allows us to take any filter or query and explicitly set
the value that should be used as the score, which will be given for each matching
document by using the boost parameter.

Initially, this query doesn't seem to be practical. But when we think about building
complex queries, this query allows us to set how many documents matching this
query can affect the total score. Look at the following example:

{
 "query" : {
 "constant_score" : {
 "query": {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[213]

 "query_string" : {
 "query" : "available:false author:heller"
 }
 }
 }
 }
}

In our data, we have two documents with the available field set to false.
One of these documents has an additional value in the author field. But, thanks
to the constant_score query, Elasticsearch will ignore that information during
scoring. Both documents will be given a score of 1.0.

The boosting query
The next type of query related to boosting is the boosting query. The idea is to
allow us to define an additional part of a query when every matched document
score decreases. The following example lists all available books, but books written
by E. M. Remarque will have a score that is 10 times lower:

{
 "query" : {
 "boosting" : {
 "positive" : {
 "term" : {
 "available" : true
 }
 },
 "negative" : {
 "match" : {
 "author" : "remarque"
 }
 },
 "negative_boost" : 0.1
 }
 }
}

The function_score query
Until now, we've seen two examples of queries that allow us to alter the score of the
returned documents. The third example we want to talk about, the function_score
query, is way more complicated compared to the previous queries. This query is very
useful when the score calculation is expensive, because it will compute the score on
the filtered documents.

www.it-ebooks.info

http://www.it-ebooks.info/

Make Your Search Better

[214]

The structure of the function query
The structure of the function query is quite simple and looks as follows:

{
 "query" : {
 "function_score" : {
 "query" : { ... },
 "filter" : { ... },
 "functions" : [
 {
 "filter" : { ... },
 "FUNCTION" : { ... }
 }
],
 "boost_mode" : " ... ",
 "score_mode" : " ... ",
 "max_boost" : " ... ",
 "boost" : " ... "
 }
 }
}

In general, the function_score query can use query or filter, one of several
functions, and additional parameters. Each function can have a filter defined to
filter the results on which it will be applied. If no filter is defined for a function,
it will be applied to all documents.

The logic behind the function_score query is quite simple. First of all, the
functions are matched against the documents and the score is calculated based on
the score_mode parameter. Then, the query score for the document is combined
with the score calculated for the functions and combined together on the basis of
the boost_mode parameter.

Let's now discuss the parameters:

•	 boost_mode: The boost_mode parameter allows us to define how the score
computed by the function queries will be combined with the score of the
query. The following values are allowed:

°° multiply: This is the default behavior, which results in the query
score being multiplied by the score computed from the functions

°° replace: This value causes the query score to be totally ignored
and the document score to be equal to the score calculated by
the functions

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[215]

°° sum: This value causes the document score to be calculated as the
sum of the query and function scores

°° avg: This value returns an average of the query score and the
function score

°° max: This value returns the maximum of the query score and the
function score to the document

°° min: This value gives a minimum of the query score and the
function score to the document

•	 score_mode: The score_mode parameter defines how the score computed
by the functions are combined together. The following are the values of the
score_mode parameter:

°° multiply: This is the default behavior, which results in the scores
returned by the functions being multiplied

°° sum: This value sums up the scores returned by the defined functions
°° avg: The score returned by the functions is an average of all the

scores of the matching functions
°° first: This value returns the score of the first function with a filter

matching the document
°° max: This value returns the maximum score of functions
°° min: This value returns the minimum score of functions

There is one thing to remember—we can limit the maximum calculated score
value by using the max_boost parameter in the function_score query. By default,
this parameter is set to Float.MAX_VALUE, which means the maximum float value.

The boost parameter allows us to set a query-wide boost for the documents.

What we haven't talked about yet are the function scores that we can include in the
functions section of our query. The currently available functions are as follows:

•	 The boost_factor function: This function allows us to multiply the score
of the document by a given value. The value of the boost_factor parameter
is not normalized and is taken as is. The following is an example using the
boost_factor parameter:
{
 "query" : {
 "function_score" : {
 "query" : {
 "term" : {

www.it-ebooks.info

http://www.it-ebooks.info/

Make Your Search Better

[216]

 "available" : true
 }
 },
 "functions" : [
 { "boost_factor" : 20 }
]
 }
 }
}

•	 The script_score function: This function allows us to use a script to
calculate the score that will be used as a score returned by a function
(and thus will fall into the behavior defined by the boost_mode parameter).
An example of the usage of the script_score function is as follows:
{
 "query" : {
 "function_score" : {
 "query" : {
 "term" : {
 "available" : true
 }
 },
 "functions" : [
 {
 "script_score" : {
 "script" : "_score * _source.copies *
 parameter1",
 "params" : {
 "parameter1" : 12
 }
 }
 }
]
 }
 }
}

•	 The random_score function: Using this function, we can generate a
pseudo-random score by specifying a seed value. In order to simulate
randomness, we should specify a new seed every time. An example of
the usage of this function is as follows:
{
 "query" : {
 "function_score" : {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[217]

 "query" : {
 "term" : {
 "available" : true
 }
 },
 "functions" : [
 {
 "random_score" : {
 "seed" : 12345
 }
 }
]
 }
 }
}

•	 The decay functions: In addition to the previously mentioned scoring
functions, Elasticsearch includes additional functions called decay
functions. They differ from the previously described functions, and the
difference is that the score given by those functions lowers with distance.
A distance is calculated on a basis of single-valued numeric field (such as
date, geographical point, or standard numeric field). The simplest example
that comes to mind is boosting documents on the basis of distance from a
given point.

For example, let's assume that we have a point field that stores the location and we
want our document score to be affected by the distance from a point where the user
stands (for example, our user sends a query from a mobile device). Assuming the
user is at 52, 21, we can send the following query:

{
 "query" : {
 "function_score" : {
 "query" : {
 "term" : {
 "available" : true
 }
 },
 "functions" : [
 {
 "linear" : {
 "point" : {
 "origin" : "52, 21",
 "scale" : "1km",

www.it-ebooks.info

http://www.it-ebooks.info/

Make Your Search Better

[218]

 "offset" : 0,
 "decay" : 0.2
 }
 }
 }
]
 }
 }
}

In the preceding example, linear is the name of the decay function. The value
will decay linearly when using it. The other possible values are gauss and exp.
We've chosen the linear decay function because it sets the score to 0 when the
field value exceeds the given origin value twice. This is useful when you want to
lower the value of the documents that are too far away.

We have presented the relevant equations to give you an idea of how the score is
calculated by the given function. The linear decay function calculates the score
of the document using the following equation:

| |max 0, scale field value originscore
scale

− − =  
 

The gauss decay function calculates the score of the document using the
following equation:

()2
2exp

2
field value origin

score
scale

 −
= − 

 
 

The exp decay function calculates the score of the document using the
following equation:

| |exp field value originscore
scale

− = − 
 

Of course, you don't need to calculate your document scores using pen and paper
every time, but you may need it once in a while, and these equations may come in
handy at such times.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[219]

Now, let's discuss the rest of the query structure. The field we want to use for score
calculation is named point. If the document doesn't have a value in the defined field,
it will be given a value of 1 at the time of calculation.

In addition to that, we've provided additional parameters. The origin and scale
parameters are required. The origin parameter is the central point from which the
calculation will be performed and scale is the rate of decay. By default, the offset
parameter is set to 0; if defined, the decay function will only compute a score for
documents with values greater than the value of this parameter. The decay parameter
tells Elasticsearch how much the score should be lowered; it is set to 0.5 by default.
In our case, we've said that at the distance of 1 kilometer, the score should be reduced
by 20 percent (0.2).

We expect the number of function scores available to be extended
with newer versions of Elasticsearch and we suggest following the
official documentation and the page dedicated to the function
_score query available at http://www.elasticsearch.org/
guide/en/elasticsearch/reference/current/query
-dsl-function-score-query.html.

Deprecated queries
After an introduction to the function_score query, the custom_boost, custom
_score, and custom_filters_score queries were deprecated. The following section
shows how to achieve the same results as we did with the mentioned queries by using
the function_score query. This section is provided as a reference for those who want
to migrate from older versions of Elasticsearch and alter their queries to remove the
deprecated ones.

Replacing the custom_boost_factor query
Let's assume that we have the following custom_boost_factor query:

{
 "query" : {
 "custom_boost_factor" : {
 "query": {
 "term" : { "author" : "heller" }
 },
 "boost_factor": 5.0
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Make Your Search Better

[220]

To replace the preceding query with the function_score query, we would have to
use the following query:

{
 "query" : {
 "function_score" : {
 "query": {
 "term" : { "author" : "heller" }
 },
 "functions" : [
 { "boost_factor": 5.0 }
]
 }
 }
}

Replacing the custom_score query
The second type of deprecated queries is the constant_score query. Let's assume
that we have the following custom_score query:

{
 "query" : {
 "custom_score" : {
 "query" : { "match_all" : {} },
 "script" : "_source.copies * 0.5"
 }
 }
}

If we want to replace it with the function_score query, it will look as follows:

{
 "query" : {
 "function_score" : {
 "boost_mode" : "replace",
 "query" : { "match_all" : {} },
 "functions" : [
 {
 "script_score" : {
 "script" : "_source.copies * 0.5"
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[221]

]
 }
 }

}

Replacing the custom_filters_score query
The last query replacement we will discuss is the custom_filters_score query.
Let's assume we have the following query:

{
 "query" : {
 "custom_filters_score" : {
 "query" : { "match_all" : {} },
 "filters" : [
 {
 "filter" : { "term" : { "available" : true }},
 "boost" : 10
 }
],
 "score_mode" : "first"
 }
 }
}

If we want to replace it with the function_score query, it will look as follows:

{
 "query" : {
 "function_score" : {
 "query" : { "match_all" : {} },
 "functions" : [
 {
 "filter" : { "term" : { "available" : true }},
 "boost_factor" : 10
 }
],
 "score_mode" : "first"
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Make Your Search Better

[222]

When does index-time boosting make
sense?
In the previous section, we discussed boosting queries. This type of boosting is
very handy and powerful and fulfills its role in most situations. However, there is
one case when the more convenient way is to use index-time boosting. This is the
situation when we know which documents are important during the index phase.
We gain a boost that is independent from a query at the cost of reindexing (we need
to reindex the document when the boost value is changed). In addition to that, the
performance is slightly better because some parts needed in the boosting process are
already calculated at index time. Elasticsearch stores information about the boost as
a part of normalization information. This is important because if we set omit_norms
to true, we can't use index-time boosting.

Defining field boosting in input data
Let's look at the typical document definition, which looks as follows:

{
 "title" : "The Complete Sherlock Holmes",
 "author" : "Arthur Conan Doyle",
 "year" : 1936
}

If we want to boost the author field for this particular document, the structure
should be slightly changed and the document should look as follows:

{
 "title" : "The Complete Sherlock Holmes",
 "author" : {
 "_value" : "Arthur Conan Doyle",
 "_boost" : 10.0,
 },
 "year": 1936
}

And that's all. After indexing the preceding document, we will let Elasticsearch
know that the importance of the author field is greater than the rest of the fields.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[223]

In older versions of Elasticsearch, setting document-wide boost was
possible. However, starting with 4.0, Lucene doesn't support whole
document boosting and Elasticsearch emulated it by boosting all the
fields in the document. In Elasticsearch 1.0, the document boost was
deprecated and we decided not to write about it, because it will be
removed in the future.

Defining boosting in mapping
It is worth mentioning that it is possible to directly define the field's boost in our
mappings. The following example illustrates this:

{
 "mappings" : {
 "book" : {
 "properties" : {
 "title" : { "type" : "string" },
 "author" : { "type" : "string", "boost" : 10.0 }
 }
 }
 }
}

Thanks to the preceding boost, all queries will favor values found in the field
named author. This also applies to queries using the _all field.

Words with the same meaning
You may have heard about synonyms—words that have the same or similar
meaning. Sometimes, you will want to have some words match when one of
those words is entered into the search box. Let's recall our sample data from The
example data section of Chapter 3, Searching Your Data; there was a book called Crime
and Punishment. What if we want that book to be matched not only when the words
crime or punishment are used, but also when using words like criminality and
abuse. To perform this,
we will use synonyms.

www.it-ebooks.info

http://www.it-ebooks.info/

Make Your Search Better

[224]

The synonym filter
In order to use the synonym filter, we need to define our own analyzer. Our analyzer
will be called synonym and will use the whitespace tokenizer and a single filter
called synonym. Our filter's type property needs to be set to synonym, which tells
Elasticsearch that this filter is a synonym filter. In addition to that, we want to ignore
case so that upper- and lowercase synonyms will be treated equally (set the ignore
_case property to true). To define our custom synonym analyzer that uses a
synonym filter, we need to have the following mappings:

{
 "index" : {
 "analysis" : {
 "analyzer" : {
 "synonym" : {
 "tokenizer" : "whitespace",
 "filter" : [
 "synonym"
]
 }
 },
 "filter" : {
 "synonym" : {
 "type" : "synonym",
 "ignore_case" : true,
 "synonyms" : [
 "crime => criminality"
]
 }
 }
 }
 }
}

Synonyms in the mappings
In the preceding definition, we specified the synonym rule in the mappings
we send to Elasticsearch. In order to do that, we need to add the synonyms property,
which is an array of synonym rules. For example, the following part of the mappings
definition defines a single synonym rule:

"synonyms" : [
 "crime => criminality"
]

We will discuss how to define the synonym rules in just a second.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[225]

Synonyms stored in the filesystem
Elasticsearch also allows us to use file-based synonyms. To use a file, we need
to specify the synonyms_path property instead of the synonyms property. The
synonyms_path property should be set to the name of the file that holds the
synonym's definition and the specified file path should be relative to the
Elasticsearch config directory. So, if we store our synonyms in the synonyms.
txt file and save that file in the config directory, in order to use it, we should
set synonyms_path to the value of synonyms.txt.

For example, the following shows how the synonym filter (the one from the
preceding mappings) will be if we want to use the synonyms stored in a file:

"filter" : {
 "synonym" : {
 "type" : "synonym",
 "synonyms_path" : "synonyms.txt"
 }
}

Defining synonym rules
Till now, we discussed what we have to do in order to use synonym expansions
in Elasticsearch. Now, let's see what formats of synonyms are allowed.

Using Apache Solr synonyms
The most common synonym structure in the Apache Lucene world is probably
the one used by Apache Solr—the search engine built on top of Lucene, just like
Elasticsearch. This is the default way to handle synonyms in Elasticsearch, and the
possibilities of defining a new synonym are discussed in the following sections.

Explicit synonyms
A simple mapping allows us to map a list of words into other words. So, in our case,
if we want the word criminality to be mapped to crime and the word abuse to be
mapped to punishment, we need to define the following entries:

criminality => crime
abuse => punishment

Of course, a single word can be mapped into multiple words and multiple ones can
be mapped into a single word, as follows:

star wars, wars => starwars

www.it-ebooks.info

http://www.it-ebooks.info/

Make Your Search Better

[226]

The preceding example means that star wars and wars will be changed to
starwars by the synonym filter.

Equivalent synonyms
In addition to explicit mapping, Elasticsearch allows us to use equivalent synonyms.
For example, the following definition will make all the words exchangeable so that
you can use any of them to match a document that has one of them in its contents:

star, wars, star wars, starwars

Expanding synonyms
A synonym filter allows us to use one additional property when it comes to the
synonyms of the Apache Solr format—the expand property. When the expand
property is set to true (by default, it is set to false), all synonyms will be expanded
by Elasticsearch to all equivalent forms. For example, let's say we have the following
filter configuration:

"filter" : {
 "synonym" : {
 "type" : "synonym",
 "expand": false,
 "synonyms" : [
 "one, two, three"
]
 }
}

Elasticsearch will map the preceding synonym definition to the following:

one, two, thee => one

This means that the words one, two, and three will be changed to one. However, if
we set the expand property to true, the same synonym definition will be interpreted
in the following way:

one, two, three => one, two, three

This basically means that each of the words from the left-hand side of the definition
will be expanded to all the words on the right-hand side.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[227]

Using WordNet synonyms
If we want to use WordNet-structured synonyms (to learn more about WordNet,
visit http://wordnet.princeton.edu/), we need to provide an additional property
for our synonym filter. The property name is format and we should set its value to
wordnet in order for Elasticsearch to understand that format.

Query- or index-time synonym expansion
As with all analyzers, one can wonder when we should use our synonym filter
—during indexing, during querying, or maybe during indexing and querying.
Of course, it depends on your needs; however, remember that using index-time
synonyms requires data reindexing after each synonym change. That's because
they need to be reapplied to all the documents. If we use only query-time synonyms,
we can update the synonym lists and have them applied during the query.

Understanding the explain information
Compared to databases, using systems that are capable of performing full-text
search can often be anything other than obvious. We can search in many fields
simultaneously, and the data in the index can vary from the ones provided as
the values of the document fields (because of the analysis process, synonyms,
abbreviations, and others). It's even worse; by default, search engines sort data
by relevance—a number that indicates how similar the document is to the query.
The key here is how similar. As we already discussed, scoring takes many factors
into account: how many searched words were found in the document, how
frequent the word was, how many terms were present in the field, and so on.
This seems complicated, and finding out why a document was found and why
another document is better is not easy. Fortunately, Elasticsearch has some tools
that can answer these questions, and we will look at them now.

Understanding field analysis
One of the common questions asked is why a given document was not found.
In many cases, the problem lies in the mappings definition and the analysis
process configuration. For debugging the analysis process, Elasticsearch provides
a dedicated REST API endpoint, _analyze.

Let's start with looking at the information returned by Elasticsearch for the default
analyzer. To do that, we will run the following command:

curl -XGET 'localhost:9200/_analyze?pretty' -d 'Crime and Punishment'

www.it-ebooks.info

http://www.it-ebooks.info/

Make Your Search Better

[228]

In response, we will get the following data:

{

 "tokens" : [{

 "token" : "crime",

 "start_offset" : 0,

 "end_offset" : 5,

 "type" : "<ALPHANUM>",

 "position" : 1

 }, {

 "token" : "punishment",

 "start_offset" : 10,

 "end_offset" : 20,

 "type" : "<ALPHANUM>",

 "position" : 3

 }]

}

As we can see, Elasticsearch divided the input phrase into two tokens.
During processing, the and common word was omitted (because it belongs to
the stop words list) and the other words were turned into lowercase. This shows
us exactly what would be happening during the analysis process. We can also
provide the name of the analyzer, for example, we can change the preceding
command as follows:

curl -XGET 'localhost:9200/_analyze?analyzer=standard&pretty' -d
 'Crime and Punishment'

The preceding command will allow us to check how the standard analyzer analyzes
the data (it will be a bit different from the response we've seen previously).

It is worth noting that there is another form of analysis API available—the one
that allows us to provide tokenizers and filters. It is very handy when we want
to experiment with the configuration before creating the target mappings.
An example of such a call is as follows:

curl -XGET
 'localhost:9200/library/_analyze?tokenizer=whitespace&
 filters=lowercase,kstem&pretty' -d 'John Smith'

In the preceding example, we used the analyzer, which was built with the
whitespace tokenizer and two filters, lowercase and kstem.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[229]

As we can see, an analysis API can be very useful for tracking down the bugs
in the mapping configuration. It is also very useful for when we want to solve
problems with queries and search relevance. It can show us how our analyzers
work, what terms they produce, and what the attributes of those terms are. With
such information, analyzing query problems will be easier to track down.

Explaining the query
In addition to looking at what happened during analysis, Elasticsearch allows us to
explain how the score was calculated for a particular query and document. Let's look
at the following example:

curl -XGET 'localhost:9200/library/book/1/_explain?pretty&q=quiet'

In the preceding call, we provided a specific document and a query to run. Using
the _explain endpoint, we ask Elasticsearch for an explanation on how the
document was matched by Elasticsearch (or not matched). For example, should
the preceding document be found by the provided query? If it is, Elasticsearch will
provide information on why the document was matched, along with details about
how its score was calculated.

The result returned by Elasticsearch for the preceding command is as follows:

{

 "_index" : "library",

 "_type" : "book",

 "_id" : "1",

 "matched" : true,

 "explanation" : {

 "value" : 0.057534903,

 "description" : "weight(_all:quiet in 0) [PerFieldSimilarity],
 result of:",

 "details" : [{

 "value" : 0.057534903,

 "description" : "fieldWeight in 0, product of:",

 "details" : [{

 "value" : 1.0,

 "description" : "tf(freq=1.0), with freq of:",

 "details" : [{

 "value" : 1.0,

 "description" : "termFreq=1.0"

www.it-ebooks.info

http://www.it-ebooks.info/

Make Your Search Better

[230]

 }]

 }, {

 "value" : 0.30685282,

 "description" : "idf(docFreq=1, maxDocs=1)"

 }, {

 "value" : 0.1875,

 "description" : "fieldNorm(doc=0)"

 }]

 }]

 }

}

Looks complicated, and, well, it is complicated! What's even worse is that this
is only a simple query! Elasticsearch, and more specifically, the Lucene library,
shows the internal information about the scoring process. We will only scratch the
surface and will explain the most important things about the preceding response.

The most important part is the total score calculated for a document (the value
property of the explanation object). If it is equal to 0, the document didn't match
the given query. Another important element is the description section that tells
us which similarity was used. In our example, we were looking for the quiet term.
It was found in the _all field. It is obvious because we searched in the default field,
which is _all (you should remember this field from the Extending your index
structure with additional internal information section in Chapter 2, Indexing Your Data).

The details section provides us with information about components and where we
should seek explanation about why our document matches the query. When it comes
to scoring, we have a single object present—a single component that was responsible
for document score calculation. The value property is the score calculated by this
component, and again we see the description and details section. As you can
see in the description field, the final score is the product of (fieldWeight in 0,
product of) all the scores calculated by each element in the inner details array
(1.0 * 0.30685282 * 0.1875).

In the inner details array, we can see three objects. The first one shows information
about the term frequency in the given field (which was 1 in our case). This means
that the field contained only a single occurrence of the searched term. The second
object shows the inverse document frequency. Note the maxDocs property, which
is equal to 1. This means that only one document was found with the specified
term. The third object is responsible for the field norm for that field.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 5

[231]

Note that the preceding response will be different for each query. What's more,
the more complicated the query will be, the more complicated the returned
information will be.

Summary
In this chapter, we learned how Apache Lucene scoring works internally. We've
also seen how to use the scripting capabilities of Elasticsearch and how to index
and search documents in different languages. We've used different queries to alter
the score of our documents and modify it so it fits our use case. We've learned about
index-time boosting, what synonyms are, and how they can help us. Finally, we've
seen how to check why a particular document was a part of the result set and how
its score was calculated.

In the next chapter, we'll go beyond full-text searching. We'll see what aggregations
are and how we can use them to analyze our data. We'll also see faceting, which
also allows us to aggregate our data and bring meaning to it. We'll use suggesters
to implement spellchecking and autocomplete, and we'll use prospective search to
find out which documents match particular queries. We'll index binary files and use
geospatial capabilities to search our data with the use of geographical data. Finally,
we'll use the scroll API to efficiently fetch a large number of results and we'll see how
to make Elasticsearch use a list of terms (a list that is loaded automatically) in a query.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching
In the previous chapter, we saw how Apache Lucene scoring works internally.
We saw how to use the scripting capabilities of Elasticsearch and how to index
and search documents in different languages. We learned how to use different
queries in order to alter the score of our documents, and we used index-time
boosting. We learned what synonyms are and finally, we saw how to check
why a particular document was a part of the result set and how its score was
calculated. By the end of this chapter, you will have learned the following topics:

•	 Using aggregations to aggregate our indexed data and calculate useful
information from it

•	 Employing faceting to calculate different statistics from our data
•	 Implementing the spellchecking and autocomplete functionalities by

using Elasticsearch suggesters
•	 Using prospective search to match documents against queries
•	 Indexing binary files
•	 Indexing and searching geographical data
•	 Efficiently fetching large datasets
•	 Automatically loading terms and using them in our query

Aggregations
Apart from the improvements and new features that Elasticsearch 1.0 brings, it
also includes a highly anticipated framework, which moves Elasticsearch to a new
position—a full-featured analysis engine. Now, you can use Elasticsearch as a key
part of various systems that process massive volumes of data, allow you to extract
conclusions, and visualize that data in a human-readable way. Let's see how this
functionality works and what we can achieve by using it.

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[234]

General query structure
To use aggregation, we need to add an additional section in our query. In general,
our queries with aggregations will look like the following code snippet:

{
 "query": { … },
 "aggs" : { … }
}

In the aggs property (you can use aggregations if you want; aggs is just an
abbreviation), you can define any number of aggregations. One thing to remember
though is that the key defines the name of the aggregation (you will need it to
distinguish particular aggregations in the server response). Let's take our library
index and create the first query that will use aggregations. A command to send
such a query is as follows:

curl 'localhost:9200/_search?search_type=count&pretty' -d '{

 "aggs": {

 "years": {

 "stats": {

 "field": "year"

 }

 },

 "words": {

 "terms": {

 "field": "copies"

 }

 }

 }

}'

This query defines two aggregations. The aggregation named years shows the
statistics for the year field. The words aggregation contains information about the
terms used in a given field.

In our examples, we assumed that we do aggregation in addition to
searching. If we don't need the documents that are found, a better
idea is to use the search_type=count parameter. This omits some
unnecessary work and is more efficient. In such a case, the endpoint
should be /library/_search?search_type=count. You can
read more about the search types in the Understanding the querying
process section of Chapter 3, Searching Your Data.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[235]

Now let's look at the response returned by Elasticsearch for the preceding query:

{

 "took": 2,

 "timed_out": false,

 "_shards": {

 "total": 5,

 "successful": 5,

 "failed": 0

 },

 "hits": {

 "total": 4,

 "max_score": 0,

 "hits": []

 },

 "aggregations": {

 "words": {

 "buckets": [

 {

 "key": 0,

 "doc_count": 2

 },

 {

 "key": 1,

 "doc_count": 1

 },

 {

 "key": 6,

 "doc_count": 1

 }

]

 },

 "years": {

 "count": 4,

 "min": 1886,

 "max": 1961,

 "avg": 1928,

 "sum": 7712

 }

 }

}

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[236]

As you can see, both the aggregations (years and words) were returned. The first
aggregation we defined in our query (years) returned general statistics for the
given field, which was gathered across all the documents that matched our
query. The second aggregation (words) is a bit different. It created several sets
called buckets that are calculated on the returned documents, and each of the
aggregated values is present within one of these sets. As you can see, there are
multiple aggregation types available and they return different results. We will
see the differences later in this section.

Available aggregations
After the previous example, you shouldn't be surprised that aggregations
are divided into groups. Currently, there are two groups—metric aggregations
and bucketing aggregations.

Metric aggregations
Metric aggregations take an input document set and generate at least a single
statistic. As you will see, these aggregations are mostly self-explanatory.

Min, max, sum, and avg aggregations
Usage of the min, max, sum, and avg aggregations is very similar. For the given field,
they return a minimum value, a maximum value, a sum of all the values, and an
average value, respectively. Any numeric field can be used as a source for these
values. For example, to calculate the minimum value for the year field, we will
construct the following aggregation:

{
 "aggs": {
 "min_year": {
 "min": {
 "field": "year"
 }
 }
 }
}

The returned result will be similar to the following one:

"min_year": {

 "value": 1886

}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[237]

Using scripts
The input values can also be generated by a script. For example, if we want to find
a minimum value from all the values in the year field, but we also want to subtract
1000 from these values, we will send an aggregation similar to the following one:

{
 "aggs": {
 "min_year": {
 "min": {
 "script": "doc['year'].value - 1000"

 }
 }
}

In this case, the value that the aggregations will use is the original year field value
reduced by 1000. The other notation that we can use to achieve the same response
is to provide the field name and the script property, as follows:

{
 "aggs": {
 "min_year": {
 "min": {
 "field": "year",
 "script": "_value - 1000"
 }
 }
 }
}

The field name is given outside the script. If we like, we can be even more verbose,
as follows:

{
 "aggs": {
 "min_year": {
 "min": {
 "field": "year",
 "script": "_value - mod",
 "params": {
 "mod" : 1000
 }
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[238]

 }
 }
}

As you can see, we've added the params section with additional parameters. You can
read more about scripts in the Scripting capabilities of Elasticsearch section of Chapter 5,
Make Your Search Better.

The value_count aggregation
The value_count aggregation is similar to the ones we described previously, but the
input field doesn't have to be numeric. An example of this aggregation is as follows:

{
 "aggs": {
 "number_of_items": {
 "value_count": {
 "field": "characters"
 }
 }
 }
}

Let's stop here for a moment. It is a good opportunity to look at which values are
counted by Elasticsearch aggregation in this case. If you run the preceding query on
your index with books (the library index), the response will be something as follows:

 "number_of_items": {

 "value": 31

 }

Elasticsearch counted all the tokens from the characters field across all the
documents. This number makes sense when we keep in mind that, for example,
our Sofia Semyonovna Marmeladova term will become sofia, semyonovna,
and marmeladova after analysis. In most of the cases, such a behavior is not what
we are aiming at. For such cases, we should use a not-analyzed version of the
characters field.

The stats and extended_stats aggregations
The stats and extended_stats aggregations can be treated as aggregations that
return all the previously described aggregations but within a single aggregation
object. For example, if we want to calculate statistics for the year field, we can use
the following code:

 {
 "aggs": {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[239]

 "stats_year": {
 "stats": {
 "field": "year"
 }
 }
 }
}

The relevant part of the results returned by Elasticsearch will be as follows:

 "stats_year": {

 "count": 4,

 "min": 1886,

 "max": 1961,

 "avg": 1928,

 "sum": 7712

 }

Of course, the extended_stats aggregation returns statistics that are even more
extended. Let's look at the following query:

{
 "aggs": {
 "stats_year": {
 "extended_stats": {
 "field": "year"
 }
 }
 }
}

In the returned response, we will see the following output:

 "stats_year": {

 "count": 4,

 "min": 1886,

 "max": 1961,

 "avg": 1928,

 "sum": 7712,

 "sum_of_squares": 14871654,

 "variance": 729.5,

 "std_deviation": 27.00925767213901

 }

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[240]

As you can see, in addition to the already known values, we also got the sum
of squares, variance, and the standard deviation statistics.

Bucketing
Bucketing aggregations return many subsets and qualify the input data to a
particular subset called bucket. You can think of the bucketing aggregations as
something similar to the former faceting functionality described in the Faceting
section. However, the aggregations are more powerful and just easier to use.
Let's go through the available bucketing aggregations.

The terms aggregation
The terms aggregation returns a single bucket for each term available in a field.
This allows you to generate the statistics of the field value occurrences. For example,
the following are the questions that can be answered by using this aggregation:

•	 How many books were published each year?
•	 How many books were available for borrowing?
•	 How many copies of the books do we have the most?

To get the answer for the last question, we can send the following query:

{
 "aggs": {
 "availability": {
 "terms": {
 "field": "copies"
 }
 }
 }
}

The response returned by Elasticsearch for our library index is as follows:

 "availability": {

 "buckets": [

 {

 "key": 0,

 "doc_count": 2

 },

 {

 "key": 1,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[241]

 "doc_count": 1

 },

 {

 "key": 6,

 "doc_count": 1

 }

]

 }

We see that we have two books without copies available (bucket with the key
property equal to 0), one book with one copy (bucket with the key property equal
to 1), and a single book with six copies (bucket with the key property equal to 6).
By default, Elasticsearch returns the buckets sorted by the value of the doc_count
property in descending order. We can change this by adding the order attribute. For
example, to sort our aggregations by using the key property values, we will send the
following query:

{
 "aggs": {
 "availability": {
 "terms": {
 "field": "copies",
 "size": 40,
 "order": { "_term": "asc" }
 }
 }
 }
}

We can sort in incremental order (asc) or in decremental order (desc). In our example,
we sorted the values by using their key properties (_term). The other option available
is _count, which tells Elasticsearch to sort by the doc_count property.

In the preceding example, we also added the size attribute. As you can guess, it
defines how many buckets should be returned at the maximum.

You should remember that when the field is analyzed, you will get
buckets from the analyzed terms as shown in the example with the
value count. This probably is not what you want. The answer to
such a problem is just to add an additional, not-analyzed version of
your field to the index and to use it for the aggregation calculation.

