Dates and Times

1 of 10

Prev

http://pleac.sourceforge.net/pleac_python/datesandtimes.html

PLEAC-Python

Next

3. Dates and Times

Introduction

#introduction

FoH I I K H

time
datetime

"Today is day",
Today is day 218 of

today = datetime.date.
"Today is day",
Today is day 218 of

"Today is day",
Today is day 218 of

There are three common ways of manipulating dates in Python
mxDateTime - a popular third-party module (not discussed here)
time - a fairly low-level standard library module

datetime - a new library module for Python 2.3 and used for most of these samples
(I will use full names to show which module they are in, but you can also use
from datetime import datetime, timedelta and so on for convenience)

time.localtime()[7], "of the current year"
the current year

today ()

today.timetuple()[7], "of ", today.year
2003

today.strftime("%j"), "of the current year"
the current year

Finding Today's Date

3/5/09 10:44 PM

Dates and Times http://pleac.sourceforge.net/pleac_python/datesandtimes.html

Finding todays date

today = datetime.date.today()
"The date is", today
#=> The date is 2003-08-06

the function strftime() (string-format time) produces nice formatting

All codes are detailed at http://www.python.org/doc/current/lib/module-time.html
t.strftime("four-digit year: %Y, two-digit year: %y, month: %m, day: %d")

#=> four-digit year: 2003, two-digit year: 03, month: 08, day: 06

Converting DMYHMS to Epoch Seconds

Converting DMYHMS to Epoch Seconds
To work with Epoch Seconds, you need to use the time module

For the local timezone
t = datetime.datetime.now()

"Epoch Seconds:", time.mktime(t.timetuple())
#=> Epoch Seconds: 1060199000.0

For UTC
t = datetime.datetime.utcnow()

"Epoch Seconds:", time.mktime(t.timetuple())
#=> Epoch Seconds: 1060195503.0

Converting Epoch Seconds to DMYHMS

2 of 10 3/5/09 10:44 PM

Dates and Times http://pleac.sourceforge.net/pleac_python/datesandtimes.html

Converting Epoch Seconds to DMYHMS

now = datetime.datetime.fromtimestamp(EpochSeconds)
#or use datetime.datetime.utcfromtimestamp()
now
#=> datetime.datetime (2003, 8, 6, 20, 43, 20)
now.ctime()
#=> Wed Aug 6 20:43:20 2003

or with the time module

oldtimetuple = time.localtime(EpochSeconds)

oldtimetuple contains (year, month, day, hour, minute, second, weekday, yearday, daylightSav
oldtimetuple

#=> (2003, 8, 6, 20, 43, 20, 2, 218, 1)

Adding to or Subtracting from a Date

Adding to or Subtracting from a Date
Use the rather nice datetime.timedelta objects

now = datetime.date(2003, 8, 6)
differencel = datetime.timedelta(days=1)
difference?2 datetime.timedelta(weeks=-2)

"One day in the future is:", now + differencel
#=> One day in the future is: 2003-08-07

"Two weeks in the past is:", now + difference2
#=> Two weeks in the past is: 2003-07-23

datetime.date (2003, 8, 6) - datetime.date(2000, 8, 6)

30of 10 3/5/09 10:44 PM

Dates and Times http://pleac.sourceforge.net/pleac_python/datesandtimes.html

#=> 1095 days, 0:00:00

birthtime datetime.datetime(1973, 01, 18, 3, 45, 50) # 1973-01-18 03:45:50

interval = datetime.timedelta(seconds=5, minutes=17, hours=2, days=55)
then = birthtime + interval

"Then is", then.ctime()
#=> Then is Wed Mar 14 06:02:55 1973

"Then is", then.strftime("%A %B %d %$I:%M:%S %p *Y")
#=> Then is Wednesday March 14 06:02:55 AM 1973

when = datetime.datetime(1973, 1, 18) + datetime.timedelta(days=55)
"Nat was 55 days old on:", when.strftime("%m/%d/%Y").lstrip("0")
#=> Nat was 55 days old on: 3/14/1973

Difference of Two Dates

Dates produce timedeltas when subtracted.

diff = date2 - datel
diff = datetime.date(yearl, monthl, dayl) - datetime.date(year2, month2, day2)

bree = datetime.datetime(1981, 6, 16, 4, 35, 25)
nat = datetime.datetime(1973, 1, 18, 3, 45, 50)
difference = bree - nat

"There were", difference, "minutes between Nat and Bree"
#=> There were 3071 days, 0:49:35 between Nat and Bree

4 of 10 3/5/09 10:44 PM

Dates and Times http://pleac.sourceforge.net/pleac_python/datesandtimes.html

50f 10

weeks, days = (difference.days, 7)

minutes, seconds (difference.seconds, 60)
hours, minutes = (minutes, 60)

"%d weeks, %d days, %d:%d:%d" % (weeks, days, hours, minutes, seconds)

#=> 438 weeks, 5 days, 0:49:35

"There were", difference.days, "days between Bree and Nat."
#=> There were 3071 days between bree and nat

Day in a Week/Month/Year or Week Number

Day in a Week/Month/Year or Week Number
when = datetime.date(1981, 6, 16)

"16/6/1981 was:"
when.strftime("Day %w of the week (a

$A). Day %d of the month (%B).")
when.strftime("Day %j of the year (%Y)

, in week %W of the year.")