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[242]

The range aggregation
In the range aggregation, buckets are created using defined ranges. For example, if
we want to check how many books were published in the given period of time, we
can create the following query:

{
 "aggs": {
 "years": {
 "range": {
 "field": "year",
 "ranges": [
 { "to" : 1850 },
 { "from": 1851, "to": 1900 },
 { "from": 1901, "to": 1950 },
 { "from": 1951, "to": 2000 },
 { "from": 2001 }
]
 }
 }
 }
}

For the data in the library index, the response should look like the following output:

 "years": {

 "buckets": [

 {

 "to": 1850,

 "doc_count": 0

 },

 {

 "from": 1851,

 "to": 1900,

 "doc_count": 1

 },

 {

 "from": 1901,

 "to": 1950,

 "doc_count": 2

 },

 {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[243]

 "from": 1951,

 "to": 2000,

 "doc_count": 1

 },

 {

 "from": 2001,

 "doc_count": 0

 }

]

 }

For example, from the preceding output, we know that between 1901 and 1950,
we released two books.

If you create the user interface, it is possible to automatically generate a label for every
bucket. Turning on this feature is simple—we just need to add the keyed attribute and
set it to true, just like in the following example:

{
 "aggs": {
 "years": {
 "range": {
 "field": "year",
 "keyed": true,
 "ranges": [
 { "to" : 1850 },
 { "from": 1851, "to": 1900 },
 { "from": 1901, "to": 1950 },
 { "from": 1951, "to": 2000 },
 { "from": 2001 }
]
 }
 }
 }
}

The highlighted part in the preceding code causes the results to contain labels, just as
we can see in the following response returned by Elasticsearch:

 "years": {
 "buckets": {
 "*-1850.0": {

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[244]

 "to": 1850,
 "doc_count": 0
 },
 "1851.0-1900.0": {
 "from": 1851,
 "to": 1900,
 "doc_count": 1
 },
 "1901.0-1950.0": {
 "from": 1901,
 "to": 1950,
 "doc_count": 2
 },
 "1951.0-2000.0": {
 "from": 1951,
 "to": 2000,
 "doc_count": 1
 },
 "2001.0-*": {
 "from": 2001,
 "doc_count": 0
 }
 }
 }

As you probably noticed, the structure is slightly changed—now, the buckets field
is not a table but a map where the key is generated from the range. This works, but
it is not so pretty. For our case, giving a name for every bucket will be more useful.
Fortunately, it is possible and we can do this by adding the key attribute for every
range and setting its value to the desired name. Consider the following example:

{
 "aggs": {
 "years": {
 "range": {
 "field": "year",
 "keyed": true,
 "ranges": [
 { "key": "Before 18th century", "to": 1799 },
 { "key": "18th century", "from": 1800, "to": 1899 },
 { "key": "19th century", "from": 1900, "to": 1999 },
 { "key": "After 19th century", "from": 2000 }
]
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[245]

 }
 }
}

It is important and quite useful that ranges need not be
disjoint. In such cases, Elasticsearch will properly count
the document for multiple buckets.

The date_range aggregation
The date_range aggregation is similar to the previously discussed range aggregation,
but it is designed for the fields that use date types. Although the library index
documents have the years mentioned in them, the field is a number and not a date.
To test this, let's imagine that we want to extend our library index to support
newspapers. To do this, we will create a new index called library2 by using the
following command:

curl -XPOST localhost:9200/_bulk --data-binary '{ "index": {"_index":
 "library2", "_type": "book", "_id": "1"}}

{ "title": "Fishing news", "published": "2010/12/03 10:00:00",
 "copies": 3, "available": true }

{ "index": {"_index": "library2", "_type": "book", "_id": "2"}}

{ "title": "Knitting magazine", "published": "2010/11/07 11:32:00",
 "copies": 1, "available": true }

{ "index": {"_index": "library2", "_type": "book", "_id": "3"}}

{ "title": "The guardian", "published": "2009/07/13 04:33:00",
 "copies": 0, "available": false }

{ "index": {"_index": "library2", "_type": "book", "_id": "4"}}

{ "title": "Hadoop World", "published": "2012/01/01 04:00:00",
 "copies": 6, "available": true }

'

In the library2 index, we leave the mapping for Elasticsearch discovery
mechanisms—this is sufficient in this case. Let's start with the first query using
the date_range aggregation, which is as follows:

{
 "aggs": {
 "years": {
 "date_range": {
 "field": "published",
 "ranges": [
 { "to" : "2009/12/31" },

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[246]

 { "from": "2010/01/01", "to": "2010/12/31" },
 { "from": "2011/01/01" }
]
 }
 }
 }
}

Comparing with the ordinary range aggregation, the only thing that changed is
the aggregation type (date_range). The dates can be passed in a string format
recognized by Elasticsearch (refer to Chapter 2, Indexing Your Data, for more
information) or as a number value—the number of milliseconds since 1970-01-01).
The response returned by Elasticsearch is as follows:

 "years": {

 "buckets": [

 {

 "to": 1262217600000,

 "to_as_string": "2009/12/31 00:00:00",

 "doc_count": 1

 },

 {

 "from": 1262304000000,

 "from_as_string": "2010/01/01 00:00:00",

 "to": 1293753600000,

 "to_as_string": "2010/12/31 00:00:00",

 "doc_count": 2

 },

 {

 "from": 1293840000000,

 "from_as_string": "2011/01/01 00:00:00",

 "doc_count": 1

 }

]

 }

The only difference in the preceding response compared to the response given by the
range aggregation is that the information about the range boundaries is split into two
attributes. The attributes named from or to present the number of milliseconds from
1970-01-01. The properties from_as_string and to_as_string present the date in a
human-readable form. Of course, the keyed and key attributes in the definition of the
date_range aggregation work as already described.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[247]

Elasticsearch also allows us to define the format of the presented dates by using the
format attribute. In our example, we presented the dates with year resolution, so
mentioning the day and time were unnecessary. If we want to show month names,
we can send a query like the following:

{
 "aggs": {
 "years": {
 "date_range": {
 "field": "published",
 "format": "MMMM YYYY",
 "ranges": [
 { "to" : "2009/12/31" },
 { "from": "2010/01/01", "to": "2010/12/31" },
 { "from": "2011/01/01" }
]
 }
 }
 }
}

One of the returned ranges looks as follows:

 {

 "from": 1262304000000,

 "from_as_string": "January 2010",

 "to": 1293753600000,

 "to_as_string": "December 2010",

 "doc_count": 2

 }

Looks better, doesn't it?

The available formats that we can use in the format parameter
are defined in the Joda Time library. The full list is available at
http://joda-time.sourceforge.net/apidocs/org/
joda/time/format/DateTimeFormat.html.

There is one more thing about the date_range aggregation. Sometimes, we may
want to build an aggregation that can change with time. For example, we want to
see how many newspapers were published in every quarter. This is possible without
modifying our query. To do this, consider the following example:

{
 "aggs": {

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[248]

 "years": {
 "date_range": {
 "field": "published",
 "format": "dd-MM-YYYY",
 "ranges": [
 { "to" : "now-9M/M" },
 { "to" : "now-9M" },
 { "from": "now-6M/M", "to": "now-9M/M" },
 { "from": "now-3M/M" }
]
 }
 }
 }
}

The keys are the expressions such as now-9M. Elasticsearch does the math and
generates the appropriate value. You can use y (year), M (month), w (week), d (day),
h (hour), m (minute), and s (second). For example, the expression now+3d means
three days from now. The /M expression in our example takes only the dates that
have been rounded to months. Thanks to such notations, we count only full months.
The second advantage is that the calculated date is more cache-friendly—without
rounding off, the date changes every millisecond, which causes every cache based
on the range to become irrelevant.

IPv4 range aggregation
The last form of the range aggregation is aggregation based on Internet addresses.
It works on the fields defined with the ip type and allows you to define ranges
given by the IP range in the CIDR notation (http://en.wikipedia.org/wiki/
Classless_Inter-Domain_Routing). An example of the ip_range aggregation
looks as follows:

{
 "aggs": {
 "access": {
 "ip_range": {
 "field": "ip",
 "ranges": [
 { "from": "192.168.0.1", "to": "192.168.0.254" },
 { "mask": "192.168.1.0/24" }
]
 }
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[249]

The response to the preceding query can be as follows:

 "access": {

 "buckets": [

 {

 "from": 3232235521,

 "from_as_string": "192.168.0.1",

 "to": 3232235774,

 "to_as_string": "192.168.0.254",

 "doc_count": 0

 },

 {

 "key": "192.168.1.0/24",

 "from": 3232235776,

 "from_as_string": "192.168.1.0",

 "to": 3232236032,

 "to_as_string": "192.168.2.0",

 "doc_count": 4

 }

]

 }

Again, the keyed and key attributes here work just like in the range aggregation.

The missing aggregation
Let's get back to our library index and check how many entries have no original
title defined (the otitle field). To do this, we will use the missing aggregation,
which will be a good friend in this case. An example query will look as follows:

{
 "aggs": {
 "missing_original_title": {
 "missing": {
 "field": "otitle"
 }
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[250]

The relevant response part looks as follows:

 "missing_original_title": {

 "doc_count": 2

 }

We have two documents without the otitle field.

The missing aggregation is aware of the fact that the mapping
definition may have null_value defined and will need to
count the documents independently from this definition.

Nested aggregation
In the Using nested objects section of Chapter 4, Extending Your Index Structure,
we learned about nested documents. Let's use this data to look into the next type
of aggregation—the nested aggregation. Let's create the simplest working query,
which will look as follows:

{
 "aggs": {
 "variations": {
 "nested": {
 "path": "variation"
 }
 }
 }
}

The preceding query is similar in structure to any other aggregation. It contains
a single parameter—path, which points to the nested document. In the response,
we get a number, as shown in the following output:

 "variations": {

 "doc_count": 2

 }

The preceding response means that we have two nested documents in the index
with the provided variation type.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[251]

The histogram aggregation
The histogram aggregation is an aggregation that defines the buckets. The simplest
form of a query that uses this aggregation looks as follows:

{
 "aggs": {
 "years": {
 "histogram": {
 "field" : "year",
 "interval": 100
 }
 }
 }
}

The new piece of information here is interval, which defines the length of every
range that will be used to create a bucket. Because of this, in our example, buckets
will be created for periods of 100 years. The aggregation part of the response to the
preceding query that was sent to our library index is as follows:

 "years": {

 "buckets": [

 {

 "key": 1800,

 "doc_count": 1

 },

 {

 "key": 1900,

 "doc_count": 3

 }

]

 }

As in the range aggregation, histogram also allows us to use the keyed property.
The other available option is min_doc_count, which allows us to control what is
the minimal number of documents required to create a bucket. If we set the min_
doc_count property to zero, Elasticsearch will also include the buckets with the
document count of 0.

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[252]

The date_histogram aggregation
As the date_range aggregation is a specialized form of the range aggregation, the
date_histogram aggregation is an extension of the histogram aggregation that
works on dates. So, again we will use our index with newspapers (it was called
library2). An example of the query that uses the date_histogram aggregation
looks as follows:

{
 "aggs": {
 "years": {
 "date_histogram": {
 "field" : "published",
 "format" : "yyyy-MM-dd HH:mm",
 "interval": "10d"
 }
 }
 }
}

We can spot one important difference to the interval property. It is now a string
describing the time interval, which in our case is ten days. Of course, we can set it to
anything we want—it uses the same suffixes that we discussed when talking about
the formats in the date_range aggregation. It is worth mentioning that the number
can be a float value; for example, 1.5m, which means every one and a half minutes.
The format attribute is the same as in the date_range aggregation—thanks to this,
Elasticsearch can add a human-readable date according to the defined format.
Of course, the format attribute is not required, but it is useful.

In addition to this, similar to the other range aggregations, the keyed and
min_doc_count attributes still work.

Time zones
Elasticsearch stores all the dates in the UTC time zone. You can define the time zone,
which should be used for display purposes. There are two ways for date conversion;
Elasticsearch can convert a date before assigning an element to the appropriate bucket
or after the assignment is done. This leads to the situation where an element may be
assigned to various buckets depending on the chosen way and the definition of the
bucket. We have two attributes that define this behavior: pre_zone and post_zone.
Also, there is a time_zone attribute that basically sets the pre_zone attribute value.
There are three notations to set these attributes, which are as follows:

•	 We can set the hours offset; for example: pre_zone:-4 or time_zone:5

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[253]

•	 We can use the time format; for example: pre_zone:"-4:30"
•	 We can use name of the time zone; for example: time_zone:"Europe/Warsaw"

Look at http://joda-time.sourceforge.net/
timezones.html to see the available time zones.

The geo_distance aggregation
The next two aggregations are connected with maps and spatial search. We will talk
about the geo types and queries later in this chapter, so feel free to skip these two
topics now and return to them later.

Look at the following query:

{
 "aggs": {
 "neighborhood": {
 "geo_distance": {
 "field": "location",
 "origin": [-0.1275, 51.507222],
 "ranges": [
 { "to": 1200 },
 { "from": 1201 }
]
 }
 }
 }
}

You can see that this query is similar to the range aggregation. The preceding
aggregation will calculate the number of cities that fall into two buckets: one
bucket of cities within 1200 km, and the second bucket of cities further than
1200 km from the origin (in this case, the origin is London). The aggregation
section of the response returned by Elasticsearch looks similar to the following:

 "neighborhood": {

 "buckets": [

 {

 "key": "*-1200.0",

 "from": 0,

 "to": 1200,

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[254]

 "doc_count": 1

 },

 {

 "key": "1201.0-*",

 "from": 1201,

 "doc_count": 4

 }

]

 }

Of course, the keyed and key attributes work in the geo_distance aggregation
as well.

Now, let's modify the preceding query to show the other possibilities of the
geo_distance aggregation as follows:

{
 "aggs": {
 "neighborhood": {
 "geo_distance": {
 "field": "location",
 "origin": { "lon": -0.1275, "lat": 51.507222},
 "unit": "m",
 "distance_type" : "plane",
 "ranges": [
 { "to": 1200 },
 { "from": 1201 }
]
 }
 }
 }
}

We have highlighted three things in the preceding query. The first change is about
how we define the point of origin. We can specify the location in various forms,
which is described more precisely later in the chapter about geo type.

The second change is the unit attribute. The possible values are km (the default), mi,
in, yd, m, cm, and mm that define the units of the numbers used in ranges (kilometers,
miles, inches, yards, meters, centimeters, and millimeters, respectively).

The last attribute—distance_type—specifies how Elasticsearch calculates the
distance. The possible values are (from the fastest but least accurate to the slowest
but the most accurate) plane, sloppy_arc (the default), and arc.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[255]

The geohash_grid aggregation
Now you know how to aggregate based on the distance from a given point.
The second option is to organize areas as a grid and assign every location to
an appropriate cell. For this purpose, the ideal solution is Geohash (http://
en.wikipedia.org/wiki/Geohash), which encodes the location into a string.
 The longer the string, the more accurate the description of a particular location will
be. For example, one letter is sufficient to declare a box with about 5,000 x 5,000 km
and five letters are enough to have the accuracy for about a 5 x 5 km square.
Let's look at the following query:

{
 "aggs": {
 "neighborhood": {
 "geohash_grid": {
 "field": "location",
 "precision": 5
 }
 }
 }
}

We define the geohash_grid aggregation with buckets that have a precision of
the mentioned square of 5 x 5 km (the precision attribute describes the number
of letters used in the geohash string object). The table with resolutions versus the
length of geohash can be found at http://www.elasticsearch.org/guide/
en/elasticsearch/reference/master/search-aggregations-bucket-
geohashgrid-aggregation.html.

Of course, more accuracy usually means more pressure on the system because of
the number of buckets. By default, Elasticsearch will not generate more than 10,000
buckets. You can increase this parameter using the size attribute, but in fact, you
should decrease it when possible.

Nesting aggregations
This is a powerful feature that allows us to build complex queries. Let's start
expanding an example with the nested aggregation. In the example we used
for nested aggregation, we only had the possibility of working with the nested
documents. But, look at the following example to know what happens when we
add the nested aggregation:

{
 "aggs": {
 "variations": {

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[256]

 "nested": {
 "path": "variation"
 },
 "aggs": {
 "sizes": {
 "terms": {
 "field": "variation.size"
 }
 }
 }
 }
 }
}

As you can see, we've added another aggregation that was nested inside the top-level
aggregation. The aggregation that has been nested is called sizes. The aggregation
part of the result for the preceding query will look as follows:

 "variations": {

 "doc_count": 2,

 "sizes": {

 "buckets": [

 {

 "key": "XL",

 "doc_count": 1

 },

 {

 "key": "XXL",

 "doc_count": 1

 }

]

 }

 }

Perfect! Elasticsearch took the result from the parent aggregation and analyzed
it using the terms aggregation. The aggregations can be nested even further—in
theory, we can nest aggregations indefinitely. We can also have more aggregations
on the same level.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[257]

Let's look at the following example:

{
 "aggs": {
 "years": {
 "range": {
 "field": "year",
 "ranges": [
 { "to" : 1850 },
 { "from": 1851, "to": 1900 },
 { "from": 1901, "to": 1950 },
 { "from": 1951, "to": 2000 },
 { "from": 2001 }
]
 },
 "aggs": {
 "statistics": {
 "stats": {}
 }
 }
 }
 }
}

You will probably see that the preceding example is similar to the one we used
when discussing the range aggregation. However, now we added an additional
aggregation, which adds statistics to every bucket. The output for one of these
buckets will look as follows:

 {

 "from": 1851,

 "to": 1900,

 "doc_count": 1,

 "statistics": {

 "count": 1,

 "min": 1886,

 "max": 1886,

 "avg": 1886,

 "sum": 1886

 }

 }

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[258]

Note that in the stats aggregation, we omitted the information about the field that
is used to calculate the statistics. Elasticsearch is smart enough to get this information
from the context—in this case, the parent aggregation.

Bucket ordering and nested aggregations
Let's recall the example of the terms aggregation and ordering. We said that
sorting is available on bucket keys or document count. This is only partially
true. Elasticsearch can also use values from nested aggregations! Let's start
with the following query example:

{
 "aggs": {
 "availability": {
 "terms": {
 "field": "copies",
 "order": { "numbers.avg": "desc" }
 },
 "aggs": {
 "numbers": { "stats" : {}}
 }
 }
 }
}

In the preceding example, the order in the availability aggregation is based on
the average value from the numbers aggregation. In this case, the numbers.avg
notation is required because stats is a multivalued aggregation. If it was the sum
aggregation, the name of the aggregation would be sufficient.

Global and subsets
All of our examples have one thing in common—the aggregations take into
consideration the data from the whole index. The aggregation framework
allows us to operate on the results filtered to the documents returned by the
query or to do the opposite—ignore the query completely. You can also mix
both the approaches. Let's analyze the following example:

{
 "query": {
 "filtered": {
 "query": {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[259]

 "match_all": {}
 },
 "filter": {
 "term": {
 "available": "true"
 }
 }
 }
 },
 "aggs": {
 "with_global": {
 "global": {},
 "aggs": {
 "copies": {
 "value_count": {
 "field": "copies"
 }
 }
 }
 },
 "without_global": {
 "value_count": {
 "field": "copies"
 }
 }
 }
}

The first part is a query. In this case, we want to return all the books that are currently
available. In the next part, we can see aggregations. They are named with_global
and without_global. Both these aggregations are similar; they use the value_count
aggregation on the copies field. The difference is that the with_global aggregation
is nested in the global aggregation. This is something new—the global aggregation
creates one bucket holding all the documents in the current search scope (this means
all the indices and types we've used for searching), but ignores the defined queries.
In other words, global aggregates all the documents, while without_global will
make the aggregation work only on the documents returned by the query.

The aggregations section of the response to the preceding query looks as follows:

 "aggregations": {

 "without_global": {.

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[260]

 "value": 2

 },

 "with_global": {

 "doc_count": 4,

 "copies": {

 "value": 4

 }

 }

 }

In our index, we have two documents that match the query (books that are available
now). The without_global aggregation did an aggregation on these documents,
which gave a value equal to both the documents. The with_global aggregation
ignores the search operation and operates on each document in the index, which
means on all the four books.

Now, let's look at how to have a few aggregations and how one of these aggregations
operates on a subset of a document. To do this, we can use a filter with aggregation,
which will create one bucket containing the documents narrowed down for a given
filter. Let's look at the following example:

{
 "aggs": {
 "with_filter": {
 "filter": {
 "term": {
 "available": "true"
 }
 },
 "aggs": {
 "copies": {
 "value_count": {
 "field": "copies"
 }
 }
 }
 },

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[261]

 "without_filter": {
 "value_count": {
 "field": "copies"
 }
 }
 }
}

We have no query to narrow down the number of documents that are passed to
the aggregation, but we've included a filter that will narrow down the number of
documents on which the aggregation will be calculated. The effect is the same as
we've previously shown.

Inclusions and exclusions
The terms aggregation has one additional possibility of narrowing the number
of aggregations—the include/exclude feature can be applied to string values.
Let's look at the following query:

{
 "aggs": {
 "availability": {
 "terms": {
 "field": "characters",
 "exclude": "al.*",
 "include": "a.*"
 }
 }
 }
}

The preceding query operates on a regular expression. It excludes all the terms
starting with al from the aggregation calculation, but includes all the terms that
start with a. The effect of such a query is that only the terms starting with the letter
a will be counted, excluding the ones that have the l letter as the second letter
in the word. The regular expressions are defined according to the JAVA API
(http://docs.oracle.com/javase/7/docs/api/java/util/regex/Pattern.
html) and Elasticsearch also allows you to define the flags attribute as defined
in this specification.

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[262]

Faceting
Elasticsearch is a full-text search engine that aims to provide search results on the
basis of our queries. However, sometimes we would like to get more—for example,
we would like to get aggregated data that is calculated on the result set we get, such
as the number of documents with a price between 100 and 200 dollars or the most
common tags in the result documents. In the Aggregations section of this chapter, we
talked about the aggregations framework. In addition to this, Elasticsearch provides
a faceting module that is responsible for providing the functionality we've mentioned.
In this chapter, we will discuss different faceting methods provided by Elasticsearch.

Note that faceting offers a subset of functionality provided
by the aggregation module. Because of this, Elasticsearch
creators would like all the users to migrate from faceting
to the mentioned aggregation module. Faceting is not
deprecated and you can use it, but beware that sometime
in the future, it may be removed from Elasticsearch.

The document structure
For the purpose of discussing faceting, we'll use a very simple index structure
for our documents. It will contain the identifier of the document, document date,
a multivalued field that can hold words describing our document (the tags field),
and a field holding numeric information (the total field). Our mappings could
look as follows:

{
 "mappings" : {
 "doc" : {
 "properties" : {
 "id" : { "type" : "long", "store" : "yes" },
 "date" : { "type" : "date", "store" : "no" },
 "tags" : { "type" : "string", "store" : "no", "index" :
 "not_analyzed" },
 "total" : { "type" : "long", "store" : "no" }
 }
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[263]

Keep in mind that when dealing with the string fields, you should
avoid doing faceting on the analyzed fields. Such results may not
be human-readable, especially when using stemming or any other
heavy processing analyzers or filters.

Returned results
Before we get into how to run queries with faceting, let's take a look at what to
expect from Elasticsearch in the result from a faceting request. In most of the cases,
you'll only be interested in the data specific to the faceting type. However, in most
faceting types, in addition to information specific to a given faceting type, you'll
get the following information also:

•	 _type: This defines the faceting type used. This will be provided for each
faceting type.

•	 missing: This defines the number of documents that didn't have enough
data (for example, the missing field) to calculate faceting.

•	 total: This defines the number of tokens present in the facet calculation.
•	 other: This defines the number of facet values (for example, terms used

in the terms faceting) that are not included in the returned counts.

In addition to this information, you'll get an array of calculated facets, such as count,
for your terms, queries, or spatial distances. For example, the following code snippet
shows how the usual faceting results look:

{

 (...)

 "facets" : {

 "tags" : {

 "_type" : "terms",

 "missing" : 54715,

 "total" : 151266,

 "other" : 143140,

 "terms" : [{

 "term" : "test",

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[264]

 "count" : 1119

 }, {

 "term" : "personal",

 "count" : 1063

 },

 (...)

]

 }

 }

}

As you can see in the results, faceting was run against the tags field. We've got
a total number of 151266 tokens processed by the faceting module and the 143140
tokens that were not included in the results. We also have 54715 documents that
didn't have the value in the tags field. The test term appeared in 1119 documents,
and the personal term appeared in 1063 documents. This is what you can expect
from the faceting response.

Using queries for faceting calculations
Query is one of the simplest faceting types, which allows us to get the number
of documents that match the query in the faceting results. The query itself can
be expressed using the Elasticsearch query language, which we have already
discussed. Of course, we can include multiple queries to get multiple counts in the
faceting results. For example, faceting that will return the number of documents for
a simple term query can look like the following code:

{
 "query" : { "match_all" : {} },
 "facets" : {
 "my_query_facet" : {
 "query" : {
 "term" : { "tags" : "personal" }
 }
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[265]

As you can see, we've included the query type faceting with a simple term query.
An example response for the preceding query could look as follows:

{

 (...)

 "facets" : {

 "my_query_facet" : {

 "_type" : "query",

 "count" : 1081

 }

 }

}

As you can see in the response, we've got the faceting type and the count of the
documents that matched the facet query, and of course, the main query results
that we omitted in the preceding response.

Using filters for faceting calculations
In addition to using queries, Elasticsearch allows us to use filters for faceting
calculations. It is very similar to query faceting, but instead of queries, filters are
used. The filter itself can be expressed using the Elasticsearch query DSL, and of
course, multiple filter facets can be used in a single request. For example, the faceting
that will return the number of documents for a simple term filter can look as follows:

{
 "query" : { "match_all" : {} },
 "facets" : {
 "my_filter_facet" : {
 "filter" : {
 "term" : { "tags" : "personal" }
 }
 }
 }
}

As you can see, we've included the filter type faceting with a simple term filter.
When talking about performance, the filter facets are faster than the query facets
or the filter facets that wrap queries.

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[266]

An example response for the preceding query will look as follows:

{

 (...)

 "facets" : {

 "my_filter_facet" : {

 "_type" : "filter",

 "count" : 1081

 }

 }

}

As you can see in the response, we've got the faceting type and the count of the
documents that matched the facet filter and the main query.

Terms faceting
Terms faceting allows us to specify a field that Elasticsearch will use and will return
the top-most frequent terms. For example, if we want to calculate the most frequent
terms for the tags field, we can run the following query:

{
 "query" : { "match_all" : {} },
 "facets" : {
 "tags_facet_result" : {
 "terms" : {
 "field" : "tags"
 }
 }
 }
}

The following faceting response will be returned by Elasticsearch for the
preceding query:

{

 (...)

 "facets" : {

 "tags_facet_result" : {

 "_type" : "terms",

 "missing" : 54716,

 "total" : 151266,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[267]

 "other" : 143140,

 "terms" : [{

 "term" : "test",

 "count" : 1119

 }, {

 "term" : "personal",

 "count" : 1063

 }, {

 "term" : "feel",

 "count" : 982

 }, {

 "term" : "hot",

 "count" : 923

 },

 (...)

]

 }

 }

}

As you can see, our terms faceting results were returned in the tags_facet_result
section and we've got the information that was already described.

There are a few additional parameters that we can use for the terms faceting, which
are as follows:

•	 size: This parameter specifies how many of the top-most frequent terms
should be returned at the maximum. The documents with the subsequent
terms will be included in the count of the other field in the result.

•	 shard_size: This parameter specifies how many results per shard will be
fetched by the node running the query. It allows you to increase the terms
faceting accuracy in situations where the number of unique terms for a
field is greater than the size parameter value. In general, the higher the
size parameter, the more accurate are the results, but the more expensive
is the calculation and more data is returned to the client. In order to avoid
returning a long results list, we can set the shard_size value to a value
higher than the value of the size parameter. This will tell Elasticsearch to
use it to calculate the terms facets but still return a maximum of the size
top terms. Please remember that the shard_size parameter cannot be set
to a value lower than the size parameter.

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[268]

•	 order: This parameter specifies the order of the facets. The possible values
are count (by default this is ordered by frequency, starting from the most
frequent), term (in ascending alphabetical order), reverse_count (ordered by
frequency, starting from the less frequent), and reverse_term (in descending
alphabetical order).

•	 all_terms: This parameter, when set to true, will return all the terms
in the result, even those that don't match any of the documents. It can be
demanding in terms of performance, especially on the fields with a large
number of terms.

•	 exclude: This specifies the array of terms that should be excluded from
the facet calculation.

•	 regex: This parameter specifies the regex expression that will control which
terms should be included in the calculation.

•	 script: This parameter specifies the script that will be used to process
the terms used in the facet calculation.

•	 fields: This parameter specifies the array that allows us to specify multiple
fields for facet calculation (should be used instead of the field property).
Elasticsearch will return aggregation across multiple fields. This property
can also include a special value called _index. If such a value is present, the
calculated counts will be returned per index, so we are able to distinguish
the faceting calculations coming from multiple indices (if our query is run
against multiple indices).

•	 _script_field: This defines the script that will provide the actual term
for the calculation. For example, a _source field based terms may be used.

Ranges based faceting
Ranges based faceting allows us to get the number of documents for a defined set of
ranges and in addition to this, allows us to get data aggregated for the specified field.
For example, if we want to get the number of documents that have the total field
values that fall into the ranges (lower bound inclusive and upper exclusive) to 90,
from 90 to 180, and from 180, we will send the following query:

{
 "query" : { "match_all" : {} },
 "facets" : {
 "ranges_facet_result" : {
 "range" : {
 "field" : "total",
 "ranges" : [
 { "to" : 90 },

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[269]

 { "from" : 90, "to" : 180 },
 { "from" : 180 }
]
 }
 }
 }
}

As you can see in the preceding query, we've defined the name of the field by using
the field property and the array of ranges using the ranges property. Each range
can be defined by using the to or from properties or by using both at the same time.

The response for the preceding query can look like the following output:

{

 (...)

 "facets" : {

 "ranges_facet_result" : {

 "_type" : "range",

 "ranges" : [{

 "to" : 90.0,

 "count" : 18210,

 "min" : 0.0,

 "max" : 89.0,

 "total_count" : 18210,

 "total" : 39848.0,

 "mean" : 2.1882482152663374

 }, {

 "from" : 90.0,

 "to" : 180.0,

 "count" : 159,

 "min" : 90.0,

 "max" : 178.0,

 "total_count" : 159,

 "total" : 19897.0,

 "mean" : 125.13836477987421

 }, {

 "from" : 180.0,

 "count" : 274,

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[270]

 "min" : 182.0,

 "max" : 57676.0,

 "total_count" : 274,

 "total" : 585961.0,

 "mean" : 2138.543795620438

 }]

 }

 }

}

As you can see, because we've defined three ranges in our query for the range
faceting, we've got three ranges in response. For each range, the following statistics
were returned:

•	 from: This defines the left boundary of the range (if present in the query)
•	 to: This defines the right boundary of the range (if present in the query)
•	 min: This defines the minimal field value for the field used for faceting

in the given range
•	 max: This defines the maximum field value for the field used for faceting

in the given range
•	 count: This defines the number of documents with the value of the defined

field that falls into the specified range
•	 total_count: This defines the total number of values in the defined field

that fall into the specified range (should be the same as count for single
valued fields and can be different for fields with multiple values)

•	 total: This defines the sum of all the values in the defined field that fall
into the specified range

•	 mean: This defines the mean value calculated for the values in the given field
used for a range faceting calculation that fall into the specified range

Choosing different fields for an aggregated data
calculation
If we would like to calculate the aggregated data statistics for a different field than
the one for which we calculate the ranges, we can use two properties: key_field
and key_value (or key_script and value_script which allow script usage).
The key_field property specifies which field value should be used to check
whether the value falls into a given range, and the value_field property
specifies which field value should be used for the aggregation calculation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[271]

Numerical and date histogram faceting
A histogram faceting allows you to build a histogram of the values across the
intervals of the field value (numerical- and date-based fields). For example, if we
want to see how many documents fall into the intervals of 1000 in our total field,
we will run the following query:

{
 "query" : { "match_all" : {} },
 "facets" : {
 "total_histogram" : {
 "histogram" : {
 "field" : "total",
 "interval" : 1000
 }
 }
 }
}

As you can see, we've used the histogram facet type and in addition to the field
property, we've included the interval property, which defines the interval we
want to use. The example of the response for the preceding query can look like
the following output:

{

 (...)

 "facets" : {

 "total_histogram" : {

 "_type" : "histogram",

 "entries" : [{

 "key" : 0,

 "count" : 18565

 }, {

 "key" : 1000,

 "count" : 33

 }, {

 "key" : 2000,

 "count" : 14

 }, {

 "key" : 3000,

 "count" : 5

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[272]

 },

 (...)

]

 }

 }

}

You can see that we have 18565 documents for the first bracket of 0 to 1000, 33
documents for the second bracket of 1000 to 2000, and so on.

The date_histogram facet
In addition to the histogram facets type that can be used on numerical fields,
Elasticsearch allows us to use the date_histogram faceting type, which can be
used on the date-based fields. The date_histogram facet type allows us to use
constants such as year, month, week, day, hour, or minute as the value of the
interval property. For example, one can send the following query:

{
 "query" : { "match_all" : {} },
 "facets" : {
 "date_histogram_test" : {
 "date_histogram" : {
 "field" : "date",
 "interval" : "day"
 }
 }
 }
}

In both the numerical and date_histogram faceting, we can use
the key_field, key_value, key_script, and value_script
properties that we discussed when talking about the terms
faceting earlier in this chapter.

Computing numerical field statistical data
The statistical faceting allows us to compute the statistical data for a numeric
field type. In return, we get the count, total, sum of squares, average, minimum,
maximum, variance, and standard deviation statistics. For example, if we want to
compute the statistics for our total field, we will run the following query:

{
 "query" : { "match_all" : {} },

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[273]

 "facets" : {
 "statistical_test" : {
 "statistical" : {
 "field" : "total"
 }
 }
 }
}

And, in the results, we will get the following output:

{

 (...)

 "facets" : {

 "statistical_test" : {

 "_type" : "statistical",

 "count" : 18643,

 "total" : 645706.0,

 "min" : 0.0,

 "max" : 57676.0,

 "mean" : 34.63530547658639,

 "sum_of_squares" : 1.2490405256E10,

 "variance" : 668778.6853747752,

 "std_deviation" : 817.7889002516329

 }

 }

}

The following are the statistics returned in the preceding output:

•	 _type: This defines the faceting type
•	 count: This defines the number of documents with the value in the

defined field
•	 total: This defines the sum of all the values in the defined field
•	 min: This defines the minimal field value
•	 max: This defines the maximum field value
•	 mean: This defines the mean value calculated for the values in the

specified field

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[274]

•	 sum_of_squares: This defines the sum of squares calculated for the values
in the specified field

•	 variance: This defines the variance value calculated for the values in the
specified field

•	 std_deviation: This defines the standard deviation value calculated for
the values in the specified field

Note that we are also allowed to use the script and fields
properties in the statistical faceting just like in the
terms faceting.

Computing statistical data for terms
In addition to the terms and statistical faceting, Elasticsearch allows us to use the
terms_stats faceting. It combines both the statistical and terms faceting types as
it provides us with the ability to compute statistics on a field for the values that we get
from another field. For example, if we want the faceting for the total field but want to
divide those values on the basis of the tags field, we will run the following query:

{
 "query" : { "match_all" : {} },
 "facets" : {
 "total_tags_terms_stats" : {
 "terms_stats" : {
 "key_field" : "tags",
 "value_field" : "total"
 }
 }
 }
}

We've specified the key_field property, which holds the name of the field that
provides the terms, and the value_field property, which holds the name of the
field with numerical data values. The following is a portion of the results we get
from Elasticsearch:

{

 (...)

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[275]

 "facets" : {

 "total_tags_terms_stats" : {

 "_type" : "terms_stats",

 "missing" : 54715,

 "terms" : [{

 "term" : "personal",

 "count" : 1063,

 "total_count" : 254,

 "min" : 0.0,

 "max" : 322.0,

 "total" : 707.0,

 "mean" : 2.783464566929134

 }, {

 "term" : "me",

 "count" : 715,

 "total_count" : 218,

 "min" : 0.0,

 "max" : 138.0,

 "total" : 710.0,

 "mean" : 3.256880733944954

 }

 (...)

]

 }

 }

}

As you can see, the faceting results were divided on a per term basis. Note that
the same set of statistics was returned for each term as the ones that were returned
for the ranges faceting (to know what these values mean, refer to the Ranges based
faceting section of the Faceting topic in this chapter). This is because we've used a
numerical field (the total field) to calculate the facet values for each field.

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[276]

Geographical faceting
The last faceting calculation type we would like to discuss is geo_distance faceting.
It allows us to get information about the numbers of documents that fall into distance
ranges from a given location. For example, let's assume that we have a location
field in our documents in the index that stores geographical points. Now imagine
that we want to get information about the document's distance from a given point,
for example, from 10.0,10.0. Let's assume that we want to know how many
documents fall into the bracket of 10 kilometers from this point, how many fall
into the bracket of 10 to 100 kilometers, and how many fall into the bracket of
more than 100 kilometers. In order to do this, we will run the following query
(you'll learn how to define the location field in the Geo section of this chapter):

{
 "query" : { "match_all" : {} },
 "facets" : {
 "spatial_test" : {
 "geo_distance" : {
 "location" : {
 "lat" : 10.0,
 "lon" : 10.0
 },
 "ranges" : [
 { "to" : 10 },
 { "from" : 10, "to" : 100 },
 { "from" : 100 }
]
 }
 }
 }
}

In the preceding query, we've defined the latitude (the lat property) and the
longitude (the lon property) of the point from which we want to calculate the
distance. One thing to notice is the name of the object that we pass in the lat
and lon properties. The name of the object needs to be the same as the field
holding the location information. The second thing is the ranges array that
specifies the brackets—each range can be defined using the to or from properties
or using both at the same time.

In addition to the preceding properties, we are also allowed to set the unit
property (by default, km for distance in kilometers and mi for distance in miles)
and the distance_type property (by default, arc for better precision and plane
for faster execution).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[277]

Filtering faceting results
The filters that you include in your queries don't narrow down the faceting results,
so the calculation is done on the documents that match your query. However, you
may include the filters you want in your faceting definition. Basically, any filter we
discussed in the Filtering your results section of Chapter 3, Searching Your Data, can be
used with faceting—what you just need to do is include an additional section under
the facet name.

For example, if we want our query to match all the documents and have facets
calculated for the multivalued tags field but only for the documents that have the
fashion term in the tags field, we can run the following query:

{
 "query" : { "match_all" : {} },
 "facets" : {
 "tags" : {
 "terms" : { "field" : "tags" },
 "facet_filter" : {
 "term" : { "tags" : "fashion" }
 }
 }
 }
}

As you can see, there is an additional facet_filter section on the same level as
the type of facet calculation (which is terms in the preceding query). You just need
to remember that the facet_filter section is constructed with the same logic as
any filter described in Chapter 2, Indexing Your Data.

Memory considerations
Faceting can be memory demanding, especially with the large amounts of data
in the indices and many distinct values. The demand for memory is high because
Elasticsearch needs to load the data into the field data cache in order to calculate
the faceting values. With the introduction of the doc values, which we talked about
in the Mappings configuration section of Chapter 2, Indexing Your Data, Elasticsearch
is able to use this data structure for all the operations that use the field data cache,
such as faceting and sorting. In case of large amounts of data, it is a good idea to use
doc values. The older methods also work, such as lowering the cardinality of your
fields by using less precise dates, not-analyzed string fields, or types such as short,
integer, or float instead of long and double when possible. If this doesn't help,
you may need to give Elasticsearch more heap memory or even add more servers
and divide your index to more shards.

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[278]

Using suggesters
Starting from Elasticsearch 0.90, we've got the ability to use the so-called suggesters.
We can define a suggester as a functionality that allows us to correct a user's spelling
mistakes and build an autocomplete functionality, keeping the performance in
mind. This section will introduce the world of suggesters to you; however, it is
not a comprehensive guide. Describing all the details about suggesters will be
very broad and is out of the scope of this book. If you want to learn more about
suggesters, please refer to the official Elasticsearch documentation (http://www.
elasticsearch.org/guide/en/elasticsearch/reference/current/search-
suggesters.html) or to our book, Mastering ElasticSearch, Packt Publishing.

Available suggester types
Elasticsearch gives us three types of suggesters that we can use, which are as follows:

•	 term: This defines the suggester that returns corrections for each word
passed to it. It is useful for suggestions that are not phrases, such as single
term queries.

•	 phrase: This defines the suggester that works on phrases, returning
a proper phrase.

•	 completion: This defines the suggester designed to provide fast and efficient
autocomplete results.

We will discuss each suggester separately. In addition to this, we can also use
the _suggest REST endpoint.

Including suggestions
Now, let's try getting suggestions along with the query results. For example, let's use
a match_all query and try getting a suggestion for a serlock holnes phrase, which
has two incorrectly spelled terms. To do this, we will run the following command:

curl -XGET 'localhost:9200/library/_search?pretty' -d '{

 "query" : {

 "match_all" : {}

 },

 "suggest" : {

 "first_suggestion" : {

 "text" : "serlock holnes",

 "term" : {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[279]

 "field" : "_all"

 }

 }

 }

}'

If we want to get multiple suggestions for the same text, we can embed our
suggestions in the suggest object and place the text property as the suggest
object option. For example, if we want to get suggestions for the serlock holnes
text for the title and _all fields, we can run the following command:

curl -XGET 'localhost:9200/library/_search?pretty' -d '{

 "query" : {

 "match_all" : {}

 },

 "suggest" : {

 "text" : "serlock holnes",

 "first_suggestion" : {

 "term" : {

 "field" : "_all"

 }

 },

 "second_suggestion" : {

 "term" : {

 "field" : "title"

 }

 }

 }

}'

The suggester response
Now let's look at the response of the first query we've sent. As you can guess,
the response will include both the query results and the suggestions:

{

 "took" : 1,

 "timed_out" : false,

 ...

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[280]

 "hits" : {

 "total" : 4,

 "max_score" : 1.0,

 "hits" : [

 ...

]

 },

 "suggest" : {

 "first_suggestion" : [{

 "text" : "serlock",

 "offset" : 0,

 "length" : 7,

 "options" : [{

 "text" : "sherlock",

 "score" : 0.85714287,

 "freq" : 1

 }]

 }, {

 "text" : "holnes",

 "offset" : 8,

 "length" : 6,

 "options" : [{

 "text" : "holmes",

 "score" : 0.8333333,

 "freq" : 1

 }]

 }]

 }

}

We can see that we've got both search results and the suggestions (we've omitted the
query response to make the example more readable) in the response.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[281]

The term suggester returned a list of possible suggestions for each term that are
present in the text parameter. For each term, the term suggester will return an array
of possible suggestions. Looking at the data returned for the serlock term, we can
see the original word (the text parameter), its offset in the original text parameter
(the offset parameter), and its length (the length parameter).

The options array contains suggestions for the given word and will be empty if
Elasticsearch doesn't find any suggestions. Each entry in this array is a suggestion
and is described by the following properties:

•	 text: This property defines the text of the suggestion.
•	 score: This property defines the suggestion score; the higher the score,

the better the suggestion.
•	 freq: This property defines the frequency of the suggestion. Frequency

represents how many times the word appears in the documents in the
index against which we are running the suggestion query.

The term suggester
The term suggester works on the basis of the string edit distance. This means that
the suggestion with fewer characters that need to be changed, added, or removed to
make the suggestion look as the original word is the best one. For example, let's take
the word worl and work. To change the worl term to work, we need to change the l
letter to k, so it means a distance of 1. The text provided to the suggester is, of course,
analyzed and then the terms are chosen to be suggested.

The term suggester configuration options
The common and mostly used term suggester options can be used for all the
suggester implementations that are based on the term suggester. Currently,
these are the phrase suggesters and of course, the base term suggesters.
The available options are as follows:

•	 text: This option defines the text for which we want to get the suggestions.
This parameter is required for the suggester to work.

•	 field: This is another required parameter that we need to provide. The
field parameter allows us to set the field for which the suggestions should
be generated.

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[282]

•	 analyzer: This defines the name of the analyzer, which should be used to
analyze the text provided in the text parameter. If it is not set, Elasticsearch
will use the analyzer used for the field provided by the field parameter.

•	 size: This option defaults to 5 and specifies the maximum number of
suggestions that are allowed to be returned by each term provided in the
text parameter.

•	 sort: This option allows us to specify how suggestions will be sorted in the
result returned by Elasticsearch. By default, this option is set to score and tells
Elasticsearch that the suggestions should be sorted by the suggestion score
first, by the suggestion document frequency next, and finally by the term.
The second possible value is frequency, which means that the results are
first sorted by the document frequency, then by score, and finally by the term.

Additional term suggester options
In addition to the previously mentioned common term suggester options,
Elasticsearch allows us to use additional ones that will only make sense to the
term suggester itself. Some of these options are as follows:

•	 lowercase_terms: This option when set to true will tell Elasticsearch to
lowercase all the terms that are produced from the text field after analysis.

•	 max_edits: This option defaults to 2 and specifies the maximum edit
distance that the suggestion can have to be returned as a term suggestion.
Elasticsearch allows us to set this value to 1 or 2.

•	 prefix_len: This option, by default, is set to 1. If we are struggling with
suggester performance, increasing this value will improve the overall
performance because a lower number of suggestions will need to be processed.

•	 min_word_len: This option defaults to 4 and specifies the minimum number
of characters that a suggestion must have in order to be returned on the
suggestions list.

•	 shard_size: This option defaults to the value specified by the size parameter
and allows us to set the maximum number of suggestions that should be
read from each shard. Setting this property to values higher than the size
parameter can result in a more accurate document frequency at the cost
of suggester performance degradation.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[283]

The phrase suggester
The term suggester provides a great way to correct a user's spelling mistakes on
a per term basis, but it is not great for phrases. That's why the phrase suggester
was introduced. It is built on top of the term suggester but adds an additional
phrase calculation logic to it.

Let's start with the example of how to use the phrase suggester. This time we will omit
the query section in our query. We can do this by running the following command:

curl -XGET 'localhost:9200/library/_search?pretty' -d '{

 "suggest" : {

 "text" : "sherlock holnes",

 "our_suggestion" : {

 "phrase" : { "field" : "_all" }

 }

 }

}'

As you can see in the preceding command, it is almost the same as what we sent
when using the term suggester. However, instead of specifying the term suggester
type, we specified the phrase type. The response to the preceding command will
be as follows:

{

 "took" : 1,

 ...

 "hits" : {

 "total" : 4,

 "max_score" : 1.0,

 "hits" : [

 ...

]

 },

 "suggest" : {

 "our_suggestion" : [{

 "text" : "sherlock holnes",

 "offset" : 0,

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[284]

 "length" : 15,

 "options" : [{

 "text" : "sherlock holmes",

 "score" : 0.12227806

 }]

 }]

 }

}

As you can see, the response is very similar to the one returned by the term
suggester, but instead of a single word being returned, it is already combined
and returned as a phrase.

Configuration
Because the phrase suggester is based on the term suggester, it can also use some
of the configuration options provided by the term suggester. The options are text,
size, analyzer, and shard_size. In addition to the mentioned properties, the
phrase suggester exposes additional options, which are as follows:

•	 max_errors: This option specifies the maximum number (or percentage) of
terms that can be erroneous in order to correct them. The value of this property
can either be an integer number such as 1 or a float value between 0 and 1,
which will be treated as a percentage value. By default, it is set to 1, which
means that at most, a single term can be misspelled in a given correction.

•	 separator: This option defaults to the whitespace character and specifies
the separator that will be used to divide terms in the resulting bigram field.

The completion suggester
The completion suggester allows us to create the autocomplete functionality in
a very performance effective way. This is because you can store complicated
structures in the index instead of calculating them during query time.

To use a prefix-based suggester, we need to properly index our data with a dedicated
field type called completion. To illustrate how to use this suggester, let's assume
that we want to create an autocomplete feature that allows us to show the authors
of the book. In addition to the author's name, we want to return the identifiers of
the books that she/he has written. We start with creating the authors index by
running the following command:

curl -XPOST 'localhost:9200/authors' -d '{

 "mappings" : {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[285]

 "author" : {

 "properties" : {

 "name" : { "type" : "string" },

 "ac" : {

 "type" : "completion",

 "index_analyzer" : "simple",

 "search_analyzer" : "simple",

 "payloads" : true

 }

 }

 }

 }

}'

Our index will contain a single type called author. Each document will have
two fields—the name and the ac fields, which are the fields that will be used for
autocomplete. We defined the ac field using the completion type. In addition to
this, we used the simple analyzer for both index and query time. The last thing is
the payload—the additional optional information that we will return along with
the suggestion; in our case, it will be an array of book identifiers.

Indexing data
To index the data, we need to provide some additional information in addition to the
ones we usually provide during indexing. Let's look at the following commands that
index two documents describing the authors:

curl -XPOST 'localhost:9200/authors/author/1' -d '{

 "name" : "Fyodor Dostoevsky",

 "ac" : {

 "input" : ["fyodor", "dostoevsky"],

 "output" : "Fyodor Dostoevsky",

 "payload" : { "books" : ["123456", "123457"] }

 }

}'

curl -XPOST 'localhost:9200/authors/author/2' -d '{

 "name" : "Joseph Conrad",

 "ac" : {

 "input" : ["joseph", "conrad"],

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[286]

 "output" : "Joseph Conrad",

 "payload" : { "books" : ["121211"] }

 }

}'

Notice the structure of the data for the ac field. We provide the input, output, and
payload properties. The optional payload property is used to provide additional
information that will be returned. The input property is used to provide input
information that will be used to build the completion used by the suggester.
It will be used for user input matching. The optional output property is used
to tell suggester which data should be returned for the document.

We can also omit the additional parameters section and index data in a way that
we are used to just like in the following example:

curl -XPOST 'localhost:9200/authors/author/1' -d '{

 "name" : "Fyodor Dostoevsky",

 "ac" : "Fyodor Dostoevsky"

}'

However, because the completion suggester uses FST under the hood, we wouldn't
be able to find the preceding document if we start with the second part of the ac
field. That's why we think that indexing the data in a way we showed first is more
convenient because we can explicitly control what we want to match and what
we want to show as an output.

Querying the indexed completion suggester data
If we would like to find the documents that have author names starting with fyo,
we would run the following command:

curl -XGET 'localhost:9200/authors/_suggest?pretty' -d '{

 "authorsAutocomplete" : {

 "text" : "fyo",

 "completion" : {

 "field" : "ac"

 }

 }

}'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[287]

Before we look at the results, let's discuss the query. As you can see, we've run
the command to the _suggest endpoint because we don't want to run a standard
query—we are just interested in the autocomplete results. The query is quite
simple; we set its name to authorsAutocomplete, we set the text we want to get
the completion for (the text property), and we add the completion object with
configuration in it. The result of the preceding command will look as follows:

{

 "_shards" : {

 "total" : 5,

 "successful" : 5,

 "failed" : 0

 },

 "authorsAutocomplete" : [{

 "text" : "fyo",

 "offset" : 0,

 "length" : 3,

 "options" : [{

 "text" : "Fyodor Dostoevsky",

 "score" : 1.0, "payload" : {"books":["123456","123457"]}

 }]

 }]

}

As you can see in the response, we've got the document we were looking for along
with the payload information.

We can also use fuzzy searches, which allow us to tolerate spelling mistakes. We can
do this by including an additional fuzzy section in our query. For example, to enable
a fuzzy matching in the completion suggester and to set the maximum edit distance
to 2 (which means that a maximum of two errors are allowed), we will send the
following query:

curl -XGET 'localhost:9200/authors/_suggest?pretty' -d '{

 "authorsAutocomplete" : {

 "text" : "fio",

 "completion" : {

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[288]

 "field" : "ac",

 "fuzzy" : {

 "edit_distance" : 2

 }

 }

 }

}'

Although we've made a spelling mistake, we will still get the same results as we
got before.

Custom weights
By default, the term frequency will be used to determine the weight of the document
returned by the prefix suggester. However, this may not be the best solution. In such
cases, it is useful to define the weight of the suggestion by specifying the weight
property for the field defined as completion. The weight property should be set
to an integer value. The higher the weight property value, the more important
the suggestion. For example, if we want to specify a weight for the first document
in our example, we will run the following command:

curl -XPOST 'localhost:9200/authors/author/1' -d '{

 "name" : "Fyodor Dostoevsky",

 "ac" : {

 "input" : ["fyodor", "dostoevsky"],

 "output" : "Fyodor Dostoevsky",

 "payload" : { "books" : ["123456", "123457"] },

 "weight" : 30

 }

}'

Now, if we run our example query, the results will be as follows:

{

 ...

 "authorsAutocomplete" : [{

 "text" : "fyo",

 "offset" : 0,

 "length" : 3,

 "options" : [{

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[289]

 "text" : "Fyodor Dostoevsky",

 "score" : 30.0, "payload" : {"books":["123456","123457"]}

 }]

 }]

}

Look at how the score of the result has changed. In our initial example, it was 1.0 and
now it is 30.0. This is because we set the weight parameter to 30 during indexing.

Percolator
Have you ever wondered what would happen if we reverse the traditional model of
using queries to find documents? Does it make sense to find documents matching the
queries? It is not a surprise that there is a whole range of solutions where this model
is very useful. Whenever you operate on an unbounded stream of input data, where
you search for the occurrences of particular events, you can use this approach. This can
be used for the detection of failures in a monitoring system or for the 'Tell me when
a product with the defined criteria will be available in this shop' functionality. In this
section, we will look at how an Elasticsearch percolator works and how it can handle
this last example.

The index
In all the examples regarding a percolator, we will use an index called notifier,
which we will create by using the following command:

curl -XPOST 'localhost:9200/notifier' -d '{

 "mappings": {

 "book" : {

 "properties" : {

 "available" : {

 "type" : "boolean"

 }

 }

 }

 }

}'

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[290]

We defined only a single field; the rest of the fields will use the schema-less nature of
Elasticsearch—their type will be guessed.

Percolator preparation
A percolator looks like an additional document type in Elasticsearch. This means
that we can store any documents and also search them like an ordinary type in any
index. However, percolator allows us to inverse the logic—index queries and send
document to Elasticsearch to see which indexed queries it matched. Let's get the
library example from Chapter 2, Indexing Your Data, and try to index this query
in the percolator. We assume that our users need to be informed when any book
matching the defined criteria is available.

Look at the following query1.json file that contains an example query generated
by the user:

{
 "query" : {
 "bool" : {
 "must" : {
 "term" : {
 "title" : "crime"
 }
 },
 "should" : {
 "range" : {
 "year" : {
 "gt" : 1900,
 "lt" : 2000
 }
 }
 },
 "must_not" : {
 "term" : {
 "otitle" : "nothing"
 }
 }
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[291]

In addition to this, our users are allowed to define filters using our hypothetical user
interface. To illustrate such a functionality, we've taken a user query. The query
written into the query2.json file should find all the books written before 2010
that are currently available in our library. Such a query will look as follows:

{
 "query" : {
 "filtered": {
 "query" : {
 "range" : {
 "year" : {
 "lt" : 2010
 }
 }
 },
 "filter" : {
 "term" : {
 "available" : true
 }
 }
 }
 }
}

Now, let's register both the queries in the percolator (note that we are registering
queries and haven't indexed any documents). In order to do this, we will run the
following commands:

curl -XPUT 'localhost:9200/notifier/.percolator/1' -d @query1.json

curl -XPUT 'localhost:9200/notifier/.percolator/old_books' -d
 @query2.json

In the preceding examples, we used two completely different identifiers. We did that
in order to show that we can use an identifier that best describes the query. It is up
to us under which name we would like the query to be registered.

We are now ready to use our percolator. Our application will provide documents
to the percolator and check whether Elasticsearch finds corresponding queries.
This is exactly what a percolator allows us to do—to reverse the search logic.
Instead of indexing documents and running queries against them, we store
queries and send documents. In return, Elasticsearch will show us which
queries match the current document.

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[292]

Let's use an example document that will match both the stored queries—it'll have the
required title, release date, and will mention whether it is currently available. The
command to send such a document can be as follows:

curl -XGET 'localhost:9200/notifier/book/_percolate?pretty' -d '{

 "doc" : {

 "title": "Crime and Punishment",

 "otitle": "Преступлéние и наказáние",

 "author": "Fyodor Dostoevsky",

 "year": 1886,

 "characters": ["Raskolnikov", "Sofia Semyonovna Marmeladova"],

 "tags": [],

 "copies": 0,

 "available" : true

 }

}'

As we expected, the Elasticsearch response will include the identifiers of the
matching queries. Such a response will look as follows:

 "matches" : [{

 "_index" : "notifier",

 "_id" : "1"

 }, {

 "_index" : "notifier",

 "_id" : "old_books"

 }]

This works like a charm. Please note the endpoint used in this query—we used
the _percolate endpoint. The index name corresponds to the index where queries
were stored, and the type is equal to the type defined in the mapping.

The response format contains information about the index and the
query identifier. This information is included for the cases when we
search against multiple indices at once. When using a single index,
adding an additional query parameter, percolate_format=ids,
will change the response as follows:
"matches" : ["3"].

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[293]

Getting deeper
Because the queries registered in a percolator are in fact documents, we can use
a normal query sent to Elasticsearch in order to choose which queries stored in
the .percolator index should be used in the percolation process. This may sound
weird, but it really gives a lot of possibilities. In our library, we can have several
groups of users. Let's assume that some of them have permissions to borrow very
rare books, or we can have several branches in the city, and the user can declare
where he or she would like to go and get the book from.

Let's see how such use cases can be implemented by using the percolator. To do this,
we will need to update our mapping. We will do that by adding the .percolator
type using the following command:

curl -XPOST 'localhost:9200/notifier/.percolator/_mapping' -d '{

 ".percolator" : {

 "properties" : {

 "branches" : {

 "type" : "string",

 "index" : "not_analyzed"

 }

 }

 }

}'

Now, in order to register a query, we will use the following command:

curl -XPUT 'localhost:9200/notifier/.percolator/3' -d '{

 "query" : {

 "term" : {

 "title" : "crime"

 }

 },

 "branches" : ["brA", "brB", "brD"]

}'

In the preceding example, the user is interested in any book with the crime term in
the title field (the term query is responsible for this). He or she wants to borrow
this book from one of the three listed branches. When specifying the mappings, we
defined that the branches field is a not-analyzed string field. We can now include
a query along with the document we've sent previously. Let's look at how to do this.

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[294]

Our book system just got the book, and it is ready to report the book and check
whether the book is of interest to someone. To check this, we send the document
that describes the book and add an additional query to such a request—the query
that will limit the users to only the ones interested in the brB branch. Such a request
can look as follows:

curl -XGET 'localhost:9200/notifier/book/_percolate?pretty' -d '{

 "doc" : {

 "title": "Crime and Punishment",

 "otitle": "Преступлéние и наказáние",

 "author": "Fyodor Dostoevsky",

 "year": 1886,

 "characters": ["Raskolnikov", "Sofia Semyonovna Marmeladova"],

 "tags": [],

 "copies": 0,

 "available" : true

 },

 "size" : 10,

 "query" : {

 "term" : {

 "branches" : "brB"

 }

 }

}'

If everything was executed correctly, the response returned by Elasticsearch should
look as follows (we indexed our query with 3 as an identifier):

 "total" : 1,

 "matches" : [{

 "_index" : "notifier",

 "_id" : "3"

 }]

There is one additional thing to note—the size parameter. It allows us to limit the
number of matches returned. It is required for additional security—you should know
what you do because the number of matched queries can be large, and this can mean
memory-related issues.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[295]

Of course, if we are allowed to use queries along with the documents sent for
percolation, why can we not use other Elasticsearch functionalities? Of course, this is
possible. For example, the following document is sent along with an aggregation:

{
 "doc": {
 "title": "Crime and Punishment",
 "available": true
 },
 "aggs" : {
 "test" : {
 "terms" : {
 "field" : "branches"
 }
 }
 }
}

We can have queries, filters, faceting, and aggregations. What about highlighting?
Please look at the following example document:

{
 "doc": {
 "title": "Crime and Punishment",
 "year": 1886,
 "available": true
 },
 "size" : 10,
 "highlight": {
 "fields": {
 "title": {}
 }
 }
}

As you can see, it contains the highlighting section. A fragment of the response
will look as follows:

 {

 "_index": "notifier",

 "_id": "3",

 "highlight": {

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[296]

 "title": [

 "Crime and Punishment"

]

 }

 }

Everything works, even the highlighting that highlighted the relevant part of
the title field.

Note that there are some limitations when it comes to the
query types supported by the percolator functionality. In
the current implementation, the parent/child and nested
queries are not available, so you can't use queries such as
has_child, top_children, has_parent, and nested.

Getting the number of matching queries
Sometimes, you don't care about the matched queries and what you want is only the
number of matched queries. In such cases, sending a document against the standard
percolator endpoint is not efficient. Elasticsearch exposes the _percolate/count
endpoint to handle such cases in an efficient way. An example of such a command
will be as follows:

curl -XGET 'localhost:9200/notifier/book/_percolate/count?pretty' -d '{

 "doc" : { ... }

 }'

Indexed documents percolation
There is also another possibility. What if we want to check which queries are
matched by an already indexed document? Of course, we can do this. Let's look
at the following command:

curl -XGET 'localhost:9200/library/book/1/_percolate?percolate_
index=notifier'

This command checks the document with the 1 identifier from our library index
against the percolator index defined by the percolate_index parameter. Please
remember that, by default, Elasticsearch will use the percolator in the same index
as the document; that's why we've specified the percolate_index parameter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[297]

Handling files
The next use case we would like to discuss is searching the contents of files. The most
obvious method is to add logic to an application, which will be responsible for fetching
files, extracting valuable information from them, building JSON objects, and finally,
indexing them to Elasticsearch.

Of course, the aforementioned method is valid and you can proceed this way,
but there is another way we would like to show you. We can send documents
to Elasticsearch for content extraction and indexing. This will require us to install
an additional plugin. Note that we will describe plugins in Chapter 7, Elasticsearch
Cluster in Detail, so we'll skip the detailed description. For now, just run the
following command to install the attachments plugin:

bin/plugin -install elasticsearch/elasticsearch-mapper-
 attachments/2.0.0.RC1

After restarting Elasticsearch, it will miraculously gain a new skill, which we will play
with now. Let's begin with preparing a new index that has the following mappings:

{
 "mappings" : {
 "file" : {
 "properties" : {
 "note" : { "type" : "string", "store" : "yes" },
 "book" : {
 "type" : "attachment",
 "fields" : {
 "file" : { "store" : "yes", "index" : "analyzed" },
 "date" : { "store" : "yes" },
 "author" : { "store" : "yes" },
 "keywords" : { "store" : "yes" },
 "content_type" : { "store" : "yes" },
 "title" : { "store" : "yes" }
 }
 }
 }
 }
 }
}

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[298]

As we can see, we have the book type, which we will use to store the contents of our
file. In addition to this, we've defined some nested fields, which are as follows:

•	 file: This field defines the file contents
•	 date: This field defines the file creation date
•	 author: This field defines the author of the file
•	 keywords: This field defines the additional keywords connected with

the document
•	 content_type: This field defines the mime type of the document
•	 title: This field defines the title of the document

These fields will be extracted from files, if available. In our example, we marked
all the fields as stored—this allows us to see their values in the search results.
In addition, we defined the note field. This is an ordinary field, which will not
be used by the plugin but by us.

Now, we should prepare our document. Let's look at the following example
document placed in the index.json file:

{
 "book" : "UEsDBBQABgAIAAAAIQDpURCwjQEAAMIFAAATAAgCW0NvbnR
 lbnRfVHlwZXNdLnhtbCCiBAIooAA…",
 "note" : "just a note"
}

As you can see, we have some strange contents of the book field. This is the content
of the file that is encoded with the Base64 algorithm (please note that this is only a
small part of it—we omitted the rest of this field for clarity). Because the file contents
can be binary and thus, cannot be easily included in the JSON structure, the authors
of Elasticsearch require us to encode the file contents with the mentioned algorithm.
On the Linux operating system, there is a simple command that we use to encode a
document's contents into Base64; for example, we can use the following command:

base64 -i example.docx -o example.docx.base64

We assume that you have successfully created a proper Base64 version of our
document. Now, we can index this document by running the following command:

curl -XPUT 'localhost:9200/media/file/1?pretty' -d @index.json

This was simple. In the background, Elasticsearch decoded the file, extracted its
contents, and created proper entries in our index.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[299]

Now, let's create the query (we've placed it in the query.json file) that we will use
to find our document, as follows:

{
 "fields" : ["title", "author", "date", "keywords",
"content_type", "note"],
 "query" : {
 "term" : { "book" : "example" }
 }
}

If you have read the previous chapters carefully, the preceding query should
be simple to understand. We asked for the example word in the book field. Our
example document, which we encoded, contains the following text: This is an
example document for 'Elasticsearch Server' book. So, the example query
we've just made should match our document. Let's check this assumption by
executing the following command:

curl -XGET 'localhost:9200/media/_search?pretty' -d @query.json

If everything goes well, we should get a response similar to the following one:

{

 "took" : 2,

 "timed_out" : false,

 "_shards" : {

 "total" : 5,

 "successful" : 5,

 "failed" : 0

 },

 "hits" : {

 "total" : 1,

 "max_score" : 0.095891505,

 "hits" : [{

 "_index" : "media",

 "_type" : "file",

 "_id" : "1",

 "_score" : 0.095891505,

 "fields" : {

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[300]

 "book.date" : ["2014-02-08T09:34:00.000Z"],

 "book.content_type" : ["application/vnd.openxmlformats-
 officedocument.wordprocessingml.document"],

 "note" : ["just a note"],

 "book.author" : ["Rafał Kuć, Marek Rogoziński"]

 }

 }]

 }

}

Looking at the result, you can see the content type as application/vnd.
openxmlformats-officedocument.wordprocessingml.document. You can
guess that our document was created in Microsoft Office and probably had the
docx extension. We can also see additional fields extracted from the document
such as authors or modification date. And again, everything works!

Adding additional information about the file
When we are indexing files, the obvious requirement is the possibility of the filename
being returned in the result list. Of course, we can add the filename as another field
in the document, but Elasticsearch allows us to store this information within the file
object. We can just add the _name field to the document we send to Elasticsearch.
For example, if we want the name of example.docx to be indexed as the name of
the document, we can send a document such as the following:

{
 "book" :
 "UEsDBBQABgAIAAAAIQDpURCwjQEAAMIFAAATAAgCW0NvbnRlbnRfVHl
 wZXNdLnhtbCCiBAIooAA…",
 "_name" : "example.docx",
 "note" : "just a note"
}

By including the _name field, Elasticsearch will include the name in the result list.
The filename will be available as a part of the _source field. However, if you use
the fields property and want to have the name of the file returned in the results,
you should add the _source field as one of the entries in this property.

And at the end, you can use the content_type field to store information about
the mime type just as we used the _name field to store the filename.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[301]

Geo
The search servers such as Elasticsearch are usually looked at from the perspective
of full-text searching. However, this is only a part of the whole view. Sometimes,
a full-text search is not enough. Imagine searching for local services. For the end
user, the most important thing is the accuracy of the results. By accuracy, we not
only mean the proper results of the full-text search, but also the results being as
near as they can in terms of location. In several cases, this is the same as the text
search on geographical names such as cities or streets, but in other cases, we can
find it very useful to be able to search on the basis of the geographical coordinates
of our indexed documents. And, this is also a functionality that Elasticsearch is
capable of handling.

Mappings preparation for spatial search
In order to discuss the spatial search functionality, let's prepare an index with a list
of cities. This will be a very simple index with one type named poi (which stands
for the point of interest), the name of the city, and its coordinates. The mappings
are as follows:

{
 "mappings" : {
 "poi" : {
 "properties" : {
 "name" : { "type" : "string" },
 "location" : { "type" : "geo_point" }
 }
 }
 }
}

Assuming that we put this definition into the mapping.json file, we can create
an index by running the following command:

curl -XPUT localhost:9200/map -d @mapping.json

The only new thing is the geo_point type, which is used for the location field.
By using it, we can store the geographical position of our city.

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[302]

Example data
Our example file with documents looks as follows:

{ "index" : { "_index" : "map", "_type" : "poi", "_id" : 1 }}
{ "name" : "New York", "location" : "40.664167, -73.938611" }
{ "index" : { "_index" : "map", "_type" : "poi", "_id" : 2 }}
{ "name" : "London", "location" : [-0.1275, 51.507222] }
{ "index" : { "_index" : "map", "_type" : "poi", "_id" : 3 }}
{ "name" : "Moscow", "location" : { "lat" : 55.75, "lon" : 37.616667
}}
{ "index" : { "_index" : "map", "_type" : "poi", "_id" : 4 }}
{ "name" : "Sydney", "location" : "-33.859972, 151.211111" }
{ "index" : { "_index" : "map", "_type" : "poi", "_id" : 5 }}
{ "name" : "Lisbon", "location" : "eycs0p8ukc7v" }

In order to perform a bulk request, we've added information about the index name,
type, and unique identifiers of our documents; so, we can now easily import this
data using the following command:

curl -XPOST http://localhost:9200/_bulk --data-binary @documents.json

One thing that we should take a closer look at is the location field. We can use
various notations for coordination. We can provide the latitude and longitude
values as a string, as a pair of numbers, or as an object. Please note that the string
and array methods of providing the geographical location have a different order
for the latitude and longitude parameters. The last record shows that there is also
a possibility to give coordination as a geohash value (the notation is described in
detail at http://en.wikipedia.org/wiki/Geohash).

Sample queries
Now, let's look at several examples of how to use coordinates and how to solve
common requirements in modern applications that require geographical data
searching along with full-text searching.

Distance-based sorting
Let's start with a very common requirement: sorting results by distance from the
given point. In our example, we want to get all the cities and sort them by their
distances from the capital of France—Paris. To do this, we will send the following
query to Elasticsearch:

{
 "query" : {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[303]

 "match_all" : {}
 },
 "sort" : [{
 "_geo_distance" : {
 "location" : "48.8567, 2.3508",
 "unit" : "km"
 }
 }]
}

If you remember the Sorting data section from Chapter 3, Searching Your Data, you'll
notice that the format is slightly different. We are using the _geo_distance key to
indicate sorting by distance. We must give the base location (the location attribute,
which holds the information of the location of Paris in our case), and we need to
specify the units that can be used in the results. The available values are km and mi,
which stand for kilometers and miles, respectively. The result of such a query will
be as follows:

{

 "took" : 102,

 "timed_out" : false,

 "_shards" : {

 "total" : 5,

 "successful" : 5,

 "failed" : 0

 },

 "hits" : {

 "total" : 5,

 "max_score" : null,

 "hits" : [{

 "_index" : "map",

 "_type" : "poi",

 "_id" : "2",

 "_score" : null, "_source" : { "name" : "London", "location" : [-
 0.1275, 51.507222] },

 "sort" : [343.46748684411773]

 }, {

 "_index" : "map",

 "_type" : "poi",

 "_id" : "5",

 "_score" : null, "_source" : { "name" : "Lisbon", "location" :
 "eycs0p8ukc7v" },

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[304]

 "sort" : [1453.6450747751787]

 }, {

 "_index" : "map",

 "_type" : "poi",

 "_id" : "3",

 "_score" : null, "_source" : { "name" : "Moscow", "location" :
 { "lat" : 55.75, "lon" : 37.616667 }},

 "sort" : [2486.2560754763977]

 }, {

 "_index" : "map",

 "_type" : "poi",

 "_id" : "1",

 "_score" : null, "_source" : { "name" : "New York", "location"
 : "40.664167, -73.938611" },

 "sort" : [5835.763890418129]

 }, {

 "_index" : "map",

 "_type" : "poi",

 "_id" : "4",

 "_score" : null, "_source" : { "name" : "Sydney", "location" :
 "-33.859972, 151.211111" },

 "sort" : [16960.04911335322]

 }]

 }

}

As for the other examples with sorting, Elasticsearch shows information about
the value used for sorting. Let's look at the highlighted record. As we can see, the
distance between Paris and London is about 343 km, and you can see that the map
agrees with Elasticsearch in this case.

Bounding box filtering
The next example that we want to show is narrowing down the results to a selected
area that is bounded by a given rectangle. This is very handy if we want to show
results on the map or when we allow a user to mark the map area for searching.
You already read about filters in the Filtering your results section of Chapter 2, Indexing
Your Data, but there we didn't mention the spatial filters. The following query shows
how we can filter by using the bounding box:

{
 "filter" : {

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[305]

 "geo_bounding_box" : {
 "location" : {
 "top_left" : "52.4796, -1.903",
 "bottom_right" : "48.8567, 2.3508"
 }
 }
 }
}

In the preceding example, we selected a map fragment between Birmingham and
Paris by providing the top-left and bottom-right corner coordinates. These two
corners are enough to specify any rectangle we want, and Elasticsearch will do
the rest of the calculation for us. The following screenshot shows the specified
rectangle on the map:

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[306]

As we can see, the only city from our data that meets the criteria is London. So, let's
check whether Elasticsearch knows this by running the preceding query. Let's look at
the returned results, as follows:

{

 "took" : 9,

 "timed_out" : false,

 "_shards" : {

 "total" : 5,

 "successful" : 5,

 "failed" : 0

 },

 "hits" : {

 "total" : 1,

 "max_score" : 1.0,

 "hits" : [{

 "_index" : "map",

 "_type" : "poi",

 "_id" : "2",

 "_score" : 1.0, "_source" : { "name" : "London", "location" :
 [-0.1275, 51.507222] }

 }]

 }

}

As you can see, again Elasticsearch agrees with the map.

Limiting the distance
The last example shows the next common requirement: limiting the results to the
places that are located in the selected distance from the base point. For example,
if we want to limit our results to all the cities within the 500km radius from Paris,
we can use the following filter:

{
 "filter" : {
 "geo_distance" : {
 "location" : "48.8567, 2.3508",

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[307]

 "distance" : "500km"
 }
 }
}

If everything goes well, Elasticsearch should only return a single record for the
preceding query, and the record should be London; however, we will leave it for
you as a reader to check.

Arbitrary geo shapes
Sometimes, using a single geographical point or a single rectangle is just not enough.
In such cases, something more sophisticated is needed, and Elasticsearch addresses
this by giving you the possibility to define shapes. In order to show you how we can
leverage custom shape limiting in Elasticsearch, we need to modify our index and
introduce the geo_shape type. Our new mapping looks as follows (we will use this
to create an index called map2):

{
 "poi" : {
 "properties" : {
 "name" : { "type" : "string", "index": "not_analyzed" },
 "location" : { "type" : "geo_shape" }
 }
 }
}

Next, let's change our example data to match our new index structure, as follows:

{ "index" : { "_index" : "map2", "_type" : "poi", "_id" : 1 }}
{ "name" : "New York", "location" : { "type": "point", "coordinates":
[-73.938611, 40.664167] }}
{ "index" : { "_index" : "map2", "_type" : "poi", "_id" : 2 }}
{ "name" : "London", "location" : { "type": "point", "coordinates":
[-0.1275, 51.507222] }}
{ "index" : { "_index" : "map2", "_type" : "poi", "_id" : 3 }}
{ "name" : "Moscow", "location" : { "type": "point", "coordinates": [
37.616667, 55.75]}}
{ "index" : { "_index" : "map2", "_type" : "poi", "_id" : 4 }}
{ "name" : "Sydney", "location" : { "type": "point", "coordinates":
[151.211111, -33.865143]}}
{ "index" : { "_index" : "map2", "_type" : "poi", "_id" : 5 }}
{ "name" : "Lisbon", "location" : { "type": "point", "coordinates":
[-9.142685, 38.736946] }}

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[308]

The structure of the field of the geo_shape type is different from geo_point. It is
syntactically called GeoJSON (http://en.wikipedia.org/wiki/GeoJSON). It
allows us to define various geographical types. Let's sum up the types that we
can use during querying, at least the ones that we think are the most useful ones.

Point
A point is defined by the table when the first element is the longitude and the second
is the latitude. An example of such a shape can be as follows:

{
 "location" : {
 "type": "point",
 "coordinates": [-0.1275, 51.507222]
 }
}

Envelope
An envelope defines a box given by the coordinates of the upper-left and bottom-right
corners of the box. An example of such a shape is as follows:

{
 "type": "envelope",
 "coordinates": [[-0.087890625, 51.50874245880332], [
 2.4169921875, 48.80686346108517]]
}

Polygon
A polygon defines a list of points that are connected to create our polygon.
The first and the last point in the array must be the same so that the shape is
closed. An example of such a shape is as follows:

{
 "type": "polygon",
 "coordinates": [[
 [-5.756836, 49.991408],
 [-7.250977, 55.124723],
 [1.845703, 51.500194],
 [-5.756836, 49.991408]
]]
}

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[309]

If you look closer at the shape definition, you will find a supplementary level of
tables. Thanks to this, you can define more than a single polygon. In such a case,
the first polygon defines the base shape and the rest of the polygons are the shapes
that will be excluded from the base shape.

Multipolygon
The multipolygon shape allows us to create a shape that consists of multiple
polygons. An example of such a shape is as follows:

{
 "type": "multipolygon",
 "coordinates": [
 [[
 [-5.756836, 49.991408],
 [-7.250977, 55.124723],
 [1.845703, 51.500194],
 [-5.756836, 49.991408]
]],
 [[
 [-0.087890625, 51.50874245880332],
 [2.4169921875, 48.80686346108517],
 [3.88916015625, 51.01375465718826],
 [-0.087890625, 51.50874245880332]
]]
]
}

The multipolygon shape contains multiple polygons and falls into the same rules
as the polygon type. So, we can have multiple polygons and in addition to this,
we can include multiple exclusion shapes.

An example usage
Now that we have our index with the geo_shape fields, we can check which cities
are located in the UK. The query that will allow us to do this will look as follows:

{
 "filter": {
 "geo_shape": {
 "location": {
 "shape": {
 "type": "polygon",

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[310]

 "coordinates": [[
 [-5.756836, 49.991408], [-7.250977, 55.124723], [-
 3.955078, 59.352096], [1.845703, 51.500194], [-
 5.756836, 49.991408]
]]
 }
 }
 }
 }
}

The polygon type defines the boundaries of the UK (in a very, very imprecise way),
and Elasticsearch gives the response as follows:

 "hits": [

 {

 "_index": "map2",

 "_type": "poi",

 "_id": "2",

 "_score": 1,

 "_source": {

 "name": "London",

 "location": {

 "type": "point",

 "coordinates": [

 -0.1275,

 51.507222

]

 }

 }

 }

]

As far as we know, the response is correct.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[311]

Storing shapes in the index
Usually, the shape definitions are complex, and the defined areas don't change too
often (for example, the UK boundaries). In such cases, it is convenient to define
the shapes in the index and use them in queries. This is possible, and we will now
discuss how to do it. As usual, we will start with the appropriate mapping, which is
as follows:

{
 "country": {
 "properties": {
 "name": { "type": "string", "index": "not_analyzed" },
 "area": { "type": "geo_shape" }
 }
 }
}

This mapping is similar to the mapping used previously. We have only changed the
field name. The example data that we will use looks as follows:

{"index": { "_index": "countries", "_type": "country", "_id": 1 }}
{"name": "UK", "area": {"type": "polygon", "coordinates": [[[-
 5.756836, 49.991408], [-7.250977, 55.124723], [-3.955078,
 59.352096], [1.845703, 51.500194], [-5.756836, 49.991408]]]}}
{"index": { "_index": "countries", "_type": "country", "_id": 2 }}
{"name": "France", "area": { "type":"polygon", "coordinates": [[
 [3.1640625, 42.09822241118974], [-1.7578125,
 43.32517767999296], [-4.21875, 48.22467264956519], [
 2.4609375, 50.90303283111257], [7.998046875,
 48.980216985374994], [7.470703125, 44.08758502824516], [
 3.1640625, 42.09822241118974]]] }}
{"index": { "_index": "countries", "_type": "country", "_id": 3 }}
{"name": "Spain", "area": { "type": "polygon", "coordinates": [[
 [3.33984375, 42.22851735620852], [-1.845703125,
 43.32517767999296], [-9.404296875, 43.19716728250127], [-
 6.6796875, 41.57436130598913], [-7.3828125, 36.87962060502676
], [-2.109375, 36.52729481454624], [3.33984375,
 42.22851735620852]]] }}

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[312]

As you can see in the data, each document contains a polygon type. The polygons
define the area of the given countries (again, it is far from being accurate). If you
remember, the first point of a shape needs to be the same as the last one so that the
shape is closed. Now, let's change our query to include the shapes from the index.
Our new query will look as follows:

{
 "filter": {
 "geo_shape": {
 "location": {
 "indexed_shape": {
 "index": "countries",
 "type": "country",
 "path": "area",
 "id": "1"
 }
 }
 }
 }
}

When comparing these two queries, we can note that the shape object changed
to indexed_shape. We need to tell Elasticsearch where to look for this shape.
We can do this by defining the index (the index property, which defaults to shape),
type (the type property), and path (the path property, which defaults to shape).
The one item lacking is an id property of the shape. In our case, this is 1. However,
if you want to index more shapes, we will advise you to index shapes with their
name as their identifier.

The scroll API
Let's imagine that we have an index with several million documents. We already
know how to build our query, when to use filters, and so on. But looking at the query
logs, we see that a particular kind of query is significantly slower than the others.
These queries may be using pagination. The from parameter indicates that the offsets
have large values. From the application side, this can mean that users go through an
enormous number of results. Often, this doesn't make sense—if a user doesn't find
the desirable results on the first few pages, he/she gives up. Because this particular
activity can mean something bad (possible data stealing), many applications limit
the paging to dozens of pages. In our case, we assume that this is a different
scenario, and we have to provide this functionality.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[313]

Problem definition
When Elasticsearch generates a response, it must determine the order of the documents
that form the result. If we are on the first page, this is not a big problem. Elasticsearch
just finds the set of documents and collects the first ones; let's say, 20 documents. But
if we are on the tenth page, Elasticsearch has to take all the documents from pages
one to ten and then discard the ones that are on pages one to nine. The problem is
not Elasticsearch specific; a similar situation can be found in the database systems,
for example—generally, in every system that uses the so-called priority queue.

Scrolling to the rescue
The solution is simple. Since Elasticsearch has to do some operations (determine the
documents for previous pages) for each request, we can ask Elasticsearch to store
this information for the subsequent queries. The drawback is that we cannot store
this information forever due to limited resources. Elasticsearch assumes that we
can declare how long we need this information to be available. Let's see how it
works in practice.

First of all, we query Elasticsearch as we usually do. However, in addition to all the
known parameters, we add one more: the parameter with the information that we
want to use scrolling with and how long we suggest that Elasticsearch should keep
the information about the results. We can do this by sending a query as follows:

curl 'localhost:9200/library/_search?pretty&scroll=5m' –d '{

 "query" : {

 "match_all" : { }

 }

}'

The content of this query is irrelevant. The important thing is how Elasticsearch
modifies the response. Look at the following first few lines of the response returned
by Elasticsearch:

{

 "_scroll_id" :

 "cXVlcnlUaGVuRmV0Y2g7NTsxMDI6dklNMlkzTG1RTDJ2b25oTDNENmJzZzsxMD

 U6dklNMlkzTG1RTDJ2b25oTDNENmJzZzsxMDQ6dklNMlkzTG1RTDJ2b25oTDNEN

 mJzZzsxMDE6dklNMlkzTG1RTDJ2b25oTDNENmJzZzsxMDM6dklNMlkzTG1RTDJ

 2b25oTDNENmJzZzswOw==",

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[314]

 "took" : 9,

 "timed_out" : false,

 "_shards" : {

 "total" : 5,

 "successful" : 5,

 "failed" : 0

 },

 "hits" : {

 "total" : 1341211,

 …

The new part is the _scroll_id section. This is a handle that we will use in the
queries that follow. Elasticsearch has a special endpoint for this: the _search/scroll
endpoint. Let's look at the following example:

curl -XGET
 'localhost:9200/_search/scroll?scroll=5m&pretty&scroll_id=
 cXVlcnlUaGVuRmV0Y2g7NTsxMjg6dklNlkzTG1RTDJ2b25oTDNENmJzZzsxMjk6
 dklNMlkzTG1RTDJ2b25oTDNENmJzZzsxMzA6dklNMlkzTG1RTDJ2b25oTDNENmJzZ
 zsxMjc6dklNMlkzTG1RTDJ2b25oTDNENmJzZzsxMjY6dklNMlkzTG1RTDJ2b25oT
 DNENmJzZzswOw=='

Now, every call to this endpoint with scroll_id returns the next page of results.
Remember that this handle is only valid for the defined time of inactivity. After the
time has passed, a query with the invalidated scroll_id returns an error response,
which will be similar to the following one:

{

 "_scroll_id" :

 "cXVlcnlUaGVuRmV0Y2g7NTsxMjg6dklNMlkzTG1RTDJ2b25oTDNENmJzZzsxMj

 k6dklNMlkzTG1RTDJ2b25oTDNENmJzZzsxMzA6dklNMlkzTG1RTDJ2b25oTDNEN

 mJzZzsxMjc6dklNMlkzTG1RTDJ2b25oTDNENmJzZzsxMjY6dklNMlkzTG1RTDJ2

 b25oTDNENmJzZzswOw==",

 "took" : 3,

 "timed_out" : false,

 "_shards" : {

 "total" : 5,

 "successful" : 0,

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[315]

 "failed" : 5,

 "failures" : [{

 "status" : 500,

 "reason" : "SearchContextMissingException[No search context

 found for id [128]]"

 }, {

 "status" : 500,

 "reason" : "SearchContextMissingException[No search context

 found for id [126]]"

 }, {

 "status" : 500,

 "reason" : "SearchContextMissingException[No search context

 found for id [127]]"

 }, {

 "status" : 500,

 "reason" : "SearchContextMissingException[No search context

 found for id [130]]"

 }, {

 "status" : 500,

 "reason" : "SearchContextMissingException[No search context

 found for id [129]]"

 }]

 },

 "hits" : {

 "total" : 0,

 "max_score" : 0.0,

 "hits" : []

 }

}

Of course, this solution is not ideal, and it is not well suited when there are many
requests to random pages of various results or when the time between the requests
is difficult to determine. However, you can use this successfully for use cases where
you want to get larger result sets, such as transferring data between several systems.

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[316]

The terms filter
One of the filters available in Elasticsearch that is very simple at first glance is the
terms filter. In its simplest form, it allows you to filter documents to only those that
match one of the given terms and is not analyzed. An example use of the terms filter
is as follows:

{
 "query" : {
 "constant_score" : {
 "filter" : {
 "terms" : {
 "title" : ["crime", "punishment"]
 }
 }
 }
 }
}

The preceding query would result in documents that match the crime or punishment
terms in the title field. The way the terms filter works is that it iterates over the
provided terms and finds the documents that match these terms. Of course, the
matched document identifiers are loaded into a structure called bitset and are
cached. Sometimes, we may want to alter the default behavior. We can do this
by providing the execution parameter with one of the following values:

•	 plain: This is the default method that iterates over all the terms provided,
storing the results in a bitset and caching them.

•	 fielddata: This value generates term filters that use the fielddata cache to
compare terms. This mode is very efficient when filtering on the fields that
are already loaded into the fielddata cache—for example, the ones used for
sorting, faceting, or warming using index warmers. This execution mode can
be very effective when filtering on a large number of terms.

•	 bool: This value generates a term filter for each term and constructs a bool
filter from the generated ones. The constructed bool filter is not cached
because it can execute the term filters that were constructed and were
already cached.

•	 and: This value is similar to the bool value, but Elasticsearch constructs
the and filter instead of the bool filter.

•	 or: This value is similar to the bool value, but Elasticsearch constructs the
or filter instead of the bool filter.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[317]

An example query with the execution parameter can look like the following:

{
 "query" : {
 "constant_score" : {
 "filter" : {
 "terms" : {
 "title" : ["crime", "punishment"],
 "execution" : "and"
 }
 }
 }
 }
}

Terms lookup
We are talking about the terms filter not because of its ability to filter documents but
because of the terms lookup functionality added in Elasticsearch 0.90.6. Instead of
passing the list of terms explicitly, the terms lookup mechanism can be used to load
the terms from a provided source. To illustrate how it works, let's create a new index
and index three documents by using the following commands:

curl -XPOST 'localhost:9200/books/book/1' -d '{

 "id" : 1,

 "name" : "Test book 1",

 "similar" : [2, 3]

}'

curl -XPOST 'localhost:9200/books/book/2' -d '{

 "id" : 2,

 "name" : "Test book 2",

 "similar" : [1]

}'

curl -XPOST 'localhost:9200/books/book/3' -d '{

 "id" : 3,

 "name" : "Test book 3",

 "similar" : [1, 3]

}'

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[318]

Now, let's assume that we want to get all the books that are similar to the book with
the identifier equal to 3. Of course, we can first get the third book, get the value for
the similar field, and run another query. But let's do it using the terms lookup
functionality; basically, we will let Elasticsearch retrieve the document and load
the value of the similar field for us. To do this, we can run the following command:

curl -XGET 'localhost:9200/books/_search?pretty' -d '{

 "query" : {

 "filtered" : {

 "query" : {

 "match_all" : {}

 },

 "filter" : {

 "terms" : {

 "id" : {

 "index" : "books",

 "type" : "book",

 "id" : "3",

 "path" : "similar"

 },

 "_cache_key" : "books_3_similar"

 }

 }

 }

 },

 "fields" : ["id", "name"]

}'

The response to the preceding command will be as follows:

{

 "took" : 2,

 "timed_out" : false,

 "_shards" : {

 "total" : 5,

 "successful" : 5,

 "failed" : 0

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[319]

 },

 "hits" : {

 "total" : 2,

 "max_score" : 1.0,

 "hits" : [{

 "_index" : "books",

 "_type" : "book",

 "_id" : "1",

 "_score" : 1.0,

 "fields" : {

 "id" : 1,

 "name" : "Test book 1"

 }

 }, {

 "_index" : "books",

 "_type" : "book",

 "_id" : "3",

 "_score" : 1.0,

 "fields" : {

 "id" : 3,

 "name" : "Test book 3"

 }

 }]

 }

}

As you can see in the preceding response, we got exactly what we wanted: the
books with the identifiers 1 and 3. Of course, the terms lookup mechanism is highly
optimized—the cache information will be used if the information is present and so
on. Also, the _cache_key property is used to specify the key under which the cached
results for the terms lookup will be stored. It is advisable to set it in order to be able
to easily clear the cache if needed. Of course the _cache_key property value should
be different for different queries.

Note that the _source field needs to be stored for
the terms lookup functionality to work.

www.it-ebooks.info

http://www.it-ebooks.info/

Beyond Full-text Searching

[320]

The terms lookup query structure
Let's recall our terms lookup filter that we used in order to discuss the query
to fully understand it:

"filter" : {
 "terms" : {
 "id" : {
 "index" : "books",
 "type" : "book",
 "id" : "3",
 "path" : "similar"
 },
 "_cache_key" : "books_3_similar"
 }
}

We used a simple filtered query, with the query matching all the documents and
the terms filter. We are filtering the documents using the id field because of the
name of the object that groups all the other properties in the filter. In addition to
this, we've used the following properties:

•	 index: This specifies from which index we want the terms to be loaded.
In our case, it's the books index.

•	 type: This specifies the type that we are interested in, which in our case,
is the book type.

•	 id: This specifies the identifier of the documents we want the terms list to
be fetched from. In our case, it is the document with the identifier 3.

•	 path: This specifies the field name from which the terms should be loaded,
which is the similar field in our query.

What's more is that we are allowed to use two more properties, which are as follows:

•	 routing: This specifies the routing value that should be used by Elasticsearch
when loading the terms to the filter.

•	 cache: This specifies whether Elasticsearch should cache the filter built
from the loaded documents. By default, it is set to true, which means that
Elasticsearch will cache the filter.

Note that the execution property is not taken into
account when using the terms lookup mechanism.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 6

[321]

Terms lookup cache settings
Elasticsearch allows us to configure the cache used by the terms lookup mechanism.
To control the mentioned cache, one can set the following properties in the
elasticsearch.yml file:

•	 indices.cache.filter.terms.size: This defaults to 10mb and specifies the
maximum amount of memory that Elasticsearch can use for the terms lookup
cache. The default value should be enough for most cases; however, if you
know that you'll load vast amount of data into it, you can increase it.

•	 indices.cache.filter.terms.expire_after_access: This specifies the
maximum time after which an entry should expire after it is last accessed.
By default, it is disabled.

•	 indices.cache.filter.terms.expire_after_write: This specifies the
maximum time after which an entry should be expired after it is put into
the cache. By default, it is disabled.

Summary
In this chapter, we learned more things about Elasticsearch data analysis capabilities.
We used aggregations and faceting to bring meaning to the data we indexed. We also
introduced the spellchecking and autocomplete functionalities to our application by
using the Elasticsearch suggesters. We created the alerting functionality by using
a percolator, and we indexed binary files by using the attachment functionality.
We indexed and searched geospatial data and used the scroll API to efficiently fetch
a large number of results. Finally, we used the terms lookup mechanism to speed
up the querying process that fetches a list of terms.

In the next chapter, we'll focus on Elasticsearch clusters and how to handle them.
We'll see what node discovery is, how it is used, and how to alter its configuration.
We'll learn about the gateway and recovery modules, and we will alter their
configuration. We will also see what the buffers in Elasticsearch are, where they are
used, and how to configure them. We will prepare our cluster for a high indexing
and querying throughput, and we will use index templates and dynamic mappings.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Elasticsearch Cluster in Detail
In the previous chapter, we learned more about Elasticsearch's data analysis
capabilities. We used aggregations and faceting to add meaning to the data we
indexed. We also introduced the spellcheck and autocomplete functionalities
to our application by using Elasticsearch suggesters. We've created the alerting
functionality by using a percolator, and we've indexed binary files by using the
attachment capability. We've indexed and searched geospatial data, and we've used
the scroll API to efficiently fetch a large number of results. Finally, we've used the
terms lookup to speed up the queries that fetch a list of terms and use them.

By the end of this chapter, you will have learned the following topics:

•	 Understanding a node's discovery mechanism, configuration, and tuning
•	 Controlling recovery and gateway modules
•	 Preparing Elasticsearch for high query and indexing use cases
•	 Using index templates and dynamic mappings

Node discovery
When you start your Elasticsearch node, one of the first things to occur is that the
node starts looking for a master node that has the same cluster name and is visible.
If a master is found, the node joins a cluster that is already formed. If no master is
found, the node itself is selected as a master (of course, if the configuration allows
such a behavior). The process of forming a cluster and finding nodes is called
discovery. The module that is responsible for discovery has two main purposes—to
elect a master and to discover new nodes within a cluster. In this section, we will
discuss how we can configure and tune the discovery module.

www.it-ebooks.info

http://www.it-ebooks.info/

Elasticsearch Cluster in Detail

[324]

Discovery types
By default, without installing additional plugins, Elasticsearch allows us to use the
zen discovery, which provides us with multicast and unicast discovery. In computer
networking terminology, multicast (http://en.wikipedia.org/wiki/Multicast)
is the delivery of a message to a group of computers in a single transmission. On the
other hand, we have unicast (http://en.wikipedia.org/wiki/Unicast), which is
the transmission of a single message over the network to a single host at once.

When using the multicast discovery, Elasticsearch will try to find all the
nodes that are able to receive and respond to the multicast message. If
you use the unicast method, you'll need to provide at least some of the
hosts that form your cluster and the node will try to connect to them.

When choosing between multicast and unicast, you should be aware whether your
network can handle multicast messages. If it can, using multicast will be easier. If
your network can't handle multicast, use the unicast type of discovery. The other
reason for using the unicast discovery is security—you don't want any nodes to
join your cluster by mistake. So, using unicast may be a good choice if you are
going to run multiple clusters or your developer machines are in the same network.

If you are using the Linux operating system and want to check
if your network supports multicast, please use the ifconfig
command for your network interface (usually it will be eth0).
If your network supports multicast, you'll see the MULTICAST
property in the response from the preceding command.

The master node
As we have already seen, one of the main purposes of discovery is to choose a master
node that will be used as a node that will look over the cluster. The master node is
the one that checks all the other nodes to see if they are responsive (other nodes ping
the master too). The master node will also accept the new nodes that want to join
the cluster. If the master is somehow disconnected from the cluster, the remaining
nodes will select a new master from among themselves. All these processes are
done automatically on the basis of the configuration values we provide.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[325]

Configuring the master and data nodes
By default, Elasticsearch allows every node to be a master node and a data node.
However, in certain situations, you may want to have worker nodes that will
only hold the data and master nodes that will only be used to process requests
and manage the cluster. One of these situations is when you have to handle
massive amount of data, where data nodes should be as performant as possible.
To set the node to only hold data, we need to instruct Elasticsearch that we don't
want such a node to be a master node. In order to do this, we will add the
following properties to the elasticsearch.yml configuration file:

node.master: false
node.data: true

To set the node to not hold data and only be a master node, we need to instruct
Elasticsearch that we don't want such a node to hold data. In order to do this,
we add the following properties to the elasticsearch.yml configuration file:

node.master: true
node.data: false

Please note that the node.master and node.data properties are set to true by
default, but we tend to include them for the clarity of the configuration.

The master-election configuration
Imagine that you have a cluster built of 10 nodes. Everything is working fine until
one day when your network fails and three of your nodes are disconnected from the
cluster, but they still see each other. Because of the zen discovery and master-election
process, the nodes that got disconnected elect a new master and you end up with
two clusters with the same name and two master nodes. Such a situation is called a
split-brain, and you must avoid it as much as possible. When a split-brain happens,
you end up with two (or more) clusters that won't join each other until the network
(or any other) problems are fixed.

www.it-ebooks.info

http://www.it-ebooks.info/

Elasticsearch Cluster in Detail

[326]

In order to prevent split-brain situations, Elasticsearch provides a discovery.zen.
minimum_master_nodes property. This property defines a minimum amount of
the master-eligible nodes that should be connected to each other in order to form
a cluster. So now, let's get back to our cluster; if we set the discovery.zen.
minimum_master_nodes property to 50 percent of the total nodes available
plus one (which is six in our case), we would end up with a single cluster. Why
is that? Before the network failure, we would have 10 nodes, which is more than
six nodes and these nodes would form a cluster. After the disconnection of the three
nodes, we would still have the first cluster up and running. However, because only
three nodes have been disconnected and three is less than six, the remaining three
nodes wouldn't be allowed to elect a new master and they would have to wait
for reconnection with the original cluster.

Setting the cluster name
If we don't set the cluster.name property in our elasticsearch.yml file,
Elasticsearch will use the default value, elasticsearch. This is not always a good
thing, and because of this, we suggest that you set the cluster.name property to some
other value of your choice. Setting a different cluster.name property is also required
if you want to run multiple clusters in a single network; otherwise, you would end up
with nodes that belong to different clusters joining together.

Configuring multicast
Multicast is the default zen discovery method. Apart from the common settings,
which we will discuss in a moment, there are four properties that we can control
and they are as follows:

•	 discovery.zen.ping.multicast.group: The group address to be used
for the multicast requests; it defaults to 224.2.2.4.

•	 discovery.zen.ping.multicast.port: The port that is used for multicast
communication; it defaults to 54328.

•	 discovery.zen.ping.multicast.ttl: The time for which the multicast
request will be considered valid; it defaults to 3 seconds.

•	 discovery.zen.ping.multicast.address: The address to which
Elasticsearch should bind. It defaults to the null value, which means that
Elasticsearch will try to bind to all the network interfaces visible by the
operating system.

In order to disable multicast, one should add the discovery.zen.ping.multicast.
enabled property to the elasticsearch.yml file and set its value to false.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[327]

Configuring unicast
Because of the way unicast works, we need to specify at least a single host that
the unicast message should be sent to. To do this, we should add the discovery.
zen.ping.unicast.hosts property to our elasticsearch.yml configuration
file. Basically, we should specify all the hosts that form the cluster in the discovery.
zen.ping.unicast.hosts property. We don't have to specify all the hosts; we just
need to provide enough so that we are sure that at least one will work. For example,
if we would like the 192.168.2.1, 192.168.2.2, and 192.168.2.3 hosts for our
host, we should specify the preceding property in the following way:

discovery.zen.ping.unicast.hosts: 192.168.2.1:9300, 192.168.2.2:9300,
192.168.2.3:9300

One can also define a range of ports that Elasticsearch can use; for example, to
say that the ports from 9300 to 9399 can be used, we would specify the following
command line:

discovery.zen.ping.unicast.hosts: 192.168.2.1:[9300-9399],
192.168.2.2:[9300-9399], 192.168.2.3:[9300-9399]

Please note that the hosts are separated with the comma character and we've
specified the port on which we expect the unicast messages.

Always set the discovery.zen.ping.multicast.
enabled property to false when using unicast.

Ping settings for nodes
In addition to the settings discussed previously, we can control or alter the default
ping configuration. Ping is a signal sent between nodes to check whether they are
running and responsive. The master node pings all the other nodes in the cluster,
and each of the other nodes in the cluster pings the master node. The following
properties can be set:

•	 discovery.zen.fd.ping_interval: This property defaults to 1s
(one second) and specifies how often nodes ping each other

•	 discovery.zen.fd.ping_timeout: This property defaults to 30s
(30 seconds) and defines how long a node will wait for a response to
its ping message before considering the node as unresponsive

•	 discovery.zen.fd.ping_retries: This property defaults to 3 and specifies
how many retries should be taken before considering a node as not working

www.it-ebooks.info

http://www.it-ebooks.info/

Elasticsearch Cluster in Detail

[328]

If you experience some problems with your network or know that your nodes need
more time to see the ping response, you can adjust the preceding values to the ones
that are good for your deployment.

The gateway and recovery modules
Apart from our indices and the data indexed inside them, Elasticsearch needs to hold
the metadata such as the type mappings and index-level settings. This information
needs to be persisted somewhere so that it can be read during the cluster recovery.
This is why Elasticsearch introduced the gateway module. You can think about it
as a safe haven for your cluster data and metadata. Each time you start your cluster,
all the required data is read from the gateway and when you make a change to your
cluster, it is persisted using the gateway module.

The gateway
In order to set the type of gateway we want to use, we need to add the gateway.
type property to the elasticsearch.yml configuration file and set it to a local
value. Currently, Elasticsearch recommends that you use the local gateway type
(gateway.type set to local), which is the default. There were additional gateway
types in the past (such as the fs, hdfs, and s3), but they are deprecated and will
be removed in the future versions. Because of this, we will skip discussing them.

The default local gateway type stores the indices and their metadata in the local
file system. Compared to other gateways, the write operation to this gateway is
not performed in an asynchronous way. So, whenever a write succeeds, you can
be sure that the data was written into the gateway (so, basically it is indexed
or stored in the transaction log).

Recovery control
In addition to choosing the gateway type, Elasticsearch allows us to configure when
to start the initial recovery process. Recovery is a process of initializing all the shards
and replicas, reading all the data from the transaction log, and applying the data on
the shards—basically, it's a process needed to start Elasticsearch.

For example, let's imagine that we have a cluster that consists of 10 Elasticsearch nodes.
We should inform Elasticsearch about the number of nodes by setting the gateway.
expected_nodes property to this value; 10, in our case. We inform Elasticsearch
about the amount of expected nodes that are eligible to hold the data and be selected
as a master. Elasticsearch will start the recovery process immediately if the number
of nodes in the cluster is equal to the gateway.expected_nodes property.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[329]

We would also like to start the recovery after eight nodes for the cluster. In order to
do this, we should set the gateway.recover_after_nodes property to 8. We could
set the value to any value we like. However, we should set it to a value that ensures
that the newest version of the cluster state snapshot is available, which usually
means that you should start recovery when most of your nodes are available.

However, there is one more thing—we would like the gateway recovery process
to start 10 minutes after the cluster was formed, so we set the gateway.recover
_after_time property to 10m. This property tells the gateway module how long it
should wait with the recovery after the number of nodes specified by the gateway.
recover_after_nodes property has formed the cluster. We may want to do this
because we know that our network is quite slow and we want the communication
between nodes to be stable.

The preceding property values should be set in the elasticsearch.yml
configuration file. If we would like to have the preceding value in the
mentioned file, we would end up with the following section in the file:

gateway.recover_after_nodes: 8
gateway.recover_after_time: 10m
gateway.expected_nodes: 10

Additional gateway recovery options
In addition to the mentioned options, Elasticsearch allows us some additional
degree of control. The additional options are as follows:

•	 gateway.recover_after_master_nodes: This property is similar to the
gateway_recover_after_nodes property. However, instead of taking
into consideration all the nodes, it allows us to specify how many nodes
that is eligible to be the master should be present in the cluster before the
recovery starts.

•	 gateway.recover_after_data_nodes: This property is also similar to the
gateway_recover_after_nodes property, but it allows you to specify how
many data nodes should be present in the cluster before the recovery starts.

•	 gateway.expected_master_nodes: This property is similar to the gateway.
expected_nodes property, but instead of specifying the number of nodes
that we expect in the cluster, it allows you to specify how many nodes you
expect to be present are eligible to be the master.

•	 gateway.expected_data_nodes: This property is also similar to the
gateway.expected_nodes property, but allows you to specify how
many data nodes you expect to be present in the cluster.

www.it-ebooks.info

http://www.it-ebooks.info/

Elasticsearch Cluster in Detail

[330]

Preparing Elasticsearch cluster for high
query and indexing throughput
Until now, we mostly talked about the different functionalities of Elasticsearch,
both in terms of handling queries as well as indexing data. However, preparing
Elasticsearch for high query and indexing throughput is something that we would
briefly like to talk about. We start this section by mentioning some functionalities
of Elasticsearch that we didn't talk until now but are pretty important when it comes
to tuning your cluster. We know that it is a very concentrated knowledge, but we
will try to limit it to only those things that we think are important. After discussing
the functionality, we will give you general advice on how to tune the discussed
functionalities and what to pay attention to. We hope that by reading this section
you will be able to see which things to look for when you are tuning your cluster.

The filter cache
The filter cache is responsible for caching the filters used in a query. You can
retrieve information from the cache very fast. When properly configured, it
will speed up querying efficiently, especially the ones that includes filters that
were already executed.

Elasticsearch includes two types of filter caches: the node filter cache (the default
one) and the index filter cache. The node filter cache is shared across all the indices
allocated on a single node and can be configured to use a specific amount of
memory or a percentage of the total memory given to Elasticsearch. To specify
this value, we should include the node property named indices.cache.filter.
size and set it to the desired size or percentage.

The second type of the filter cache is the per index one. In general, one should use
the node-level filter cache because it is hard to predict the final size of the per-index
filter cache. This is because you usually don't know how many indices will end
up on a given node. We will omit further explanation of the per-index filter cache;
more information about it can be found in the official documentation and the book,
Mastering ElasticSearch, Rafał Kuć and Marek Rogoziński, Packt Publishing.

The field data cache and circuit breaker
The field data cache is a part of Elasticsearch that is used mainly when a query
performs sorting or faceting on a field. Elasticsearch loads the data used for such
fields to the memory, which allows a fast access to the values on a per document
basis. Building the field data cache is expensive, so it is advisable to have enough
memory so that the data in this cache is kept in the memory once loaded.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[331]

Instead of the field data cache, one can configure a field to use
the doc values. Doc values were discussed in the Mappings
configuration section in Chapter 2, Indexing Your Data.

The amount of memory field data cache that is allowed to use can be controlled
using the indices.fielddata.cache.size property. We can set it to an absolute
value (for example, 2GB) or to a percentage of the memory given to an Elasticsearch
instance (for example, 40%). Please note that these values are per node properties
and not per index. Discarding parts of the cache to make room for other entries
will result in a poor query performance, so it is advisable to have enough physical
memory. Also, remember that by default, the field data cache size is not bounded.
So, if we are not careful, we can have our cluster exploded.

We can also control the expiry time for the field data cache; again, by default,
the field data cache does not expire. We can control this by using the indices.
fielddata.cache.expire property, setting its value to a maximum inactivity
time. For example, setting this property to 10m will result in the cache being
invalidated after 10 minutes of inactivity. Remember that rebuilding the field
data cache is very expensive and in general, you shouldn't set the expiration time.

The circuit breaker
The field data circuit breaker allows the memory estimation that a field will require
to be loaded into the memory. By using it, we can prevent loading such fields into
the memory by raising an exception. Elasticsearch has two properties to control
the behavior of the circuit breaker. First, we have the indices.fielddata.breaker.
limit property, which defaults to 80% and can be updated dynamically by using
the cluster update settings API. This means that an exception will be raised as
soon as our query results in the loading of values for a field that is estimated to
take 80 percent or more of the heap memory available to the Elasticsearch process.
The second property is indices.fielddata.breaker.overhead, which defaults
to 1.03. It defines a constant value that will be used to multiply the original
estimate for a field.

The store
The store module in Elasticsearch is responsible for controlling how the index data
is written. Our index can be stored completely in the memory or in a persistent disk
storage. The pure RAM-based index will be blazingly fast but volatile, while the
disk-based index will be slower but tolerant to failure.

www.it-ebooks.info

http://www.it-ebooks.info/

Elasticsearch Cluster in Detail

[332]

By using the index.store.type property, we can specify which store type we
want to use for the index. The available options are as follows:

•	 simplefs: This is a disk-based storage that accesses the index files by using
the random access files. It doesn't offer good performance for concurrent
access and thus, it is not advised to be used in production.

•	 niofs: This is the second one of the disk-based index storages that uses
Java NIO classes to access the index files. It offers very good performance
in highly concurrent environments, but it is not advised to be used on
Windows-based deployments because of the Java implementation bugs.

•	 mmapfs: This is another disk-based storage that maps index files in the
memory (please have a look at what mmap is at http://en.wikipedia.
org/wiki/Mmap). This is the default storage for 64-bit systems and allows
a more efficient reading of the index because of the same operating
system-based cache being used for index files access. You need to
be sure to have a good amount of virtual address space, but on
64-bits systems, you shouldn't have problems with this.

•	 memory: This stores the index in RAM memory. Please remember that
you need to have enough physical memory to store all the documents
or Elasticsearch will fail.

Index buffers and the refresh rate
When it comes to indices, Elasticsearch allows you to set the amount of memory
that can be consumed for indexing purposes. The indices.memory.index_buffer
_size property (defaults to 10%) allows us to control the total amount of memory
(or a percentage of the maximum heap memory) that can be divided between the
shards of all the indices on a given node. For example, setting this property to 20%
will tell Elasticsearch to give 20 percent of the maximum heap size to index buffers.

In addition to this, we have indices.memory.min_shard_index_buffer_size, which
defaults to 4mb and allows us to set the value of minimum indexing buffer per shard.

The index refresh rate
One last thing about the indices is the index.refresh_interval property specified
per index. It defaults to 1s (one second) and specifies how often the index searcher
object is refreshed, which basically means how often the data view is refreshed.
The lower the refresh rate, the sooner the documents will be visible for search
operations. However, it also means that Elasticsearch will need to put in more
resources for refreshing the index view, which means that the indexing
and searching operations will be slower.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[333]

For massive bulk indexing, for example, when reindexing your
data, it is advisable to set the index.refresh_interval
property to -1 at the time of indexing.

The thread pool configuration
Elasticsearch uses several pools to allow control over how threads are handled
and how far memory consumption is allowed for user requests.

The Java virtual machine allows an application to have multiple
threads, concurrently running forks of application execution. For
more information about Java threads, please refer to http://docs.
oracle.com/javase/7/docs/api/java/lang/Thread.html.

We are especially interested in the following types of thread pools exposed
by Elasticsearch:

•	 cache: This is an unbounded thread pool that will create a thread for
each incoming request.

•	 fixed: This is a thread pool that has a fixed size (specified by the size
property) and allows you to specify a queue (specified by the queue_size
property) that will be used to hold requests until there is a free thread that
can execute a queue request. If Elasticsearch isn't able to put a new request
in the queue (if the queue is full), the request will be rejected.

There are many thread pools, (we can specify the type we are configuring by
specifying the type property); however, when it comes to performance, the most
important are as follows:

•	 index: This thread pool is used to index and delete operations. Its type
defaults to fixed, its size to the number of available processors, and the
size of the queue to 300.

•	 search: This thread pool is used for search and count requests. Its type
defaults to fixed, its size to the number of available processors multiplied
by 3, and the size of the queue to 1000.

•	 suggest: This thread pool is used for suggest requests. Its type defaults
to fixed, its size to the number of available processors, and the size of
the queue to 1000.

•	 get: This thread pool is used for real-time GET requests. Its type defaults
to fixed, its size to the number of available processors, and the size of
the queue to 1000.

www.it-ebooks.info

http://www.it-ebooks.info/

Elasticsearch Cluster in Detail

[334]

•	 bulk: As you can guess, this thread pool is used for bulk operations. Its type
defaults to fixed, its size to the number of available processors, and the size
of the queue to 50.

•	 percolate: This thread pool is used for percolation requests. Its type
defaults to fixed, its size to the number of available processors, and the
size of the queue to 1000.

For example, if we would like to configure the thread pool for indexing operations
to be of the fixed type, have a size of 100, and a queue of 500, we would set the
following in the elasticsearch.yml configuration file:

threadpool.index.type: fixed
threadpool.index.size: 100
threadpool.index.queue_size: 500

Remember that the thread-pool configuration can be updated using the cluster
update API, as follows:

curl -XPUT 'localhost:9200/_cluster/settings' -d '{

 "transient" : {

 "threadpool.index.type" : "fixed",

 "threadpool.index.size" : 100,

 "threadpool.index.queue_size" : 500

 }

}'

Combining it all together – some general
advice
Now that we know about the caches and buffers exposed by Elasticsearch, we
can try combining this knowledge to configure the cluster for a high indexing
and query throughput. In the next two sections, we will discuss what can be
changed in the default configuration and what you should pay attention to
when setting up your cluster.

Before we discuss all the things related to Elasticsearch specific configuration, we
should remember that we have to give enough memory to Elasticsearch—physical
memory. In general, we shouldn't give more than 50 to 60 percent of the total
available memory to the JVM process running Elasticsearch. We do this because
we want to leave some memory free for the operating system and for the
operating system I/O cache.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[335]

However, we need to remember that the 50 to 60 percent is not always true. You can
imagine having nodes with 256 GB of RAM and having an index with a total weight
of 30 GB on that node. In such circumstances, even assigning more than 60 percent
of the physical RAM to Elasticsearch would leave plenty of RAM for the operating
system. It is also a good idea to set the Xmx and Xms arguments to the same values
in order to avoid JVM heap size resizing.

One thing to remember when tuning your system is the performance tests that can
be repeated under the same circumstances. Once you have made a change, you
need to be able to see how it affects the overall performance. In addition to this,
Elasticsearch scales, and because of this, it is sometimes a good thing to do a simple
performance test on a single machine, see how it performs, and what we can get
from it. Such observations may be a good starting point for further tuning.

Before we continue, note that we can't give you recipes for high indexing and querying
because each deployment is different. Because of this, we will only discuss what
you should pay attention to when tuning. However, if you are interested in such
use cases, you can visit http://blog.sematext.com when one of the authors
writes about performance.

Choosing the right store
Of course, apart from the physical memory, about which we've already talked, we
should choose the right store implementation. In general, if you are running a 64-bit
operating system, you should again go for mmapfs. If you are not running a 64-bit
operating system, choose the niofs store for UNIX-based systems and simplefs
for Windows-based ones. If you can allow yourself to have a volatile store, but
want it to be very fast, you can look at the memory store; it will give you the best
index access performance but requires enough memory to handle not only all the
index files, but also to handle indexing and querying.

The index refresh rate
The second thing we should pay attention to is the index refresh rate. We know
that the refresh rate specifies how fast documents will be visible for search
operations. The equation is quite simple; the faster the refresh rate, the slower
the queries will be and the lower the indexing throughput. If we can allow
ourselves to have a slower refresh rate, such as 10s or 30s, it may be a good
thing to set it. This puts less pressure on Elasticsearch as the internal objects
will have to be reopened at a slower pace and thus, more resources will be
available both for indexing and querying.

www.it-ebooks.info

http://www.it-ebooks.info/

Elasticsearch Cluster in Detail

[336]

Tuning the thread pools
We really suggest tuning the default thread pools, especially for querying operations.
After performance tests, you usually see when your cluster is overwhelmed with
queries. This is the point when you should start rejecting the requests. We think
that in most cases it is better to reject the request right away rather than put it in
the queue and force the application to wait for very long periods of time to have
that request processed. We would really like to give you a precise number, but that
again highly depends on the deployment and general advice is rarely possible.

Tuning your merge process
The merge process is another thing that is highly dependent on your use case and
also depends on several factors such as whether you are indexing, how much data
you add, and how often you do that. In general, remember that queries against an
index with multiple segments are slower than the ones with a smaller number of
segments. But again, to have a smaller number of segments, you need to pay the
price of merging more often.

We discussed segment merging in the Introduction to segment merging section of
Chapter 2, Indexing Your Data. We also mentioned throttling, which allows us to
limit the I/O operations.

Generally, if you want your queries to be faster, aim for fewer segments for your
indices. If you want indexing to be faster, go for more segments for indices. If you
want both of these things, you need to find a golden spot between these two so
that the merging is not too often but also doesn't result in an extensive number
of segments. Use concurrent merge scheduler and tune default throttling value
so that your I/O subsystem is not overwhelmed by merging.

The field data cache and breaking the circuit
By default, the field data cache in Elasticsearch is unbound. This can be very
dangerous, especially when you are using faceting and sorting on many fields.
If the fields have high cardinality, you can run into even more trouble; by trouble,
we mean you can run out of memory.

We have two different factors that we can tune to be sure that we don't run into
out-of-memory errors. First, we can limit the size of the field data cache.
The second is the circuit breaker, which we can easily configure to just
throw an exception instead of loading too much data. Combining these
two things will ensure that we don't run into memory issues.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[337]

However, we should also remember that Elasticsearch will evict data from the field
data cache if its size is not enough to handle the faceting request or sorting. This will
affect the query performance because loading the field data information is not very
efficient. However, we think that it is better to have our queries slower than to have
our cluster blown up because of the out-of-memory errors.

RAM buffer for indexing
Remember, the more the available RAM for indexing the buffer (the indices.
memory.index_buffer_size property), the more documents Elasticsearch can
hold in memory. But of course, we don't want to occupy 100 percent of the
available memory with just Elasticsearch. By default, this is set to 10 percent,
but if you really need a high indexing rate, you can increase the percentage.
We've seen this property being set to 30 percent or some clusters that were
focusing on data indexing and it really helped.

Tuning transaction logging
We haven't discussed this, but Elasticsearch has an internal module called translog
(http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/
index-modules-translog.html). It is a per-shard structure that serves the purpose
of write-ahead logging (http://en.wikipedia.org/wiki/Write-ahead_logging).
Basically, it allows Elasticsearch to expose the newest updates for GET operations,
ensure data durability, and optimize the writing to Lucene indices.

By default, Elasticsearch keeps a maximum of 5000 operations in the transaction
log with a maximum size of 200mb. However, if we can pay the price of the data
not being available for search operations for longer periods of time but we want
more indexing throughput, we can increase the defaults. By specifying the index.
translog.flush_threshold_ops and index.translog.flush_threshold_size
properties (both are set as per index and can be updated in real time using the
Elasticsearch API), we can set the maximum number of operations allowed to
be stored in the transaction log and its maximum size. We've seen deployments
having this property value set to ten times the default value.

One thing to remember is that in case of a failure, shard initialization will be
slower—of course, on the ones that had large transaction logs. This is because
Elasticsearch needs to process all the information from the transaction log before
the shard is ready for usage.

www.it-ebooks.info

http://www.it-ebooks.info/

Elasticsearch Cluster in Detail

[338]

Things to keep in mind
Of course, the preceding mentioned factors are not everything that matters.
You should monitor your Elasticsearch cluster and react accordingly to what
you see. For example, if you see that the number of segments in you indices
starts to grow and you don't want this, tune your merge policy. When you see
merging taking too much I/O resources and affecting the overall performance,
tune throttling. Just keep in mind that tuning won't be a one-time thing; your
data will grow and so will your query number, and you'll have to adapt to that.

Templates and dynamic templates
In the Mappings configuration section of Chapter 2, Indexing Your Data, we read about
mappings, how they are created, and how the type-determining mechanism works.
Now we will get into more advanced topics; we will show you how to dynamically
create mappings for new indices and how to apply some logic to the templates.

Templates
As we have seen earlier in the book, the index configuration and mappings
in particular can be complicated beasts. It would be very nice if there was a
possibility of defining one or more mappings once and using them in every
newly created index without the need of sending them every time an index is
created. Elasticsearch creators predicted this and implemented a feature called
index templates. Each template defines a pattern, which is compared to a newly
created index name. When both of them match, values defined in the template
are copied to the index structure definition. When multiple templates match the
name of the newly created index, all of them are applied and values from the later
applied templates override the values defined in the previously applied templates.
This is very convenient because we can define a few common settings in the more
general templates and change them in the more specialized ones. In addition, there
is an order parameter that lets us force the desired template ordering. You can think
of templates as dynamic mappings that can be applied not to the types in documents,
but to the indices.

An example of a template
Let's see a real example of a template. Imagine that we want to create many indices
in which we don't want to store the source of the documents so that our indices will
be smaller. We also don't need any replicas. We can create a template that matches
our need by using the Elasticsearch REST API by sending the following command:

curl -XPUT http://localhost:9200/_template/main_template?pretty -d '{

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[339]

 "template" : "*",

 "order" : 1,

 "settings" : {

 "index.number_of_replicas" : 0

 },

 "mappings" : {

 "_default_" : {

 "_source" : {

 "enabled" : false

 }

 }

 }

}'

From now on, all the created indices will have no replicas and no source stored.
That's because the template parameter value is set to *, which matches all the
names of the indices. Note the _default_ type name in our example. This is a
special type name, which indicates that the current rule should be applied to
every document type. The second interesting thing is the order parameter.
Let's define a second template by using the following command:

curl -XPUT http://localhost:9200/_template/ha_template?pretty -d '{

 "template" : "ha_*",

 "order" : 10,

 "settings" : {

 "index.number_of_replicas" : 5

 }

}'

After running the preceding command, all the new indices will behave as before
except the ones with the names beginning with ha_. In case of these indices, both
the templates are applied. First, the template with the lower order value is used
and then the next template overwrites the replica's setting. So, indices whose
names start with ha_ will have five replicas and disabled sources stored.

Storing templates in files
Templates can also be stored in files. By default, files should be placed in the config/
templates directory. For example, our ha_template template should be placed in
the config/templates/ha_template.json file and have the following content:

{
 "ha_template" : {

www.it-ebooks.info

http://www.it-ebooks.info/

Elasticsearch Cluster in Detail

[340]

 "template" : "ha_*",
 "order" : 10,
 "settings" : {
 "index.number_of_replicas" : 5
 }
 }
}

Note that the structure of JSON is a little bit different and has the template name
as the main object key. The second important thing is that templates must be placed
on every instance of Elasticsearch. Also, the templates defined in the files are not
available with the REST API calls.

Dynamic templates
Sometimes, we want to have a possibility of defining type that is dependent on
the field name and the type. This is where dynamic templates can help. Dynamic
templates are similar to the usual mappings, but each template has its pattern
defined, which is applied to a document's field name. If a field name matches the
pattern, the template is used. Let's have a look at the following example:

{
 "mappings" : {
 "article" : {
 "dynamic_templates" : [
 {
 "template_test": {
 "match" : "*",
 "mapping" : {
 "index" : "analyzed",
 "fields" : {
 "str": {"type": "{dynamic_type}",
 "index": "not_analyzed" }
 }
 }
 }
 }]
 }

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 7

[341]

 }
}

In the preceding example, we defined a mapping for the article type. In this
mapping, we have only one dynamic template named template_test. This template
is applied for every field in the input document because of the single asterisk pattern
in the match property. Each field will be treated as a multifield, consisting of a
field named as the original field (for example, title) and the second field with a
name suffixed with str (for example, title.str). The first field will have its type
determined by Elasticsearch (with the {dynamic_type} type), and the second field
will be a string (because of the string type).

The matching pattern
We have two ways of defining the matching pattern; they are as follows:

•	 match: This template is used if the name of the field matches the pattern
(this pattern type was used in our example)

•	 unmatch: This template is used if the name of the field doesn't match
the pattern

By default, the pattern is very simple and uses glob patterns. This can be changed
by using match_pattern=regexp. After adding this property, we can use all the
magic provided by regular expressions to match and unmatch patterns.

There are variations such as path_match and path_unmatch that can be used to
match the names in nested documents.

Field definitions
When writing a target field definition, the following variables can be used:

•	 {name}: The name of the original field found in the input document
•	 {dynamic_type}: The type determined from the original document

Please note that Elasticsearch checks templates in the order of their
definitions and the first matching template is applied. This means
that the most generic templates (for example, with "match": "*")
must be defined at the end.

www.it-ebooks.info

http://www.it-ebooks.info/

Elasticsearch Cluster in Detail

[342]

Summary
In this chapter, we learned a few things about Elasticsearch such as the node
discovery, what this module is responsible for, and how to tune it. We also
looked at the recovery and gateway modules, how to set them up to match our
cluster, and what configuration options they provide. We also discussed some
of the Elasticsearch internals, and we used these to tune our cluster for high
indexing and high querying use cases. And finally, we've used templates
and dynamic mappings to help us manage our dynamic indices better.

In the next chapter, we'll focus on some of the Elasticsearch administration
capabilities. We will learn how to back up our cluster data and how to monitor our
cluster using the available API calls. We will discuss how to control shard allocation
and how to move shards around the cluster, again using the Elasticsearch API.
We'll learn what index warmers are and how they can help us, and we will use
aliases. Finally, we'll learn how to install and manage Elasticsearch plugins
and what we can do using the update settings API.

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Your Cluster
In the previous chapter, we learned how node discovery works in Elasticsearch and
how to tune it. We also learned about the recovery and gateway modules. We saw
how to prepare our cluster for high indexing and querying use cases by tuning some
of the Elasticsearch internals and what those internals are. Finally, we used index
templates and dynamic mappings to easily control dynamic indices' structure.
By the end of this chapter, you will learn the following aspects:

•	 Using Elasticsearch snapshotting functionality
•	 Monitoring our cluster using the Elasticsearch API
•	 Adjusting cluster rebalancing to match our needs
•	 Moving shards around by using the Elasticsearch API
•	 Warming up
•	 Using aliasing to ease the everyday work
•	 Installing the Elasticsearch plugins
•	 Using the Elasticsearch update settings API

The Elasticsearch time machine
A good piece of software is one that manages an exceptional situation such as
hardware failure or human error. Even though a cluster of a few servers is less
exposed to hardware problems, bad things can still happen. For example, let's
imagine that you need to restore your indices. One possible solution is to reindex
all your data from a primary data store as a SQL database. But what will you
do if it takes too long or, even worse, the only data store is Elasticsearch? Before
Elasticsearch 1.0, creating backups of indices was not easy. The procedure included
shutdown of the cluster before copying the data files. Fortunately, now we can take
snapshots. Let's see how this works.

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Your Cluster

[344]

Creating a snapshot repository
A snapshot keeps all the data related to the cluster from the time snapshot creation
starts and it includes information about the cluster state and indices. Before we
create snapshots, at least the first one, a snapshot repository must be created.
Each repository is recognized by its name and should define the following aspects:

•	 name: This is a unique name of the repository; we will need it later.
•	 type: This is the type of the repository. The possible values are fs (repository

on a shared filesystem) and url (read-only repository available via URL).
•	 settings: This is the additional information needed depending on the

repository type.

Now, let's create a filesystem repository. Please note that every node in the cluster
should be able to access this directory. To create a new filesystem repository, we can
run a command shown as follows:

curl -XPUT localhost:9200/_snapshot/backup -d '{

 "type": "fs",

 "settings": {

 "location": "/tmp/es_backup_folder/cluster1"

 }

}'

The preceding command creates a repository named backup, which stores
the backup files in the directory given by the location attribute. Elasticsearch
responds with the following information:

{"acknowledged":true}

At the same time, backup_folder on the local filesystem is created—without any
content yet.

As we said, the second repository type is url. It requires a url
parameter instead of location, which points to the address
where the repository resides, for example, the HTTP address.
You can also store snapshots in Amazon S3 or HDFS using
the additional plugins available (see https://github.
com/elasticsearch/elasticsearch-cloud-aws#s3-
repository and https://github.com/elasticsearch/
elasticsearch-hadoop/tree/master/repository-hdfs).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[345]

Now that we have our first repository, we can see its definition using the
following command:

curl -XGET localhost:9200/_snapshot/backup?pretty

We can also check all the repositories by running a command like the following:

curl -XGET localhost:9200/_snapshot/_all?pretty

If you want to delete a snapshot repository, the standard DELETE command helps:

curl -XDELETE localhost:9200/_snapshot/backup?pretty

Creating snapshots
By default, Elasticsearch takes all the indices and cluster settings (except the transient
ones) when creating snapshots. You can create any number of snapshots, and each
will hold information available right from the time when the snapshot was created.
The snapshots are created in a smart way; only new information is copied. It means
that Elasticsearch knows which segments are already stored in the repository and
doesn't save them again.

To create a new snapshot, we need to choose a unique name and use the
following command:

curl -XPUT 'localhost:9200/_snapshot/backup/bckp1'

The preceding command defines a new snapshot named bckp1 (you can only have
one snapshot with a given name; Elasticsearch will check its uniqueness), and data
is stored in the previously defined backup repository. The command returns an
immediate response, which looks as follows:

{"accepted":true}

The preceding response means that the process of snapshotting has started
and continues in the background. If you would like the response to be returned
only when the actual snapshot is created, we can add the wait_for_completion
parameter as shown in the following example:

curl -XPUT 'localhost:9200/_snapshot/backup/bckp2?wait_for_completion=

 true&pretty'

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Your Cluster

[346]

The response to the preceding command shows the status of a created snapshot:

{

 "snapshot" : {

 "snapshot" : "bckp2",

 "indices" : ["art"],

 "state" : "SUCCESS",

 "start_time" : "2014-02-22T13:04:40.770Z",

 "start_time_in_millis" : 1393074280770,

 "end_time" : "2014-02-22T13:04:40.781Z",

 "end_time_in_millis" : 1393074280781,

 "duration_in_millis" : 11,

 "failures" : [],

 "shards" : {

 "total" : 5,

 "failed" : 0,

 "successful" : 5

 }

 }

}

As we can see, Elasticsearch presents information about the time taken by the
snapshotting process, its status, and the indices affected.

Additional parameters
The snapshot command also accepts the following additional parameters:

•	 indices: These are the names of the indices of which we want to take
snapshots.

•	 ignore_unavailable: When this is set to false (the default is true),
meaning that when the indices parameter points to the inexistent index,
the command will fail.

•	 include_global_state: When this is set to true (the default), the cluster
state is also written in the snapshot (except for the transient settings).

•	 partial: The snapshot success depends on the availability of all the shards. If
any of the shards are not available, the snapshot fails. Setting partial to true
causes Elasticsearch to save only the available shards and omit the lost ones.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[347]

An example of using additional parameters can look as follows:

curl -XPUT 'localhost:9200/_snapshot/backup/bckp?wait_for_
completion=true&pretty' -d '{ "indices": "b*", "include_global_state":
"false" }'

Restoring a snapshot
Now that we have our snapshots done, we will also learn how to restore data from
a given snapshot. As we said earlier, a snapshot can be addressed by its name.
We can list all the snapshots by using the following command:

curl -XGET 'localhost:9200/_snapshot/backup/_all?pretty'

The repository we created earlier is called backup. To restore a snapshot named
bckp1 from our snapshot repository, run the following command:

curl -XPOST 'localhost:9200/_snapshot/backup/bckp1/_restore'

During the execution of this command, Elasticsearch takes indices defined in the
snapshot and creates them with the data from the snapshot. However, if the index
already exists and is not closed, the command will fail. In this case, you may find
it convenient to only restore certain indices, for example:

curl -XPOST 'localhost:9200/_snapshot/backup/bck1/_restore?pretty' -d '{
"indices": "c*"}'

The preceding command restores only the indices that begin with the letter c. The
other available parameters are as follows:

•	 ignore_unavailable: This is the same as in the snapshot creation.
•	 include_global_state: This is the same as in the snapshot creation.
•	 rename_pattern: This allows you to change the name of the index stored in

the snapshot. Thanks to this, the restored index will have a different name.
The value of this parameter is a regular expression that defines source index
name. If a pattern matches the name of the index, the name substitution will
occur. In the pattern, you should use groups limited by parentheses used in
the rename_replacement parameter.

•	 rename_replacement: This along with rename_pattern defines the
target index name. Using the dollar sign and number, you can recall
the appropriate group from rename_pattern.

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Your Cluster

[348]

For example, due to rename_pattern=products_(.*), only the indices with names
that begin with products_ will be restored. The rest of the index name will be
used in replacement. Together with rename_replacement=items_$1 causes that
products_cars index will be restored to an index called items_cars.

Cleaning up – deleting old snapshots
Elasticsearch leaves snapshot repository management up to you. Currently, there
is no automatic cleanup process. But don't worry; this is simple. For example, let's
remove our previously taken snapshot:

curl -XDELETE 'localhost:9200/_snapshot/backup/bckp1?pretty'

And that's all. The command causes the snapshot named bckp1 from the backup
repository to be deleted.

Monitoring your cluster's state and health
During the normal life of an application, a very important aspect is monitoring.
This allows the administrators of the system to detect possible problems, prevent
them before they occur, or at least know what happens during a failure.

Elasticsearch provides very detailed information that allows you to check and monitor
a node or the cluster as a whole. This includes statistics, information about servers,
nodes, indices, and shards. Of course, we are also able to get information about
the whole cluster state. Before we get into details about the mentioned API, please
remember that the API is complex and we are only describing the basics. We will
try to show you when to start, so you'll be able to know what to look for when you
need very detailed information.

The cluster health API
One of the most basic APIs is the cluster health API that allows us to get information
about the whole cluster state with a single HTTP command. For example, let's run
the following command:

curl 'localhost:9200/_cluster/health?pretty'

A sample response returned by Elasticsearch for the preceding command looks
as follows:

{

 "cluster_name" : "es-book",

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[349]

 "status" : "green",

 "timed_out" : false,

 "number_of_nodes" : 1,

 "number_of_data_nodes" : 1,

 "active_primary_shards" : 4,

 "active_shards" : 4,

 "relocating_shards" : 0,

 "initializing_shards" : 0,

 "unassigned_shards" : 0

}

The most important information is the one about the status of the cluster. In our
example, we see that the cluster is in the green status. This means that all the
shards have been allocated properly and there were no errors.

Let's stop here and talk about the cluster and when, as a whole, it will be fully
operational. The cluster is fully operational when Elasticsearch is able to allocate
all the shards and replicas according to the configuration. When this happens, the
cluster is in the green state. The yellow state means that we are ready to handle
requests because the primary shards are allocated but some (or all) replicas are
not. The last state, the red one, means that at least one primary shard was not
allocated and because of this, the cluster is not ready yet. This means that the
queries may return errors or incomplete results.

The preceding command can also be executed to check the health state of a certain
index. For example, if we want to check the health of the library and map indices,
we will run the following command:

curl 'localhost:9200/_cluster/health/library,map/?pretty'

Controlling information details
Elasticsearch allows us to specify a special level parameter that can take the value
of cluster (default), indices, or shards. This allows us to control the details of the
information returned by the health API. We've already seen the default behavior.
When setting the level parameter to indices, apart from the cluster information,
we will also get the per index health. Setting the mentioned parameter to shards
tells Elasticsearch to return per shard information in addition to what we've seen
in the example.

Additional parameters
In addition to the level parameter, we have a few additional parameters that
can control the behavior of the health API.

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Your Cluster

[350]

The first of the mentioned parameters is timeout. It allows us to control the
maximum time for which the command execution will wait. By default, it is set
to 30s and means that the health command will wait for a maximum of 30 seconds
and will return the response by then.

The wait_for_status parameter allows us to tell Elasticsearch which health status
the cluster should be at to return the command. It can take the values green, yellow,
and red. For example, when set to green, the health API call returns the results until
the green status or timeout is reached.

The wait_for_nodes parameter allows us to set the required number of nodes
available to return the health command response (or until a defined timeout is
reached). It can be set to an integer number like 3 or to a simple equation like >=3
(means more than or equal to three nodes) or <=3 (means less than or equal to
three nodes).

The last parameter is wait_for_relocating_shard, which is not specified by
default. It allows us to tell Elasticsearch how many relocating shards it should
wait for (or until the timeout is reached). Setting this parameter to 0 means that
Elasticsearch should wait for all the relocating shards.

An example usage of the health command with some of the mentioned parameters
is as follows:

curl 'localhost:9200/_cluster/health?wait_for_status=green&wait_for_
nodes=>=3&timeout=100s'

The indices stats API
Elasticsearch index is the place where our data lives, and it is a crucial part for
most deployments. With the use of the indices stats API available using the _stats
endpoint, we can get various information about the indices living inside our cluster.
Of course, as with most of the APIs in Elasticsearch, we can give a command to
get information about all the indices (using the pure _stats endpoint), about one
particular index (for example, library/_stats), or several indices at the same time
(for example, library,map/_stats). For example, to check the statistics for the map
and library indices we've used in the book, we could run the following command:

curl localhost:9200/library,map/_stats?pretty

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[351]

The response to the preceding command has more than 500 lines, so we only
describe its structure and omit the response itself. Apart from the information
about the response status and the response time, we can see three objects named
primaries, total, and indices. The indices object contains information about
the library and map indices. The primaries object contains information about
the primary shards allocated on the current node, and the total object contains
information about all the shards including replicas. All these objects can contain
objects that describe a particular statistic, such as docs, store, indexing, get,
search, merges, refresh, flush, warmer, filter_cache, id_cache, fielddata,
percolate, completion, segments, and translog. Let's discuss the information
stored in these objects.

Docs
The docs section of the response shows information about the indexed documents.
For example, it could look as follows:

"docs" : {
 "count" : 4,
 "deleted" : 0
}

The main information is the count, indicating the number of documents. When we
delete documents from the index, Elasticsearch doesn't remove these documents
immediately but only marks them as deleted. The documents are physically deleted
in a segment merge process. The number of documents marked as deleted are
presented as a deleted attribute and should be 0 right after the merge.

Store
The next set of statistics, store, provides information regarding storage.
For example, such a section could look as follows:

"store" : {
 "size_in_bytes" : 6003,
 "throttle_time_in_millis" : 0
}

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Your Cluster

[352]

The main information is about the index (or indices) size. We can also look at
throttling statistics. This information is useful when the system has problems
with the I/O performance and has configured limits on internal operation
during segments merge.

Indexing, get, and search
The indexing, get, and search sections of the response provide information
about data manipulation: indexing with delete operations, using real-time get,
and searching. Let's look at the following example returned by Elasticsearch:

"indexing" : {

 "index_total" : 11501,

 "index_time_in_millis" : 4574,

 "index_current" : 0,

 "delete_total" : 0,

 "delete_time_in_millis" : 0,

 "delete_current" : 0

},

"get" : {

 "total" : 3,

 "time_in_millis" : 0,

 "exists_total" : 2,

 "exists_time_in_millis" : 0,

 "missing_total" : 1,

 "missing_time_in_millis" : 0,

 "current" : 0

},

"search" : {

 "query_total" : 0,

 "query_time_in_millis" : 0,

 "query_current" : 0,

 "fetch_total" : 0,

 "fetch_time_in_millis" : 0,

 "fetch_current" : 0

}

As we can see, all of these statistics have a similar structure. We can read the total
time spent in the various request types (in milliseconds) and the number of requests
that the total time allows you to calculate the average time of a single query. In the
case of real time, the get requests valuable information is the number of fetches that
were unsuccessful (missing documents).

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[353]

Additional information
In addition, Elasticsearch provides the following information:

•	 merges: This section contains information about Lucene segment merges
•	 refresh: This section contains information about refresh operations
•	 flush: This section contains information about flushes
•	 warmer: This section contains information about warmers and how long

they were executed
•	 filter_cache: These are the filter cache statistics
•	 id_cache: These are the identifiers cache statistics
•	 fielddata: These are the field data cache statistics
•	 percolate: This section contains information about the percolator usage
•	 completion: This section contains information about the completion

suggester
•	 segments: This section contains information about Lucene segments
•	 translog: This section contains information about transaction logs count

and size

The status API
Another way to obtain information about indices is the status API available by using
the _status endpoint. The information that is returned describes the available
shards and includes information on which shard is currently considered primary,
which node it is assigned to, which node it is reallocated to (if it is), status of the
shard (is it active or not), information about the transaction log and the merge
process, and the refresh and flush statistics.

The nodes info API
The nodes info API provides us with the information about the nodes in the cluster.
To get information from this API, we need to send the request to the _nodes
REST endpoints.

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Your Cluster

[354]

This API can be used to fetch information about particular nodes or a single node
using the following aspects:

•	 Node name: If we want to get information about the node named Pulse,
we can run a command to the _nodes/Pulse REST endpoint

•	 Node identifier: If we want to get information about the node with an
identifier equal to ny4hftjNQtuKMyEvpUdQWg, we can run a command to
the _nodes/ny4hftjNQtuKMyEvpUdQWg REST endpoint

•	 IP address: If we want to get information about the node with an IP
address equal to 192.168.1.103, we can run a command to the _
nodes/192.168.1.103 REST endpoint

•	 Parameters from the Elasticsearch configuration: If we want to get
information about all the nodes with the node.rack property set to 2,
we can run a command to the /_nodes/rack:2 REST endpoint

This API also allows you to get information about several nodes at once by using
the following:

•	 Patterns, for example, _nodes/192.168.1.* or _nodes/P*
•	 Nodes enumeration, for example, _nodes/Pulse,Slab
•	 Both patterns and enumerations, for example, /_nodes/P*,S*

By default, the request to the nodes API will return the basic information about
a node, such as name, identifier, and its address. But by adding additional
parameters, we can obtain other information. The available parameters are
as follows:

•	 settings: This parameter is used to get Elasticsearch configuration
•	 os: This parameter is used to get information about the server, such as

processor, RAM, and swap space
•	 process: This parameter is used to get the process identifier and the

available file descriptors
•	 jvm: This parameter is used to get information about the Java virtual

machine (JVM), such as the memory limit
•	 thread_pool: This parameter is used to get the configuration of the thread

pools for various operations
•	 network: This parameter is used to get name and addresses of the

network interface
•	 transport: This parameter is used to get the listen addresses for transport

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[355]

•	 http: This parameter is used to get the listen addresses for HTTP
•	 plugins: This parameter is used to get information about the

installed plugins

An example usage of the earlier described API can be illustrated by the
following command:

curl 'localhost:9200/_nodes/Pulse/os,jvm,plugins?pretty'

The preceding command will return information related to the operating system,
Java virtual machine, and plugins in addition to the basic information. Of course,
all the information will be about the nodes named Pulse.

The nodes stats API
The nodes stats API is similar to the nodes info API described previously. The main
difference is that the previous API provides information about the environment, and
the one we are currently discussing tells us what happened with the cluster during
its work. To use the nodes stats API, one needs to send a command to the /_nodes/
stats REST endpoint. However, similar to the nodes info API, we can also retrieve
information about specific nodes (for example, _nodes/Pulse/stats).

By default, Elasticsearch returns all the available statistics, but we can limit it to
the ones we are interested in. The available options are as follows:

•	 indices: This provides information about the indices, including size,
document count, indexing-related statistics, search and get time, caches,
segment merges, and so on

•	 os: This provides operating system related information, such as free disk
space, memory, and swap usage

•	 process: This provides information about the memory, CPU, and file
handler usage related to the Elasticsearch process

•	 jvm: This provides information about the Java virtual machine memory
and garbage collector statistics

•	 network: This provides information about the TCP-level information
•	 transport: This provides information about data sent and received by

the transport module
•	 http: This provides information about HTTP connections
•	 fs: This provides information about the available disk space and I/O

operations statistics

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Your Cluster

[356]

•	 thread_pool: This provides information about the state of the threads
assigned to various operations

•	 breaker: This provides information about the field data cache circuit breaker

An example usage of the previously described API can be illustrated by the
following command:

curl 'localhost:9200/_nodes/Pulse/stats/os,jvm,breaker?pretty'

The cluster state API
Another API provided by Elasticsearch is the cluster state API. As the name
suggests, it allows us to get information about the whole cluster. (We can also
limit the returned information to a local node by adding the local=true parameter
to the request.) The basic command used to get all the information retuned by the
discussed API looks as follows:

curl 'localhost:9200/_cluster/state?pretty'

However, we can also limit the provided information to the given metrics (separated
by commas and specified after the _cluster/state part of the REST call) and to the
given indices (again separated by commas and specified after the _cluster/state/
metrics part of the REST call). An example call that would only return node related
information about the map and library indices could look as follows:

curl 'localhost:9200/_cluster/state/nodes/map,library?pretty'

The following metrics can be used:

•	 version: This returns information about the cluster state version.
•	 master_node: This returns information about the elected master node.
•	 nodes: This returns information on nodes.
•	 routing_table: This returns routing-related information.
•	 metadata: This returns metadata-related information. When specifying the

retrieval of the metadata metric, we can also include an additional parameter,
index_templates=true, which will result in the defined index templates
being included.

•	 blocks: This returns the blocks part of the response.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[357]

The pending tasks API
One of the APIs introduced in Elasticsearch 1.0 is the pending tasks API, which
allows us to check which tasks are waiting to be executed. To retrieve this
information, we need to send a request to the /_cluster/pending_tasks
REST endpoint. In the response, we will see an array of tasks with information
about them, such as task priority and time in queue.

The indices segments API
The last API we wanted to mention is the Lucene segments API available by using
the /_segments endpoint. We can run it for the whole cluster and for individual
indices too. This API provides information about shards, their placement, and the
segments connected with the physical index managed by the Lucene library.

The cat API
Of course, we may say that all the information we need to diagnose and observe the
cluster can be retrieved by using the provided API. However, the response returned
by the API is in JSON; great, but not especially convenient to use at least for a human
being. That's why Elasticsearch allows us to use a friendlier API: the cat API.

To use the cat API, one needs to send a request to the _cat REST endpoint followed
by one of the options, which are as follows:

•	 aliases: This returns information about aliases (we'll learn about aliases
in the Index aliasing and using it to simplify your everyday work section of
this chapter)

•	 allocation: This returns information about the allocated shards and disk
usage

•	 count: This returns information about the document count for all the indices
or an individual one

•	 health: This returns information about cluster health
•	 indices: This returns information about all the indices or an individual one
•	 master: This returns information about the elected master node
•	 nodes: This returns information about the cluster topology

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Your Cluster

[358]

•	 pending_tasks : This returns information about the tasks that are waiting
to be executed

•	 recovery: This provides a view of the recovery process
•	 thread_pool: This provides cluster wide statistics regarding thread pools
•	 shards: This returns information about shards

This may be a bit confusing, so let's have a look at an example command that
would return information about shards. The command that would allow us to
get this information is given as follows:

curl -XGET 'localhost:9200/_cat/shards?v'

Note that we've included the v parameter to the request. This
means that we want the information to be more verbose,
for example, including the header. In addition to the v
parameter, we can also use the help parameter, which will
return the header's description for a given command and the
h parameter, which accepts a comma-separated list of the
columns we want to include in the response.

And the response to the preceding command will look as follows:

index shard prirep state docs store ip node

map 0 p STARTED 4 5.9kb 192.168.1.40 es_node_1

library 0 p STARTED 9 11.8kb 192.168.56.1 es_node_2

We can see that we have two indices, each with a single shard. We can also see the ID
of the shard, that is, whether it is a primary shard, its state, number of documents, its
size, node IP address, and the node name.

Limiting returned information
Some of the cat API commands allow us to limit the information they return.
For example, the aliases call allows us to get information about a specific alias
by appending the alias name just like in the following command:

curl -XGET 'localhost:9200/_cat/aliases/current_index'

Let's summarize the commands that allow information limiting:

•	 aliases: This limits the information to a specific alias by appending the alias
in the request

•	 count: This limits the information to a specific index by appending the index
name we are interested in to the request

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[359]

•	 indices: This limits the information to a specific index just like in the
count command

•	 shards: This limits the information to a specific index by appending
the index name we are interested in

Controlling cluster rebalancing
By default, Elasticsearch tries to keep the shards and their replicas evenly balanced
across the cluster. Such behavior is good in most cases, but there are times when we
would want to control this behavior. In this section, we will look at how to avoid
cluster rebalance and how to control this process' behavior in depth.

Imagine a situation where you know that your network can handle a very high
amount of traffic, or the opposite; your network is used extensively and you want
to avoid too much stress on it. The other example is that you may want to decrease
the pressure that is put on your I/O subsystem after a full-cluster restart, and you
want to have less shards and replicas being initialized at the same time. These are
only two examples where rebalance control may be handy.

Rebalancing
Rebalancing is the process of moving shards between the different nodes in your
cluster. As we have already mentioned, it is fine in most situations, but sometimes
you may want to completely avoid this. For example, if we define how our shards
are placed and we want to keep it that way, we want to avoid rebalancing. However,
by default, Elasticsearch will try to rebalance the cluster whenever the cluster state
changes and Elasticsearch thinks rebalance is needed.

Cluster being ready
We already know that our indices can be built of shards and replicas. Primary shards
or just shards are the ones that are used when the new documents are indexed, there
is an update or delete, or just in case of any index change. We also have replicas that
get the data from the primary shards.

You can think of the cluster as being ready to be used when all the primary shards are
assigned to their nodes in your cluster—as soon as the yellow health state is achieved.
However, Elasticsearch may still initialize other shards: the replicas. However, you can
use your cluster, and be sure that you can search your whole data set and you can send
index change commands. Then, those will be processed properly.

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Your Cluster

[360]

The cluster rebalance settings
Elasticsearch lets us control the rebalance process with the use of a few properties
that can be set in the elasticsearch.yml file or by using the Elasticsearch REST
API (described in the The update settings API section of this chapter).

Controlling when rebalancing will start
The cluster.routing.allocation.allow_rebalance property allows us to specify
when rebalancing will be started. This property can take the following values:

•	 always: This value indicates that rebalancing will start as soon as it's needed
•	 indices_primaries_active: This value indicates that rebalancing will start

when all the primary shards are initialized
•	 indices_all_active: This is the default value, which means that

rebalancing will start when all the shards and replicas are initialized

Controlling the number of shards being moved
between nodes concurrently
The cluster.routing.allocation.cluster_concurrent_rebalance property
allows us to specify how many shards can be moved between nodes at once in the
whole cluster. If you have a cluster that is built of many nodes, you can increase this
value. This value defaults to 2.

Controlling the number of shards initialized
concurrently on a single node
The cluster.routing.allocation.node_concurrent_recoveries property lets
us set the number of shards that Elasticsearch is allowed to initialize on a single node
at once. Please note that the shard recovery process is very I/O intensive, so you'll
probably want to avoid too many shards being recovered concurrently. This value
defaults to the same value as the previous one: 2.

Controlling the number of primary shards initialized
concurrently on a single node
The cluster.routing.allocation.node_initial_primaries_recoveries
property lets us control how many primary shards are allowed to be concurrently
initialized on a node.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[361]

Controlling types of shards allocation
By using the cluster.routing.allocation.enable property, we can control
what kind of shards are allowed to be allocated. The mentioned property can take
the following values:

•	 all: This is the default value, which tells Elasticsearch that all types of shards
are allowed to be allocated

•	 primaries: This tells Elasticsearch that it should only allocate primary
shards and leave the replicas that are not allocated

•	 new_primaries: This tells Elasticsearch that only the newly created primary
shards can be allocated

•	 none: This disables shard allocation completely

Controlling the number of concurrent streams on a
single node
The indices.recovery.concurrent_streams property allows us to control how
many streams are allowed to be opened on a node at once, in order to recover a
shard from the target shards. It defaults to 3. If you know that your network and
nodes can handle more, you can increase the value.

Controlling the shard and replica
allocation
Indices that live inside your Elasticsearch cluster can be built of many shards, and
each shard can have many replicas. With the ability to have multiple shards of a
single index, we can deal with indices that are too large to fit on a single machine.
The reasons may be different, from memory and CPU related to storage ones. With
the ability to have multiple replicas of each shard, we can handle a higher query
load by spreading the replicas over multiple servers. We can say that by using
shards and replicas, we can scale out Elasticsearch. However, Elasticsearch has
to figure out where in the cluster it should place the shards and replicas. It needs
to figure out which server/nodes each shard or replica should be placed on.

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Your Cluster

[362]

Explicitly controlling allocation
Imagine that we want to have our indices to be placed on different cluster nodes.
For example, we want one index named shop to be placed on some nodes and the
second index called users to be placed on other nodes. Finally, the last index called
promotions to be placed on all the nodes that users and shop indices were placed
on. We may want to do this because of performance reasons. We know that some of
the servers on which we installed Elasticsearch are more powerful than the others.
With the default Elasticsearch behavior, we can't be sure where the shards and
replicas will be placed, but luckily, Elasticsearch allows us to control that.

Specifying node parameters
So let's divide our cluster into two zones. We say zones, but it can be any name you
want; we just like zone. We will assume that we have four nodes. We want our more
powerful nodes numbered 1 and 2 to be placed in a zone called zone_one, and the
nodes numbered 3 and 4, which are smaller in terms of resources, to be placed in
a zone called zone_two.

Configuration
To achieve our described indices distribution, we add the following property to
the elasticsearch.yml configuration file on node 1 and 2 (the nodes that are
more powerful):

node.zone: zone_one

Of course, we will add a similar property to the elasticsearch.yml configuration
file on node 3 and 4 (the less powerful nodes):

node.zone: zone_two

Index creation
Now let's create our indices. First, let's create the shop index. Place this index on
the more powerful nodes. We can do this by running the following commands:

curl -XPUT 'http://localhost:9200/shop' -d '{

 "settings" : {

 "index" : {

 "routing.allocation.include.zone" : "zone_one"

 }

 }

}'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[363]

The preceding command will result in the shop index being created and the index.
routing.allocation.include.zone property being specified to it. We set this
property to the zone_one value, which means that we want to place the shop index
on the nodes that have the node.zone property set to zone_one.

We perform similar steps for the users index:

curl -XPUT 'http://localhost:9200/users' -d '{

 "settings" : {

 "index" : {

 "routing.allocation.include.zone" : "zone_two"

 }

 }

}'

However, this time we've specified that we want the users index to be placed on
the nodes with the node.zone property set to zone_two.

Finally, the promotions index should be placed in all the preceding nodes, so we
will use the following command to create and configure this index:

curl -XPOST 'http://localhost:9200/promotions'

curl -XPUT 'http://localhost:9200/promotions/_settings' -d '{

 "index.routing.allocation.include.zone" : "zone_one,zone_two"

}'

This time we've used a different set of commands. The first one creates the index,
and the second one updates the index.routing.allocation.include.zone
property. We did this just to illustrate that it can be done in such a way.

Excluding nodes from allocation
In the same manner as how we specified on which nodes the index should be placed,
we can also exclude nodes from index allocation. Referring to the previously shown
example, if we would like the index called pictures to not be placed on nodes with
the node.zone property set to zone_one, we would run the following command:

curl -XPUT 'localhost:9200/pictures/_settings' -d '{

 "index.routing.allocation.exclude.zone" : "zone_one"

}'

Notice that instead of the index.routing.allocation.include.zone property,
we've used the index.routing.allocation.exclude.zone property.

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Your Cluster

[364]

Requiring node attributes
In addition to inclusion and exclusion rules, we can also specify the rules that must
match for a shard to be allocated to a given node. The difference is that when using
the index.routing.allocation.include property, the index will be placed on
any node that matches at least one of the provided property values. By using the
index.routing.allocation.require property, Elasticsearch will place the index
on a node that has all the defined values. For example, let's assume that we've set
the following settings for the pictures index:

curl -XPUT 'localhost:9200/pictures/_settings' -d '{

 "index.routing.allocation.require.size" : "big_node",

 "index.routing.allocation.require.zone" : "zone_one"

}'

After running the preceding command, Elasticsearch would only place the shards
of the pictures index on a node with the node.size property set to big_node and
the node.zone property set to big_node.

Using IP addresses for shard allocation
Instead of adding a special parameter to the nodes' configuration, we can use IP
addresses to specify which nodes we want to include or exclude from the shards
and replicas allocation. To do this instead of using the zone part of the index.
routing.allocation.include.zone or index.routing.allocation.exclude.
zone properties, we use _ip. For example, if we would like our shop index to be
placed only on the nodes with IP address 10.1.2.10 and 10.1.2.11, we will run
the following command:

curl -XPUT 'localhost:9200/shop/_settings' -d '{

 "index.routing.allocation.include._ip" : "10.1.2.10,10.1.2.11"

}'

Disk-based shard allocation
In addition to the already described allocation filtering methods, Elasticsearch 1.0
brings one additional method: the disk-based one. It allows us to set allocation rules
based on the node's disk usage, so we won't run out of disk space or something similar.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[365]

Enabling disk-based shard allocation
The disk-based shard allocation is disabled by default. We can enable it by specifying
the cluster.routing.allocation.disk.threshold_enabled property and setting
it to true. We can do this in the elasticsearch.yml file or by dynamically using
the cluster settings API (you can read about it in the The update settings API section
of this chapter):

curl -XPUT localhost:9200/_cluster/settings -d '{

 "transient" : {

 "cluster.routing.allocation.disk.threshold_enabled" : true

 }

}'

Configuring disk-based shard allocation
There are three properties that control the behavior of disk-based shard allocation.
All of them can be updated dynamically or set in the elasticsearch.yml
configuration file.

The first of these is cluster.info.update.interval, which is by default set to 30
seconds and defines how often Elasticsearch updates information about disk usage
on the nodes.

The second property is cluster.routing.allocation.disk.watermark.low,
which is by default set to 0.70. This means that Elasticsearch will not allocate new
shards to a node that uses more than 70 percent of its disk space.

The third property is cluster.routing.allocation.disk.watermark.high, which
controls when Elasticsearch will start relocating shards from a given node. It defaults
to 0.85 and means that Elasticsearch will start reallocating shards when the disk
usage on a given node is equal to or more than 85 percent.

Both the cluster.routing.allocation.disk.watermark.low and cluster.
routing.allocation.disk.watermark.high properties can be set to a percentage
value (such as 0.60, meaning 60 percent) and to an absolute value (such as 600mb,
meaning 600 megabytes).

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Your Cluster

[366]

Cluster wide allocation
Instead of specifying allocation inclusion and exclusion at the index level (which we
did until now), we can do that for all the indices in our cluster. For example, if we
would like to place all new indices on the nodes with the IP addresses 10.1.2.10
and 10.1.2.11, we will run the following command:

curl -XPUT 'localhost:9200/_cluster/settings' -d '{

 "transient" : {

 "cluster.routing.allocation.include._ip" : "10.1.2.10,10.1.2.11"

 }

}'

Notice that the command was sent to the _cluster/settings REST endpoint
instead of the INDEX_NAME/_settings endpoint. Of course, we can use both
include and exclude and require rules just as we did on the index level.

Please note that the transient and persistent cluster properties were discussed
in the Controlling cluster rebalancing section earlier in this chapter.

Number of shards and replicas per node
In addition to specifying shards and replica allocation, we are also allowed to specify
the maximum number of shards that can be placed on a single node for a single
index. For example, if we would like our shop index to have only a single shard
per node, we will run the following command:

curl -XPUT 'localhost:9200/shop/_settings' -d '{

 "index.routing.allocation.total_shards_per_node" : 1

}'

This property can be placed in the elasticsearch.yml file or can be updated on
live indices using the preceding command. Please remember that your cluster can
stay in the red state if Elasticsearch is not able to allocate all the primary shards.

Moving shards and replicas manually
The last thing we want to discuss is the ability to manually move shards between
nodes. This may be useful, for example, if you want to bring a single node down,
but before doing this, you want to move all the shards from that node. Elasticsearch
exposes the _cluster/reroute REST endpoint, which allows us to control this.
The following operations are available:

•	 Moving a shard from node to node

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[367]

•	 Canceling shard allocation
•	 Forcing shard allocation

Now let's look closer at all of the preceding operations.

Moving shards
Let's say we have two nodes called es_node_one and es_node_two. In addition to
this, we have two shards of the shop index placed by Elasticsearch on the first node.
Now, we would like to move the second shard to the second node. In order to do
this, we can run the following command:

curl -XPOST 'localhost:9200/_cluster/reroute' -d '{

 "commands" : [{

 "move" : {

 "index" : "shop",

 "shard" : 1,

 "from_node" : "es_node_one",

 "to_node" : "es_node_two"

 }

 }]

}'

We've specified the move command, which allows us to move shards (and replicas)
of the index specified by the index property. The shard property is the number of
shards we want to move. And finally, the from_node property specifies the name
of the node we want to move the shard from, and the to_node property specifies
the name of the node we want the shard to be placed on.

Canceling shard allocation
If we would like to cancel an ongoing allocation process, we can run the cancel
command and specify the index, node, and shard we want to cancel the allocation
for. For example, consider the following command:

curl -XPOST 'localhost:9200/_cluster/reroute' -d '{

 "commands" : [{

 "cancel" : {

 "index" : "shop",

 "shard" : 0,

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Your Cluster

[368]

 "node" : "es_node_one"

 }

 }]

}'

The preceding command will cancel the allocation of the shard 0 of the shop index
on the es_node_one node.

Forcing shard allocation
In addition to canceling and moving shards and replicas, we can also allocate an
unallocated shard to a specific node. For example, if we have an unallocated shard
numbered 0 for the users index and we would like to allocate it to es_node_two
by Elasticsearch, we will run the following command:

curl -XPOST 'localhost:9200/_cluster/reroute' -d '{

 "commands" : [{

 "allocate" : {

 "index" : "users",

 "shard" : 0,

 "node" : "es_node_two"

 }

 }]

}'

Multiple commands per HTTP request
We can, of course, include multiple commands in a single HTTP request. For example,
consider the following command:

curl -XPOST 'localhost:9200/_cluster/reroute' -d '{

 "commands" : [

 {"move" : {"index" : "shop", "shard" : 1, "from_node" : "es_node_one",
"to_node" : "es_node_two"}},

 {"cancel" : {"index" : "shop", "shard" : 0, "node" : "es_node_one"}}

]

}'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[369]

Warming up
Sometimes, there may be a need to prepare Elasticsearch in order to handle your
queries. Maybe it's because you heavily rely on the field data cache and you want it
to be loaded before your production queries arrive or maybe you want to warm up
your operating system's I/O cache. Whatever the reason, Elasticsearch allows us to
define the warming queries for our types and indices.

Defining a new warming query
A warming query is nothing more than the usual query stored in a special index
called _warmer in Elasticsearch. Let's assume that we have the following query
that we want to use for warming up:

{
 "query" : {
 "match_all" : {}
 },
 "facets" : {
 "warming_facet" : {
 "terms" : {
 "field" : "tags"
 }
 }
 }
}

To store the preceding query as a warming query for our library index, we will
run the following command:

curl -XPUT 'localhost:9200/library/_warmer/tags_warming_query' -d '{

 "query" : {

 "match_all" : {}

 },

 "facets" : {

 "warming_facet" : {

 "terms" : {

 "field" : "tags"

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Your Cluster

[370]

 }

 }

 }

}'

The preceding command will register our query as a warming query with the name
tags_warming_query. You can have multiple warming queries for your index, but
each of these queries needs to have a unique name.

We can not only define warming queries for the whole index, but also for the specific
type in it. For example, to store our previously shown query as the warming query
only for the book type in the library index, run the preceding command not to the
/library/_warmer URI but to /library/book/_warmer. So, the entire command
will be as follows:

curl -XPUT 'localhost:9200/library/book/_warmer/tags_warming_query' -d '{

 "query" : {

 "match_all" : {}

 },

 "facets" : {

 "warming_facet" : {

 "terms" : {

 "field" : "tags"

 }

 }

 }

}'

After adding a warming query, before Elasticsearch allows a new segment to be
searched on, it will be warmed up by running the defined warming queries on that
segment. It allows Elasticsearch and the operating system to cache data and thus,
speed up searching.

Just as we read in the Full-text searching section of Chapter 1,
Getting Started with the Elasticsearch Cluster, Lucene divides the
index into parts called segments, which once written can't be
changed. Every new commit operation creates a new segment
(which is eventually merged if the number of segments is too
high), which Lucene uses for searching.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[371]

Retrieving the defined warming queries
In order to get a specific warming query for our index, we just need to know its
name. For example, if we want to get the warming query named tags_warming
_query for our library index, we will run the following command:

curl -XGET 'localhost:9200/library/_warmer/tags_warming_query?pretty=true'

The result returned by Elasticsearch will be as follows (note that we've used the
pretty=true parameter to make the response easier to read):

{

 "library" : {

 "warmers" : {

 "tags_warming_query" : {

 "types" : [],

 "source" : {

 "query" : {

 "match_all" : { }

 },

 "facets" : {

 "warming_facet" : {

 "terms" : {

 "field" : "tags"

 }

 }

 }

 }

 }

 }

 }

}

We can also get all the warming queries for the index and type by using the
following command:

curl -XGET 'localhost:9200/library/_warmer'

And finally, we can also get all the warming queries that start with the given prefix.
For example, if we want to get all the warming queries for the library index that
start with the tags prefix, we will run the following command:

curl -XGET 'localhost:9200/library/_warmer/tags*'

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Your Cluster

[372]

Deleting a warming query
Deleting a warming query is very similar to getting one; we just need to use the
DELETE HTTP method. To delete a specific warming query from our index, we just
need to know its name. For example, if we want to delete the warming query named
tags_warming_query for our library index, we will run the following command:

curl -XDELETE 'localhost:9200/library/_warmer/tags_warming_query'

We can also delete all the warming queries for the index by using the
following command:

curl -XDELETE 'localhost:9200/library/_warmer/_all'

And finally, we can also remove all the warming queries that start with the given
prefix. For example, if we want to remove all the warming queries for the library
index that start with the tags prefix, we will run the following command:

curl -XDELETE 'localhost:9200/library/_warmer/tags*'

Disabling the warming up functionality
To disable the warming queries totally, but to save them in the _warmer index, you
should set the index.warmer.enabled configuration property to false (setting this
property to true will result in enabling the warming up functionality). This setting
can be either put into the elasticsearch.yml file or just set using the REST API
on a live cluster.

For example, if we want to disable the warming up functionality for the library
index, we will run the following command:

curl -XPUT 'http://localhost:9200/library/_settings' -d '{

 "index.warmer.enabled" : false

}'

Choosing queries
You may ask which queries should be used as the warming queries; typically, you'll
want to choose the ones that are expensive to execute and the ones that require caches
to be populated. So you'll probably want to choose the queries that include faceting
and sorting based on the fields in your index. In addition to this, parent-child queries
and the ones that include common filters may also be the ones to consider. You may
also choose other queries by looking at the logs, finding where your performance
is not as great as you want it to be. Such queries may also be perfect candidates for
warming up.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[373]

For example, let's say that we have the following logging configuration set in the
elasticsearch.yml file:

index.search.slowlog.threshold.query.warn: 10s
index.search.slowlog.threshold.query.info: 5s
index.search.slowlog.threshold.query.debug: 2s
index.search.slowlog.threshold.query.trace: 1s

And, we have the following logging level set in the logging.yml configuration file:

logger:
 index.search.slowlog: TRACE, index_search_slow_log_file

Notice that the index.search.slowlog.threshold.query.trace property is set
to 1s, and the index.search.slowlog logging level is set to TRACE. This means that
whenever a query is executed for longer than one second (on a shard, not in total),
it will be logged into the slow logfile (the name of which is specified by the index
_search_slow_log_file configuration section of the logging.yml configuration
file). For example, the following can be found in a slow logfile:

[2013-01-24 13:33:05,518][TRACE][index.search.slowlog.query] [Local
test] [library][1] took[1400.7ms], took_millis[1400], search_
type[QUERY_THEN_FETCH], total_shards[32], source[{"query":{"match_
all":{}}}], extra_source[]

As you can see, in the preceding log line, we have the query time, search type, and
the query source itself, which shows us the executed query.

Of course, the values can be different in your configuration, but the slow log can be
a valuable source of the queries that have been running too long and may need to
have some warm up defined—maybe these are parent-child queries and need some
identifiers fetched to perform better, or maybe you are using a filter that is expensive
when you execute it for the first time?

There is one thing you should remember: don't overload
your Elasticsearch cluster with too many warming queries
because you may end up spending too much time warming
up instead of processing your production queries.

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Your Cluster

[374]

Index aliasing and using it to simplify
your everyday work
When working with multiple indices in Elasticsearch, you can sometimes lose track of
them. Imagine a situation where you store logs in your indices. Usually, the amount of
log messages is quite large, and therefore, it is a good solution to have the data divided
somehow. A logical division of such data is obtained by creating a single index for
a single day of logs (if you are interested in an open source solution used to manage
logs, look at the Logstash at http://logstash.net). But after some time, if we keep
all the indices, we will start to have a problem in taking care of all that. An application
needs to take care of all the information, such as which index to send data to, which
to query, and so on. With the help of aliases, we can change this to work with a single
name just as we would use a single index, but we will work with multiple indices.

An alias
What is an index alias? It's an additional name for one or more indices that allow us
to query indices with the use of that name. A single alias can have multiple indices
as well as the other way around; a single index can be a part of multiple aliases.

However, please remember that you can't use an alias that has multiple indices for
indexing or for real-time GET operations. Elasticsearch will throw an exception if you
do that. We can still use an alias that links to only a single index for indexing, though.
This is because Elasticsearch doesn't know in which index the data should be indexed
or from which index the document should be fetched.

Creating an alias
To create an index alias, we need to run the HTTP POST method to the _aliases REST
endpoint with a defined action. For example, the following request will create a new
alias called week12 that will include the indices named day10, day11, and day12:

curl -XPOST 'localhost:9200/_aliases' -d '{

 "actions" : [

 { "add" : { "index" : "day10", "alias" : "week12" } },

 { "add" : { "index" : "day11", "alias" : "week12" } },

 { "add" : { "index" : "day12", "alias" : "week12" } }

]

}'

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[375]

If the alias week12 isn't present in our Elasticsearch cluster, the preceding command
will create it. If it is present, the command will just add the specified indices to it.

We would run a search across the three indices as follows:

curl -XGET 'localhost:9200/day10,day11,day12/_search?q=test'

If everything goes well, we can instead run it as follows:

curl -XGET 'localhost:9200/week12/_search?q=test'

Isn't this better?

Modifying aliases
Of course, you can also remove indices from an alias. We can do this similar to how
we add indices to an alias, but instead of the add command, we use the remove one.
For example, to remove the index named day9 from the week12 index, we will run
the following command:

curl -XPOST 'localhost:9200/_aliases' -d '{

 "actions" : [

 { "remove" : { "index" : "day9", "alias" : "week12" } }

]

}'

Combining commands
The add and remove commands can be sent as a single request. For example, if you
would like to combine all the previously sent commands into a single request,
we will have to send the following command:

curl -XPOST 'localhost:9200/_aliases' -d '{

 "actions" : [

 { "add" : { "index" : "day10", "alias" : "week12" } },

 { "add" : { "index" : "day11", "alias" : "week12" } },

 { "add" : { "index" : "day12", "alias" : "week12" } },

 { "remove" : { "index" : "day9", "alias" : "week12" } }

]

}'

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Your Cluster

[376]

Retrieving all aliases
In addition to adding or removing indices to or from aliases, we and our applications
that use Elasticsearch may need to retrieve all the aliases available in the cluster or all
the aliases that an index is connected to. To retrieve these aliases, we send a request
using the HTTP GET command. For example, the following command gets all the
aliases for the day10 index, and the second one will get all the aliases available:

curl -XGET 'localhost:9200/day10/_aliases'

curl -XGET 'localhost:9200/_aliases'

The response from the second command is as follows:

{

 "day10" : {

 "aliases" : {

 "week12" : { }

 }

 },

 "day11" : {

 "aliases" : {

 "week12" : { }

 }

 },

 "day12" : {

 "aliases" : {

 "week12" : { }

 }

 }

}

Removing aliases
You can also remove an alias using the _alias endpoint. For example, sending
the following command will remove the client alias from the data index:

curl -XDELETE localhost:9200/data/_alias/client

Filtering aliases
Aliases can be used in a way similar to how views are used in SQL databases. You
can use a full Query DSL (discussed in detail in Chapter 2, Indexing Your Data) and
have your query applied to all count, search, delete by query, and so on.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[377]

Let's look at an example. Imagine that we want to have aliases that return data for
a certain client, so we can use it in our application. Let's say that the client identifier
we are interested in is stored in the clientId field, and we are interested in client
12345. So, let's create the alias named client with our data index, which will apply
a filter for clientId automatically:

curl -XPOST 'localhost:9200/_aliases' -d '{

 "actions" : [

 {

 "add" : {

 "index" : "data",

 "alias" : "client",

 "filter" : { "term" : { "clientId" : "12345" } }

 }

 }]

}'

So, when using the defined alias, you will always get your request filtered by a term
query that ensures that all the documents have the 12345 value in the clientId field.

Aliases and routing
Similar to aliases that use filtering, we can add routing values to the aliases. Imagine
that we are using routing on the basis of the user identifier, and we want to use the
same routing values with our aliases. So, for the alias named client, we will use the
routing value of 12345, 12346, 12347 for querying, and only 12345 for indexing. To
do this, we will create an alias using the following command:

curl -XPOST 'localhost:9200/_aliases' -d '{

 "actions" : [

 {

 "add" : {

 "index" : "data",

 "alias" : "client",

 "search_routing" : "12345,12346,12347",

 "index_routing" : "12345"

 }

 }]

}'

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Your Cluster

[378]

This way, when we index our data by using the client alias, the values specified by
the index_routing property will be used. At the time of query, the ones specified by
the search_routing property will be used.

There is one more thing. Please look at the following query sent to the preceding
defined alias:

curl -XGET 'localhost:9200/client/_search?q=test&routing=99999,12345'

The value used as a routing value will be 12345. This is because Elasticsearch will
take the common values of the search_routing attribute and the query routing
parameter, which in our case is 12345.

Elasticsearch plugins
At various places in this book, we have used different Elasticsearch plugins.
You probably remember the additional programming languages used in scripts
and support for the attachments described in the Handling files section of Chapter 6,
Beyond Full-text Searching. In this section, we will look at how plugins work and how
to install them.

The basics
Elasticsearch plugins are located in their own subdirectory in the plugins directory.
If you have downloaded a new plugin from a site, you can just create a new directory
with the plugin name and unpack that plugin archive to this directory. There is also
a more convenient way to install plugins: by using the plugin script. We have used it
several times in this book, so this is the time to describe this tool.

Elasticsearch has two main types of plugins. These two types can be categorized based
on their content: Java plugins and site plugins. Elasticsearch treats the site plugins as a
file set that should be served by the built-in HTTP server under the /_plugin/plugin_
name/ URL (for example, /_plugin/bigdesk/). In addition, every plugin without Java
content is automatically treated as a site plugin. That's all. From Elasticsearch's point of
view, a site plugin doesn't change anything in Elasticsearch's behavior.

Java plugins usually contain the .jar files that are scanned for the es-plugin.
properties file. This file contains information about the main class that should
be used by Elasticsearch as an entry point to configure plugins and allow them to
extend the Elasticsearch functionality. The Java plugins can contain the site part that
will be used by the built-in HTTP server (just like with the site plugins). This part of
the plugin needs to be placed in the _site directory.

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[379]

Installing plugins
By default, plugins are downloaded from the download.elasticsearch.org
website. If the plugin is not available in this location, Maven Central (http://
search.maven.org/), Maven Sonatype (https://repository.sonatype.org/),
and GitHub (https://github.com/) repositories are checked. The plugin tool
assumes that the given plugin address contains the organization name followed by
the plugin name and version number. Let's look at the following command example:

bin/plugin -install elasticsearch/elasticsearch-lang-javascript/2.0.0.RC1

The preceding command results in the installation of a plugin that allows us to use
additional scripting language: JavaScript. We choose Version 2.0.0.RC1 of this plugin.
We can also omit the version number; in such cases, Elasticsearch will try to find a
version equal to the Elasticsearch version or the latest master version of the plugin.

Just so we know what to expect, this is an example result of running the
preceding command:

-> Installing elasticsearch/elasticsearch-lang-javascript/2.0.0.RC1...

Trying http://download.elasticsearch.org/elasticsearch/elasticsearch-
lang-javascript/elasticsearch-lang-javascript-2.0.0.RC1.zip...

Downloading ...
...
...
...
...
...
...
...
...
...
..DONE

Installed elasticsearch/elasticsearch-lang-javascript/2.0.0.RC1 into /
opt/elasticsearch-1.0.0/plugins/lang-javascript

If you write your own plugin and you have no access to the earlier-mentioned sites,
there is no problem. The plugin tool also provides the –url option that allows us
to set any location for the plugins including the local filesystem (using the file://
prefix). For example, the following command will result in the installation of a
plugin archived on the local filesystem at /tmp/elasticsearch-lang-javascript-
2.0.0.RC1.zip:

bin/plugin -install lang-javascript -url file:///tmp/elasticsearch-lang-
javascript-2.0.0.RC1.zip

www.it-ebooks.info

http://www.it-ebooks.info/

Administrating Your Cluster

[380]

Removing plugins
Removing a plugin is as simple as removing its directory. You can also do this by
using the plugin tool. For example, to remove the river-mongodb plugin, we can
run a command as follows:

bin/plugin -remove river-mongodb

You need to restart the Elasticsearch node for
the plugin installation or removal to take effect.

The update settings API
Elasticsearch lets us tune it by specifying various parameters in the elasticsearch.
yml file. But you should treat this file as the set of default values that can be changed
in the runtime using the Elasticsearch REST API.

In order to set one of the properties, we need to use the HTTP PUT method and send
a proper request to the _cluster/settings URI. However, we have two options:
transient and permanent property settings.

The first one, transient, will set the property only until the first restart. In order to
do this, we will send the following command:

curl -XPUT 'localhost:9200/_cluster/settings' -d '{

 "transient" : {

 "PROPERTY_NAME" : "PROPERTY_VALUE"

 }

}'

As you can see, in the preceding command, we used the object named transient and
we added our property definition there. This means that the property will be valid
only until the restart. If we want our property settings to persist between restarts,
instead of using the object named transient, we will use the one named persistent.

In every moment, you can fetch these settings using the following command:

curl -XGET localhost:9200/_cluster/settings

www.it-ebooks.info

http://www.it-ebooks.info/

Chapter 8

[381]

Summary
In this chapter, we learned how to create backups of our cluster; we created a backups
repository, we created backups, and we managed them. In addition to this, we learned
how to monitor our cluster using the Elasticsearch API, what the cat API is, and why
it is more convenient for usage from a human perspective. We also controlled shard
allocation, learned how to move a shard around the cluster, and controlled cluster
rebalancing. We used the warmers functionality to prepare the cluster for production
queries, and we saw how aliasing can help to manage the data in our cluster. Finally,
we looked at what Elasticsearch plugins are and how to use the update settings API
that Elasticsearch provides.

We have reached the end of the book. We hope that it was a nice reading experience
and that you found the book interesting. We really hope that you have learned
something from this book, and now, you will find it easier to use Elasticsearch
every day. As the authors of this book and Elasticsearch users, we tried to bring
you, our readers, the best reading experience we could. Of course, Elasticsearch
is more than what we have described in the book—especially when it comes to
monitoring and administration capabilities and API. However, the number of
pages is limited, and if we describe everything in great detail, we would end up
with a book that is one thousand pages long. Also, we are afraid we wouldn't be
able to write about everything in enough detail. We need to remember that
Elasticsearch is not only user friendly, but also provides a large amount of
configuration options, querying possibilities, and so on. Due to this, we had to
choose which functionality had to be described in greater detail, which had to
be only mentioned, and which had to be totally skipped. We hope that the our
choices regarding the topics were right

We would also like to say that it is worth remembering that Elasticsearch is
constantly evolving. When writing this book, we went through a few stable
versions finally making it to the release of 1.0.0 and 1.0.1. Even back then, we
knew that new features and improvements are will come. Be sure to check www.
elasticsearch.org periodically for the release notes for new versions of
Elasticsearch if you want to be up to date with the new features being added.
We will also be writing about new features that we think are worth mentioning
on www.elasticsearchserverbook.com. So if you are interested, do visit this
site from time to time.

www.it-ebooks.info

http://www.it-ebooks.info/

www.it-ebooks.info

http://www.it-ebooks.info/

Index
Symbols
_all field 75, 76
_cache parameter 146
--data-binary parameter 71, 160
_doc object 196
-d parameter 160
{dynamic_type} 341
_fields object 197
_id field 73, 74
_index field 77
_local search operation 105
{name} 341
_name field 300
_name property 144
_only_node:node_id search operation 105
_prefer_node:node_id search operation 106
?pretty parameter 71
_primary_first search operation 105
_primary search operation 105
_script_field parameter 268
_shards:1,2 search operation 106
_shards parameter 106
_size field 77
_source field

about 76, 319
exclusion 76
inclusion 76

_source object 197
_timestamp field 78
_ttl field 79, 80
_type field 74, 75
_uid field 73, 74

A
add command 375
additional gateway recovery options

gateway.expected_data_nodes
property 329

gateway.expected_master_nodes
property 329

gateway.recover_after_data_nodes
property 329

gateway.recover_after_master_nodes
property 329

additional parameters
about 349
ignore_unavailable parameter 346
include_global_state parameter 346
indices parameter 346
partial parameter 346

after_effect property 65
aggregations

about 233
Bucketing aggregations 240
bucket ordering 258
global aggregation 258-261
Metric aggregations 236
nested aggregations 255-257
query structure 234-236

aliases
and routing 377, 378
filtering 376
removing 376
retrieving 376

aliases option 357

www.it-ebooks.info

http://www.it-ebooks.info/

[384]

allocation
node, excluding from 363

allocation option 357
allow_leading_wildcard parameter 116
all_terms parameter 268
analysis process 173, 174
Analyze API

URL 61
analyzer attribute 54
analyzer field 62
analyzer option 282
analyzer parameter 111-126
analyzer property 37, 58
analyzers

defining 59-62
keyword analyzer 59
language analyzer 59
pattern analyzer 59
simple analyzer 58
snowball analyzer 59
standard analyzer 58
stop analyzer 58
URL 204
using 58
whitespace analyzer 58

analyze_wildcard parameter 117
analyze_wildcard property 40
and value 316
Apache Lucene

URL 8
using 149

Apache Lucene scoring
about 193
document matching 194
scoring formula 194, 195

Apache Lucene TF/IDF scoring formula
URL 11

Apache Solr synonyms
equivalent synonyms 226
expanding synonyms 226
Explicit synonyms 225

Apache Tika
URL 203

array 175
auto_generate_phrase_queries

parameter 117

automatic identifier creation 27
automatic index creation

altering 46
avg aggregation 236
avg value 182

B
basic_model property 65
basic queries, Elasticsearch

common terms query 110, 111
dismax query 128
fuzzy_like_this_field query 122
fuzzy_like_this query 121, 122
fuzzy query 122, 123
identifiers query 119
match_all query 110
match query 112
more_like_this_field query 126
more_like_this query 125
multi_match query 115
prefix query 120
query_string query 116
range query 127
regular expression query 129
simple_query_string query 118
term query 108, 109
terms query 109
wildcard query 124

binary field, core type 56
binary packages

URL 18
bitset 142
bloom_default 67
bloom filter

URL 67
bloom_pulsing 67
Boolean, core type 55
Boolean match query

about 112, 113
analyzer parameter 113
cutoff_frequency parameter 113
fuzziness parameter 113
max_expansions parameter 113
operator parameter 112
prefix_length parameter 113
zero_terms_query parameter 113

www.it-ebooks.info

http://www.it-ebooks.info/

[385]

bool filter 142
bool query 130, 185
bool value 316
boost

about 209
adding, to queries 209-211

boost attribute 53, 120
boost_factor function 215
boost_factor parameter 215
boosting query 131, 213
boost_mode parameter 214-216
boost parameter 111-215
boost property 109
boost_terms parameter 126
Bounding box filtering 304-306
breaker option 356
bucket 240, 236
Bucketing aggregation

date_histogram aggregation 252
date_range aggregation 245-247
geo_distance aggregation 253, 254
geohash_grid aggregation 255
histogram aggregation 251
IPv4 range aggregation 248, 249
missing aggregation 249
nested aggregation 250
range aggregation 242, 243
terms aggregation 240, 241

bulk indexing
data, preparing for 69, 70

bulk thread pool 334

C
cache property 320
cache thread pool 333
calculations

faceting, filters used 265, 266
faceting, queries used 264, 265

cancel command 367
cat API 357, 358
cat API, options

aliases option 357
allocation option 357
count option 357
health option 357
indices option 357

master option 357
nodes option 357
pending_tasks option 358
recovery option 358
shards option 358
thread_pool option 358

child document
about 184
data, querying 185

child mappings 183
CIDR notation

URL 248
circuit

breaking 336, 337
circuit breaker 331
cluster 14
cluster health API

about 348
additional parameters 349
information details, controlling 349

cluster name
multicast, configuring 326
unicast, configuring 327

cluster.name property 326
cluster rebalancing

concurrent streams on single node,
controlling 361

controlling 359
primary shards initialized on single node,

controlling 360
settings 360
shards allocation types, controlling 361
shards initialized on single node,

controlling 360
shards moved between nodes,

controlling 360
cluster.routing.allocation.allow_rebalance

property 360
cluster state API 356
cluster wide allocation 366
commands

combining 375
common attributes 52, 53
common terms query

about 110, 111
analyzer parameter 111
boost parameter 111

www.it-ebooks.info

http://www.it-ebooks.info/

[386]

cutoff_frequency parameter 111
disable_coord parameter 112
high_freq_operator parameter 111
low_freq_operator parameter 111
minimum_should_match parameter 111
query parameter 111

completion object 287
completion section 353
completion suggester

about 278, 284, 285
custom weights 288
data, indexing 285, 286
indexed completion suggester data,

querying 286, 287
compound queries

about 129
bool query 130
boosting query 131
constant_score query 132
indices query 133

concepts, Elasticsearch
cluster 14
gateway 15
node 14
replica 14
shards 14

concurrent streams
on single node, controlling 361

constant_score_boolean rewrite method 168
constant_score_filter rewrite method 168
constant_score query 132, 212
content_type field 300
Coord 194
copy_to attribute 53
core types

binary field 56
boolean 55
common attributes 52, 53
date 56
number 55
string 53, 54

count option 357
count type 104
CRUD (create-retrieve-update-delete) 24
custom_boost_factor query

replacing 219, 220

custom_filters_score query
replacing 221

custom_score query
replacing 220

custom value 106
custom weights 288
cutoff_frequency parameter 111, 113

D
data

about 174, 175
indexing 70-72
preparing, for bulk indexing 69, 70
sorting 161
storing, in Elasticsearch 25

data concepts, Elasticsearch
document 12, 13
document type 13
Index 12
mapping 13

data indexing 183
data node

configuring 325
data, querying

in child documents 185
in parent documents 187

data, sorting
collation 166
dynamic criteria 165
national characters 166

data structure 172
data type

determining 47-49
field type guess, disabling 49

date, core type 56
date_histogram aggregation

about 252
time zones 252

date_histogram facet 272
date histogram faceting 271
date_range aggregation 245-247
DEB package

used, for installing Elasticsearch 18
decay functions 217
decay parameter 219
default analyzers 63

www.it-ebooks.info

http://www.it-ebooks.info/

[387]

default_field parameter 116
default filters and tokenizers

URL 60
default indexing 84
default_operator parameter 116
default_operator property 37
default postings format 66
default sorting 161, 162
DELETE HTTP method 372
deprecated query

about 219
custom_boost_factor query,

replacing 219, 220
custom_filters_score query, replacing 221
custom_score query, replacing 220

DFR similarity
configuring 65

dfs_query_and_fetch type 104
dfs_query_then_fetch type 104
different languages

handling 202
directory structure 18, 19
direct postings format 67
disable_coord parameter 112, 130
discovery 323
discovery types 324
discovery.zen.fd.ping_interval property 327
discovery.zen.fd.ping_retries property 327
discovery.zen.fd.ping_timeout property 327
discovery.zen.minimum_master_nodes

property 326
discovery.zen.ping.multicast.enabled

property 326, 327
discovery.zen.ping.unicast.hosts

property 327
Disjunction Max. See DisMax
disk-based shard allocation

configuring 365
enabling 365

DisMax 117
dismax query 128
Distance-based sorting 302-304
Divergence from randomness model 65
doc_count property 241
docs section 351
document 12, 13

Document boost 194
document language

detecting 203
document matching 194
documents

deleting 30
retrieving 27, 28
updating 28-30

document structure 262, 263
document type 13
doc values

configuring 68, 69
doc_values_format property 69
dynamic criteria 165
dynamic_date_formats property 48
dynamic mapping

turning off 178
dynamic property 178
dynamic templates

about 340, 341
field definition 341
matching pattern 341

E
Elasticsearch

circuit breaker 331
concepts 14
configuring 19, 20
data concepts 12, 13
data, querying 206
data, storing in 25
dedicated filters 141
different languages, handling 202
document language, detecting 203
field data cache 330
filter cache 330
index buffers 332
indexing 15, 16
index refresh rate 332
installing, DEB package used 18
installing, RPM package used 18
mappings 204-206
mappings, sending to 177
multiple languages, handling 203
MVEL 198

www.it-ebooks.info

http://www.it-ebooks.info/

[388]

objects, used in scripts 196, 197
other languages, using 198
querying 91, 92
running 20-22
running, as system service on Linux 23
running, as system service on Windows 24
sample document 204
script library, using 199
searching 15, 16
shutting down 22
store module 331
thread pool configuration 333, 334

Elasticsearch API
cat API 357, 358
cluster health API 348
cluster state API 356
indices segments API 357
indices stats API 350, 351
nodes info API 353-355
nodes stats API 355, 356
pending tasks API 357
status API 353
used, for monitoring cluster 348

Elasticsearch index
about 43
automatic index creation, altering 46
creating 45
newly created index, setting 46, 47
replicas, creating 44, 45
shards, creating 44, 45

Elasticsearch, installing
directory structure 18, 19
Java, installing 17
on Linux, from binary packages 18
URL 17

Elasticsearch plugins
about 378
installing 379
removing 380
URL 379

Elasticsearch, querying
example data 92-94
fields, choosing 99
paging 95
result size 95
score, limiting 97
script fields, using 101, 102

URI request query, using 94, 95
version value, returning 96

Elasticsearch query response 33, 34
Elasticsearch RESTful API 25
Elasticsearch service wrapper

URL 23
Elasticsearch snapshotting

old snapshots, deleting 348
snapshot repository, creating 344, 345
snapshots, creating 345, 346
snapshots, restoring 347
using 343

enabled property 77
enable_position_increments parameter 117
envelope shape 308
equivalent synonyms 226
example data 92-94
exclude parameter 268
exclusions 261
execution property 320
existence parameter 138
exists filter 137
exists property 28
expanding synonyms 226
expand property 226
explain parameter 38, 160
Explicit synonyms 225, 226
extended_stats aggregation 238, 240

F
faceting

date histogram faceting 271
document structure 262, 263
geographical faceting 276
memory demanding 277
numerical faceting 271
numerical field statistical data,

computing 272-274
Range based faceting 268-270
returned results 263, 264
statistical data, computing for

terms 274, 275
terms faceting 266-268

faceting results
filtering 277

field analysis 227, 229

www.it-ebooks.info

http://www.it-ebooks.info/

[389]

field boost 194
field boosting

defining, in input data 222, 223
defining, in mapping 223

field data cache 330, 336, 337
fielddata section 353
fielddata value 316
field definition 341
field option 281
field parameter 201
fields

about 52
choosing 99
configuring 149
modifying 190, 191
selecting, for sorting 162-164

fields parameter 39, 118, 121, 125, 268
fields property 122, 300
field type guess

disabling 49
file-based synonyms 225
files

handling 297-300
information, adding 300
templates, storing 339, 340

filter cache 330
filter_cache section 353
filters

caching 146
combining 141
named filters 143-145
used, for faceting calculations 265, 266
using 134, 136

filter types
exists filter 137
identifiers filter 139, 140
limit filter 139
missing filter 138
range filter 136, 137
script filter 138
type filter 139
URL 60

final mappings 176, 177
fixed thread pool 333
flush section 353
format attribute 56, 247
format parameter 247

freq property 281
from_node property 367
from parameter 40
from property 95
fs option 355
FST (Finite State Transducers) 67
full-text searching

about 8
input data analysis 10
Lucene architecture 8, 9
Lucene glossary 8, 9
query relevance 11
scoring relevance 11

function_score query
about 213
structure 214-219
URL 219

fuzziness parameter 113
fuzzy_like_this_field query 122
fuzzy_like_this query

about 121, 122
analyzer parameter 122
boost parameter 122
fields parameter 121
ignore_tf parameter 121
like_text parameter 121
max_query_terms parameter 121
min_similarity parameter 121
prefix_length parameter 121

fuzzy_max_expansions parameter 117
fuzzy_min_sim parameter 117
fuzzy_prefix_length parameter 117
fuzzy query

about 122, 123
boost parameter 123
max_expansions parameter 124
min_similarity parameter 123
prefix_length parameter 124
value parameter 123

G
gateway 15, 328
gateway.expected_data_nodes property 329
gateway.expected_master_nodes

property 329
gateway.expected_nodes property 328

www.it-ebooks.info

http://www.it-ebooks.info/

[390]

gateway.recover_after_data_nodes
property 329

gateway.recover_after_master_nodes
property 329

gateway.recover_after_nodes property 329
gateway.recover_after_time property 329
gateway.type property 328
gather phase 17, 103
Geo

example data 302
mappings, for spatial search 301
sample queries 302

geo_distance aggregation 253, 254
geographical faceting 276
Geohash

URL 255, 302
geohash_grid aggregation 255
GeoJSON

URL 308
geo shapes

about 307
envelope 308
example usage 309, 310
multipolygon shape 309
point 308
polygon 308

get section 352
get thread pool 333
GitHub

URL 379
global aggregation 258-261
global settings 151, 152
gte parameter 127
gt parameter 127

H
health option 357
high_freq_operator parameter 111
highlighted fragments

controlling 151
highlighting

about 147-149
Apache Lucene, using 149
field, configuring 149
global settings 151, 152

highlighted fragments, controlling 151
HTML tags, configuring 150, 151
local settings 151, 152
matching requirement 152-155
postings highlighter 155-158

histogram aggregation 251
HTML tags

configuring 150, 151
http.max_content_length property 70
http option 355
http parameter 355
HTTP PUT command 189

I
IB similarity

configuring 66
id_cache section 353
identified language

queries, using with 206
Identifier fields

_id field 73, 74
_uid field 73, 74

identifiers filter 139, 140
identifiers query 119
id property 320
ifconfig command 324
ignore_above attribute 54
ignore_conflicts parameter 191
ignore_malformed attribute 55, 56
ignore_tf parameter 121
ignore_unavailable parameter 346
include_global_state parameter 346
include_in_all attribute 53
include_in_all property 75
inclusions 261
index

about 12
creating 362, 363
shapes, storing 311, 312

index alias
about 374
creating 374, 375
modifying 375

index_analyzer attribute 54
index attribute 53
index buffers 332

www.it-ebooks.info

http://www.it-ebooks.info/

[391]

indexed completion suggester data
querying 286, 287

indexed documents percolation 296
indexing 10, 11
indexing, Elasticsearch 15, 16
indexing section 352
index.mapper.dynamic property 178
index_name attribute 52
index_name property 56
index_options attribute 54, 155
index_options property 156
index property 320
index.refresh_interval property 332
index refresh rate 332, 335
index.routing.allocation.include.zone

property 363
index.routing.allocation.require

property 364
index_routing property 378
index.search.slowlog.threshold.query.trace

property 373
index structure 183
index structure mapping

about 50, 51
analyzers, using 58
core types 52
fields 52
IP address type 57
multifields 57
token_count type 58
type definitions 51

index structure, modifying
fields, modifying 190, 191
mappings 189
new field, adding 189, 190

index templates 338
index thread pool 333
index-time boosting

about 222
field boosting, defining in input

data 222, 223
field boosting, defining in mapping 223

index-time synonyms
using 227

indices analyze API
URL 35

indices.cache.filter.terms.expire_after_access
property 321

indices.cache.filter.terms.expire_after_write
property 321

indices.cache.filter.terms.size property 321
indices.fielddata.breaker.limit property 331
indices.fielddata.cache.expire property 331
indices.fielddata.cache.size property 331
indices option 355, 357
indices parameter 346
indices query 133
indices segments API 357
indices stats API

about 350, 351
docs section 351
get section 352
indexing section 352
search section 352
store section 351

indices.store.throttle.type property 83
Information-based model 65
information details

controlling 349
input data

field boosting, defining 222, 223
input data analysis

about 10
indexing 10, 11
querying 10, 11

input property 286
install command 24
Inverse document frequency 194
inverted index 8
IP addresses

used, for shard allocation 364
IP address type 57
IPv4 range aggregation 248

J
Java

installing 17
JAVA API

URL 261
JavaScript Object Notation. See JSON
Java threads

URL 333

www.it-ebooks.info

http://www.it-ebooks.info/

[392]

Java Virtual Machine (JVM) 20
Joda Time library

URL 247
JSON

URL 21, 51
jvm option 355
jvm parameter 354

K
key attribute 244
keyed attribute 243
key_field property 274
key property 241
keyword analyzer 59
kill command 22

L
lambda property 66
Lang property 196
language analyzer 59

URL 59
Language detection

URL 203
Length norm 194
lenient parameter 117
like_text parameter 121, 125
limit filter 139
Linux

Elasticsearch, installing from binary
packages 18

Elasticsearch, running as system service 23
local settings 151, 152
local=true parameter 356
location attribute 344
Logstash

URL 374
lowercase_expanded_terms property 40
lowercase_expand_terms parameter 117
lowercase_terms option 282
low_freq_operator parameter 111
lte parameter 127
lt parameter 127
Lucene architecture 8, 9
Lucene glossary 8, 9
Lucene Javadocs

URL 195

Lucene query syntax
about 41
URL 41

M
mappings

about 13, 175, 176, 189, 204, 206
creating 47
data type, determining 47-49
dynamic mapping 178
field boosting, defining 223
final mappings 176, 177
for spatial search 301
index structure mapping 50, 51
postings format 66, 67
sending, to Elasticsearch 177
similarity models 63
synonym, using 224

mappings, creating
array 175
data 174, 175
objects 175

master-election process
configuring 325

master node
configuring 325

master option 357
match_all query 110
matching pattern 341
match_phrase query

about 114
analyzer parameter 114
slop parameter 114

match_phrase_prefix query 114
match query

about 112
Boolean match query 112, 113
match_phrase_prefix query 114
match_phrase query 114

match template 341
Maven Central

URL 379
Maven Sonatype

URL 379
max aggregation 236
max_boost parameter 215

www.it-ebooks.info

http://www.it-ebooks.info/

[393]

max_doc_freq parameter 126
max_edits option 282
max_errors option 284
max_expansions parameter 113, 114, 124
max_query_terms parameter 121, 125
max value 182
max_word_len parameter 126
memory 332
memory postings format 67
merge factor 82
merge policy 81
merge scheduler 82
merges section 353
Metric aggregations

avg aggregation 236
extended_stats aggregation 238-240
max aggregation 236
min aggregation 236
stats aggregation 238-240
sum aggregation 236
value_count aggregation 238

metrics 356
Mike McCandless

URL 67
min aggregation 236
min_doc_freq parameter 125
minimum_match property 109
minimum_should_match

parameter 111, 117, 130
min_similarity parameter 121, 123
min_term_freq parameter 125
min_word_len option 282
min_word_len parameter 126
missing aggregation 249
missing fields

behavior, specifying for 164, 165
missing filter 138
missing parameter 165
mmapfs 332
more_like_this_field query 126
more_like_this query

about 125
analyzer parameter 126
boost parameter 126
boost_terms parameter 126
fields parameter 125

like_text parameter 125
max_doc_freq parameter 126
max_query_terms parameter 125
max_word_len parameter 126
min_doc_freq parameter 125
min_term_freq parameter 125
min_word_len parameter 126
percent_terms_to_match parameter 125
stop_words parameter 125

move command 367
multicast

configuring 326
URL 324

MULTICAST property 324
multifields 57
multi_match query

about 115
example 140
tie_breaker parameter 115
use_dis_max parameter 115

multiple commands
per HTTP request 368

multiple languages
handling 203

multipolygon shape 309
MVEL

about 198
URL 198

MVFLEX Expression Language. See MVEL

N
named filters 143-145
native code

factory implementation 199
implementing 200, 201

native script
installing 201
running 201

nested aggregation 250, 255-257
nested objects

using 178-182
working, URL 179

nested query 182
network option 355
network parameter 354

www.it-ebooks.info

http://www.it-ebooks.info/

[394]

new document
automatic identifier creation 27
creating 25, 26

new field
adding 189, 190

newly created index
setting 46, 47

newScript() method 200
niofs 332
node

about 14
cluster name, setting 326
discovery types 324
excluding, from allocation 363
master node 324
ping settings 327

node attributes
requiring 364

node parameters
specifying 362

nodes info API 353-355
node.size property 364
nodes option 357
nodes stats API 355, 356
node.zone property 363
no_match_query property 133
none value 182
normalization property 65
norms.enabled attribute 54
norms.loading attribute 54
null_value attribute 53
number, core type 55
number of matching queries

obtaining 296
numerical faceting 271
numerical field statistical data

computing 272-274

O
objects 175
offset parameter 219
Okapi BM25 model 65
old snapshots

deleting 348
omit_norms attribute 54

OpenJDK
URL 17

operator parameter 112
optimistic locking

URL 31
order attribute 241
order parameter 268, 338
or value 316
os option 355
os parameter 354

P
paging 95
parameters

passing, to script fields 102
Params object 196
paramYear variable 102
parent-child relationship

data indexing 183
index structure 183
performance considerations 188
querying 184
used, as filters 188
using 182

parent document
about 184
data, querying 187

parent mappings 183
parent_type property 187
partial fields 100
partial parameter 346
path property 320
pattern analyzer

about 59
URL 59

payload property 286
pending tasks API 357
pending_tasks option 358
percent_terms_to_match parameter 125
percolate_index parameter 296
percolate section 353
percolate thread pool 334
percolator

about 289
index, using 289

www.it-ebooks.info

http://www.it-ebooks.info/

[395]

number of matching queries, obtaining 296
preparing 290-292

performance considerations 188
phrase_slop parameter 117
phrase suggester

about 278, 283, 284
configuring 284

plain method 316
plugins parameter 355
point 219
point shape 308
polygon shape 308
position_offset_gap attribute 54
post_filter parameter 134
postings format

about 66, 67
bloom_default 67
bloom_pulsing 67
configuring 67
default postings format 66
direct postings format 67
memory postings format 67
pulsing postings format 67

postings highlighter 155-158
precision_step attribute 55-57
prefix_length parameter 113, 121, 124
prefix_len option 282
prefix query 120
pretty parameter 22
pretty=true parameter 371
primary shard 14
primary shards

initialized on single mode, controlling 360
process option 355
process parameter 354
pulsing postings format 67

Q
queries

boost, adding to 209-211
choosing 372, 373
combining 208, 209
used, for faceting calculations 264, 265
validate API, using 158-160
validating 158
with identified language 206

with unknown languages 207
query 229-231
query analysis 35, 36
query_and_fetch type 104
query boosts

scores, influencing with 209
query DSL 91
querying 10, 11
querying process

execution preferences, searching 105, 106
query logic 103, 104
Search shards API 106-108
search types 104, 105

query logic 103, 104
Query norm 194
query parameter 111, 116
query property 133
query relevance 11
query rewrite

about 166
properties 168, 169

query_string query
about 116
allow_leading_wildcard parameter 116
analyzer parameter 116
analyze_wildcard parameter 117
auto_generate_phrase_queries

parameter 117
boost parameter 117
default_field parameter 116
default_operator parameter 116
enable_position_increments parameter 117
fuzzy_max_expansions parameter 117
fuzzy_min_sim parameter 117
fuzzy_prefix_length parameter 117
lenient parameter 117
lowercase_expand_terms parameter 117
minimum_should_match parameter 117
phrase_slop parameter 117
query parameter 116
running, against multiple fields 118

query structure 234-236
query_then_fetch type 104
query-time synonyms

using 227
queue_size property 333

www.it-ebooks.info

http://www.it-ebooks.info/

[396]

R
RAM buffer

for indexing 337
random_score function 216
range aggregation 242, 243
range attribute 160
Range based faceting 268-270
range filter 136, 137
range query

about 127
gte parameter 127
gt parameter 127
lte parameter 127
lt parameter 127

recovery 328
recovery control 328, 329
recovery option 358
refresh section 353
regex parameter 268
regular expression query 129
regular expression syntax

URL 129
relevance 195, 196
rename_replacement parameter 347
replica 14
replica allocation

configuration 362
controlling 362
disk-based shard allocation 364
index, creating 362, 363
IP addresses, using for shard allocation 364
node attributes, requiring 364
node parameters, specifying 362
nodes, excluding from allocation 363

replicas
creating 44, 45

replica shards 14
replicas per node 366
require_field_match property 152
REST API

documents, deleting 30
documents, retrieving 27
documents, updating 28-30
Elasticsearch RESTful API 25
new document, creating 25, 26
versioning 30, 31

results
filtering 134

result size 95
returned information

limiting 358
returned results 263, 264
rewrite method 120
rewrite parameter 168
rewrite process

example 166, 168
rewrite property 167, 169
right store

choosing 335
routing

about 86, 87
and aliases 377, 378
default indexing 84

routing fields 89, 90
routing parameters 88
routing property 320
RPM package

used, for installing Elasticsearch 18
run() method 201

S
sample data 32
sample queries

Bounding box filtering 304-306
Distance-based sorting 302-304
distance, limiting 306, 307

scan type 105
scatter phase 16, 103
score

influencing, with query boosts 209
limiting 97
modifying 212

score_mode parameter 215
score_mode property 182
score, modifying

boosting query 213
constant_score query 212
deprecated query 219
function_score query 213

score parameter 186
score property 281

www.it-ebooks.info

http://www.it-ebooks.info/

[397]

score property calculation
factors 194

scoring_boolean rewrite method 168
scoring formula 194, 195
scoring relevance 11
script fields

parameters, passing to 102
using 101, 102

script filter 138
script parameter 165, 201, 268
script property 196, 237
scripts

using 237, 238
script_score function 216
scroll API

about 312
drawback 313
problem definition 313
solution 313-315

search_analyzer attribute 54
searching 85, 86
searching, Elasticsearch 15-17
search_routing attribute 378
search_routing property 378
search section 352
Search shards API 106, 108
search thread pool 333
search_type=count parameter 234
search types

about 104, 105
count type 104
dfs_query_and_fetch type 104
dfs_query_then_fetch type 104
query_and_fetch type 104
query_then_fetch type 104
scan type 105

segment merging
about 80, 81
merge factor 82
merge policy 81
merge scheduler 82
need for 81
throttling 83
tuning 336

segments merge 9
segments section 353

separator option 284
settings API

updating 380
settings parameter 354
shapes

storing, in index 311, 312
shard allocation

canceling 367
forcing 368
IP addresses, used for 364

shard property 367
shards

about 14
creating 44, 45
initialized on single mode, controlling 360
moved between nodes, controlling 360
moving 367

shards allocation types
controlling 361

shard_size option 282
shard_size parameter 267
shards option 358
similarity models

Divergence from randomness model 65
Information-based model 65
Okapi BM25 model 65
per-field similarity, setting 64

similarity property 65
simple analyzer 58
simplefs 332
simple_query_string query 118
size attribute 241
size option 282
size parameter 40, 139, 267, 294
size property 96, 333
slop parameter 114
snapshot

creating 345, 346
restoring 347, 348

snapshot repository
creating 344, 345

snowball analyzer 59
URL 59

sorting
fields, selecting for 162-164

sort option 282

www.it-ebooks.info

http://www.it-ebooks.info/

[398]

sort parameter 39
split-brain 325
standard analyzer

about 58
URL 58

statistical data
computing, for terms 274, 275

stats aggregation 238, 240
status API 353
Stemming 59
stop analyzer 58

URL 58
stop words

URL 110
stop_words parameter 125
store attribute 53
store module 331
store property 177.
store section 352
store type

memory 332
mmapfs 332
niofs 332
simplefs 332

string, core type 53, 54
suggester response 279-281
suggesters

URL 278
using 278

suggester types
completion suggester 278
phrase suggester 278
term suggester 278

suggestions
including 278, 279

suggest thread pool 333
sum aggregation 236
synonym

used, in mappings 224
synonym filter

file-based synonyms 225
synonym, used in mappings 224
using 224

synonym rules
Apache Solr synonyms, using 225

defining 225
WordNet synonyms, using 227

synonyms_path property 225
synonyms property 224

T
template parameter 339
templates

example 338, 339
storing, in files 339, 340

Term frequency 194
term query 108, 109
terms aggregation 240, 241
terms faceting 266-268
terms filter

about 316
terms lookup 317-319

terms lookup
about 317-319
cache settings 321
query structure 320

terms query 109
term suggester

about 278, 281
configuration options 281

term suggester, configuration options
analyzer option 282
field option 281
lowercase_terms option 282
max_edits option 282
min_word_len option 282
prefix_len option 282
shard_size option 282
size option 282
sort option 282
text option 281

term_vector attribute 53
term_vector property 149
text option 281
text property 281
thread_pool option 356, 358
thread_pool parameter 354
thread pools

bulk thread pool 334
cache thread pool 333
configuring 333

www.it-ebooks.info

http://www.it-ebooks.info/

[399]

fixed thread pool 333
get thread pool 333
index thread pool 333
percolate thread pool 334
search thread pool 333
suggest thread pool 333
tuning 336

throttling 83
tie_breaker parameter 115, 128
tie parameter 128
timeout parameter 40
time zones 252

URL 253
token_count type 58
token stream 10
to_node property 367
top children query 186
top_terms_boost_N rewrite method 169
top_terms_N rewrite method 169
total value 182
track_scores=true property 39
translog

about 337
URL 337

translog section 353
transport option 355
transport parameter 354
tree-like structures

analysis process 173, 174
data structure 172
indexing 171

type definitions 51
type filter 139
type parameter 140
type property 119, 176, 185, 320

U
unicast

configuring 327
URL 324

unknown languages
queries, using with 207

unmatch template 341
URI query string parameters 37-40

URI request
about 33
Elasticsearch query response 33, 34
query analysis 35, 36
URI query string parameters 37-40

URI request query
Lucene query syntax 41
sample data 32
using 94, 95

use_dis_max parameter 115
User Datagram Protocol (UDP) 72

V
validate API

using 158-160
valid attribute 160
value_count aggregation 238
value_field property 274
value parameter 123
value property 109
versioning

example 31
from external system 31, 32

version property 96
version_type=external parameter 31
version value

returning 96

W
wait_for_completion parameter 345
wait_for_nodes parameter 350
wait_for_status parameter 350
warmer section 353
warming query

defining 369, 370
deleting 372
retrieving 371

warming up functionality
disabling 372

weight parameter 289
weight property 288
whitespace analyzer 58
wildcard query 124

www.it-ebooks.info

http://www.it-ebooks.info/

[400]

Windows
Elasticsearch, running as system service 24

WordNet
URL 227

WordNet synonyms
using 227

write-ahead logging
URL 337

Z
zero_terms_query parameter 113

www.it-ebooks.info

http://www.it-ebooks.info/

Thank you for buying
Elasticsearch Server

Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike. For
more information, please visit our website: www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt Open Source brand, home
to books published on software built around Open Source licences, and offering information
to anybody from advanced developers to budding web designers. The Open Source brand
also runs Packt's Open Source Royalty Scheme, by which Packt gives a royalty to each Open
Source project about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and
you would like to discuss it first before writing a formal book proposal, contact us; one of
our commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.it-ebooks.info

http://www.it-ebooks.info/

ElasticSearch Cookbook
ISBN: 978-1-78216-662-7 Paperback: 422 pages

Over 120 advanced recipes to search, analyze,
deploy, manage, and monitor data effectively
with ElasticSearch

1.	 Write native plugins to extend the capabilities
of ElasticSearch to boost your business.

2.	 Integrate the power of ElasticSearch in your
Java applications using the native API or
Python applications, with the ElasticSearch
community client.

3.	 Step-by-step instructions to help you easily
understand ElasticSearch's capabilities, that
act as a good reference for everyday activities.

Mastering ElasticSearch
ISBN: 978-1-78328-143-5 Paperback: 386 pages

Extend your knowledge on ElasticSearch, and
querying and data handling, along with its
internal workings

1.	 Learn about Apache Lucene and ElasticSearch
design and architecture to fully understand
how this great search engine works.

2.	 Design, configure, and distribute your index,
coupled with a deep understanding of the
workings behind it.

3.	 Learn about the advanced features in an easy
to read book with detailed examples that will
help you understand and use the sophisticated
features of ElasticSearch.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

Apache Solr Beginner's Guide
ISBN: 978-1-78216-252-0 Paperback: 324 pages

Configure your own search engine experience
with real-world data with this practical guide
to Apache Solr

1.	 Learn to use Solr in real-world contexts, even
if you are not a programmer, using simple
configuration examples.

2.	 Define simple configurations for searching data
in several ways in your specific context, from
suggestions to advanced faceted navigation.

3.	 Teaches you in an easy-to-follow style, full
of examples, illustrations, and tips to suit the
demands of beginners.

Instant Lucene.NET
ISBN: 978-1-78216-594-1 Paperback: 66 pages

Learn how to index and search through unstructured
data using Lucene.NET

1.	 Learn something new in an Instant! A short, fast,
focused guide delivering immediate results.

2.	 Learn how to execute searches for
document indexes.

3.	 Understand scoring and influencing
search results.

4.	 Easily maintain your index.

Please check www.PacktPub.com for information on our titles

www.it-ebooks.info

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	Acknowledgments
	About the Author
	Acknowledgments
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started With the Elasticsearch Cluster
	Full text searching
	The Lucene glossary and architecture
	Input data analysis
	Indexing and querying

	Scoring and query relevance

	The basics of Elasticsearch
	Key concepts of data architecture
	Index
	Document
	Document type
	Mapping

	Key concepts of Elasticsearch
	Node and cluster
	Shard
	Replica
	Gateway

	Indexing and searching

	Installing and configuring your cluster
	Installing Java
	Installing Elasticsearch
	Installing Elasticsearch from binary packages on Linux
	Installing Elasticsearch using the RPM package
	Installing Elasticsearch using the DEB package

	The directory layout
	Configuring Elasticsearch
	Running Elasticsearch
	Shutting down Elasticsearch
	Running Elasticsearch as a system service
	Elasticsearch as a system service on Linux
	Elasticsearch as a system service on Windows

	Manipulating data with the REST API
	Understanding the Elasticsearch RESTful API
	Storing data in Elasticsearch
	Creating a new document
	Automatic identifier creation

	Retrieving documents
	Updating documents
	Deleting documents
	Versioning
	An example of versioning
	Using the version provided by external system

	Searching with the URI request query
	Sample data
	The URI request
	The ElasticSearch query response
	Query analysis
	URI query string parameters

	The Lucene query syntax

	Summary

	Chapter 2: Indexing Your Data
	Elasticsearch indexing
	Shards and replicas
	Creating indices
	Altering automatic index creation
	Settings for a newly created index

	Mappings configuration
	Type determining mechanism
	Disabling field type guessing

	Index structure mapping
	Type definition
	Fields
	Core types
	Multifields
	The IP address type
	Token count type
	Using analyzers

	Different similarity models
	Setting per-field similarity
	Available similarity models

	Postings format
	Configuring the postings format

	Doc values
	Configuring the doc values
	Doc values formats

	Batch indexing to speed up your indexing process
	Preparing data for bulk indexing
	Indexing the data
	Even quicker bulk requests

	Extending your index structure with additional internal information
	Identifier fields
	The _type field
	The _all field
	The _source field
	Exclusion and inclusion

	The _index field
	The _size field
	The _timestamp field
	The _ttl field

	Introduction to segment merging
	Segment merging
	The need for segment merging
	The merge policy
	The merge scheduler
	The merge factor
	Throttling

	Introduction to routing
	Default indexing
	Default searching
	Routing
	The routing parameters
	Routing fields

	Summary

	Chapter 3: Searching Your Data
	Querying Elasticsearch
	The example data
	A simple query
	Paging and result size
	Returning the version value
	Limiting the score
	Choosing the fields that we want to return
	The partial fields

	Using the script fields
	Passing parameters to the script fields

	Understanding the querying process
	Query logic
	Search types
	Search execution preferences
	The Search shards API

	Basic queries
	The term query
	The terms query
	The match_all query
	The common terms query
	The match query
	The Boolean match query
	The match_phrase query
	The match_phrase_prefix query

	The multi_match query
	The query_string query
	Running the query_string query against multiple fields

	The simple_query_string query
	The identifiers query
	The prefix query
	The fuzzy_like_this query
	The fuzzy_like_this_field query
	The fuzzy query
	The wildcard query
	The more_like_this query
	The more_like_this_field query
	The range query
	The dismax query
	The regular expression query

	Compound queries
	The bool query
	The boosting query
	The constant_score query
	The indices query

	Filtering your results
	Using filters
	Filter types
	The range filter
	The exists filter
	The missing filter
	The script filter
	The type filter
	The limit filter
	The identifiers filter
	If this is not enough
	Combining filters
	Named filters

	Caching filters

	Highlighting
	Getting started with highlighting
	Field configuration
	Under the hood
	Configuring HTML tags
	Controlling the highlighted fragments
	Global and local settings
	Require matching
	The postings highlighter

	Validating your queries
	Using the validate API

	Sorting data
	Default sorting
	Selecting fields used for sorting
	Specifying the behavior for missing fields
	Dynamic criteria
	Collation and national characters

	Query rewrite
	An example of the rewrite process
	Query rewrite properties

	Summary

	Chapter 4: Extending Your Index Structure
	Indexing tree-like structures
	Data structure
	Analysis

	Indexing data that is not flat
	Data
	Objects
	Arrays
	Mappings
	Final mappings

	Sending the mappings to Elasticsearch
	To be or not to be dynamic

	Using nested objects
	Scoring and nested queries

	Using the parent-child relationship
	Index structure and data indexing
	Parent mappings
	Child mappings
	The parent document
	The child documents

	Querying
	Querying data in the child documents
	Querying data in the parent documents

	The parent-child relationship and filtering
	Performance considerations

	Modifying your index structure with the update API
	The mappings
	Adding a new field
	Modifying fields

	Summary

	Chapter 5: Make Your Search Better
	An introduction to Apache Lucene scoring
	When a document is matched
	Default scoring formula
	Relevancy matters

	Scripting capabilities of Elasticsearch
	Objects available during script execution
	MVEL
	Using other languages
	Using our own script library
	Using native code

	Searching content in different languages
	Handling languages differently
	Handling multiple languages
	Detecting the language of the documents
	Sample document
	The mappings
	Querying
	Queries with the identified language
	Queries with unknown languages
	Combining queries

	Influencing scores with query boosts
	The boost
	Adding boost to queries
	Modifying the score
	The constant_score query
	The boosting query
	The function_score query
	Deprecated queries

	When does index-time boosting make sense?
	Defining field boosting in input data
	Defining boosting in mapping

	Words with the same meaning
	The synonym filter
	Synonyms in the mappings
	Synonyms stored in the filesystem

	Defining synonym rules
	Using Apache Solr synonyms
	Using WordNet synonyms

	Query- or index-time synonym expansion

	Understanding the explain information
	Understanding field analysis
	Explaining the query

	Summary

	Chapter 6: Beyond Full-text Searching
	Aggregations
	General query structure
	Available aggregations
	Metric aggregations
	Bucketing

	Nesting aggregations
	Bucket ordering and nested aggregations
	Global and subsets
	Inclusions and exclusions

	Faceting
	Document structure
	Returned results
	Using queries for faceting calculations
	Using filters for faceting calculations
	Terms faceting
	Ranges based faceting
	Choosing different fields for an aggregated data calculation

	Numerical and date histogram faceting
	The date_histogram facet

	Computing numerical field statistical data
	Computing statistical data for terms
	Geographical faceting
	Filtering faceting results
	Memory considerations

	Using suggesters
	Available suggester types
	Including suggestions
	The suggester response

	The term suggester
	The term suggester configuration options
	Additional term suggester options

	The phrase suggester
	The completion suggester

	Percolator
	The index
	Percolator preparation
	Getting deeper
	Getting the number of matching queries
	Indexed documents percolation

	Handling files
	Adding additional information about the file

	Geo
	Mappings preparation for spatial search
	Example data
	Sample queries
	Distance-based sorting
	Bounding box filtering
	Limiting the distance

	Arbitrary geo shapes
	Point
	Envelope
	Polygon
	Multipolygon
	An example usage
	Storing shapes in the index

	The scroll API
	Problem definition
	Scrolling to the rescue

	The terms filter
	Terms lookup
	The terms lookup query structure
	Terms lookup cache settings

	Summary

	Chapter 7: Elasticsearch Cluster in Detail
	Node discovery
	Discovery types
	The master node
	Configuring the master and data nodes
	The master-election configuration

	Setting the cluster name
	Configuring multicast
	Configuring unicast

	Ping settings for nodes

	The gateway and recovery modules
	The gateway
	Recovery control
	Additional gateway recovery options

	Preparing Elasticsearch cluster for high query and indexing throughput
	The filter cache
	The field data cache and circuit breaker
	The circuit breaker

	The store
	Index buffers and the refresh rate
	The index refresh rate

	The thread pool configuration
	Combining it all together – some general advice
	Choosing the right store
	The index refresh rate
	Tuning the thread pools
	Tuning your merge process
	The field data cache and breaking the circuit
	RAM buffer for indexing
	Tuning transaction logging
	Things to keep in mind

	Templates and dynamic templates
	Templates
	An example of a template
	Storing templates in files

	Dynamic templates
	The matching pattern
	Field definitions

	Summary

	Chapter 8: Administrating Your Cluster
	The Elasticsearch time machine
	Creating a snapshot repository
	Creating snapshots
	Additional parameters

	Restoring a snapshot
	Cleaning up – deleting old snapshots

	Monitoring your cluster's state and health
	The cluster health API
	Controlling information details
	Additional parameters

	The indices stats API
	Docs
	Store
	Indexing, get, and search
	Additional information

	The status API
	The nodes info API
	The nodes stats API
	Cluster state API
	The pending tasks API
	The indices segments API
	The cat API
	Limiting returned information

	Controlling cluster rebalancing
	Rebalancing
	Cluster being ready
	The cluster rebalance settings
	Controlling when rebalancing will start
	Controlling the number of shards being moved between nodes concurrently
	Controlling the number of shards initialized concurrently on a single node
	Controlling the number of primary shards initialized concurrently on a single node
	Controlling types of shards allocation
	Controlling the number of concurrent streams on a single node

	Controlling shard and replica allocation
	Explicitly controlling allocation
	Specifying node parameters
	Configuration
	Index creation
	Excluding nodes from allocation
	Requiring node attributes
	Using IP addresses for shard allocation
	Disk-based shard allocation

	Cluster wide allocation
	Number of shards and replicas per node
	Moving shards and replicas manually
	Moving shards
	Canceling shard allocation
	Forcing shard allocation
	Multiple commands per HTTP request

	Warming up
	Defining a new warming query
	Retrieving the defined warming queries
	Deleting a warming query
	Disabling the warming up functionality
	Choosing queries

	Index aliasing and simplifying your everyday work using it
	An alias
	Creating an alias
	Modifying aliases
	Combining commands
	Retrieving all aliases
	Removing aliases
	Filtering aliases
	Aliases and routing

	Elasticsearch plugins
	The basics
	Installing plugins
	Removing plugins

	The update settings API
	Summary

	Index