#=> 16/6/1981 was:
#=> Day 2 of the week (a Tuesday). Day 16 of the month (June).
#=> Day 167 of the year (1981), in week 24 of the year.

Parsing Dates and Times from Strings

3/5/09 10:44 PM

Dates and Times http://pleac.sourceforge.net/pleac_python/datesandtimes.html

Parsing Dates and Times from Strings

time.strptime("Tue Jun 16 20:18:03 1981")
(1981, 6, 16, 20, 18, 3, 1, 167, -1)

time.strptime("16/6/1981", "%d/sm/%Y")

(1981, 6, 16, 0O, O, O, 1, 167, -1)

strptime() can use any of the formatting codes from time.strftime()
The easiest way to convert this to a datetime seems to be;

now = datetime.datetime(*time.strptime("16/6/1981", "%d/%m/%Y")[0:5])
the '*' operator unpacks the tuple, producing the argument list.

Printing a Date

Printing a Date
Use datetime.strftime() - see helpfiles in distro or at python.org

datetime.datetime.now().strftime("The date is %A (%a) %d/sm/%Y")
#=> The date is Friday (Fri) 08/08/2003

High-Resolution Timers

High Resolution Timers

tl = time.clock()

Do Stuff Here

t2 = time.clock()
t2 - tl

6 of 10 3/5/09 10:44 PM

Dates and Times http://pleac.sourceforge.net/pleac_python/datesandtimes.html

2.27236813618
Accuracy will depend on platform and OS,
but time.clock() uses the most accurate timer it can

time.clock(); time.clock()
174485.51365466841
174485.55702610247

Also useful;
timeit
code = '[x for x in range(l0) if x % 2 == 0]
(code)
[0, 2, 4, 6, 8]

t = timeit.Timer (code)
"10,000 repeats of that code takes:", t.timeit(10000), "seconds"
"1,000,000 repeats of that code takes:", t.timeit(), "seconds"

10,000 repeats of that code takes: 0.128238644856 seconds
1,000,000 repeats of that code takes: 12.5396490336 seconds

timeit
code = 'import random; 1 = random.sample(xrange(10000000), 1000); l.sort()'
t = timeit.Timer (code)

"Create a list of a thousand random numbers. Sort the list. Repeated a thousand times."
"Average Time:", t.timeit(1000) / 1000
Time taken: 5.24391507859

Short Sleeps

7 of 10 3/5/09 10:44 PM

Dates and Times http://pleac.sourceforge.net/pleac_python/datesandtimes.html

Short Sleeps

seconds = 3.1
time.sleep(seconds)
Ilbooll

Program: hopdelta

Program HopDelta

Save a raw email to disk and run "python hopdelta.py FILE"

and it will process the headers and show the time taken

for each server hop (nb: if server times are wrong, negative dates
might appear in the output).

datetime, email, email.Utils
os, sys, time

extract date(hop):

According to RFC822, the date will be prefixed with
a semi-colon, and is the last part of a received

header.

date string = hop[hop.find(';"')+2:]

date string = date string.strip()

time tuple = email.Utils.parsedate(date string)

convert time tuple to datetime

EpochSeconds = time.mktime(time tuple)

dt = datetime.datetime.fromtimestamp (EpochSeconds)
dt

process(filename):

8 of 10 3/5/09 10:44 PM

Dates and Times http://pleac.sourceforge.net/pleac_python/datesandtimes.html

Main email file processing

read the headers and process them
f = (filename, 'rb')

msg = email.message from file(f)

hops = msg.get all('received')

in reverse order, get the server(s) and date/time involved
hops.reverse()
results = []

hop hops:

hop = hop.lower()

hop.startswith('by'): # 'Received: by' line
sender = "start"
receiver = hop[3:hop.find(' ',3)]

date = extract date(hop)

'Received: from' line

sender = hop[5:hop.find(' ',5)]
by = hop.find('by ')+3
receiver = hop[by:hop.find(' ', by)]

date = extract date(hop)

results.append((sender, receiver, date))
output (results)

output (results):
"Sender, Recipient, Time, Delta"

previous _dt = delta = 0
(sender, receiver, date) results:
previous dt:
delta = date - previous dt

%s, %s, %s, %s" % (sender,

9 of 10 3/5/09 10:44 PM

Dates and Times http://pleac.sourceforge.net/pleac_python/datesandtimes.html

receiver,
date.strftime("%Y/%d/%m %H:%M:%S"),
delta)

previous_dt = date
main():
Perform some basic argument checking

(sys.argv) != 2:
"Usage: mailhop.py FILENAME"

filename = sys.argv[l]
os.path.isfile(filename):
process(filename)

filename, "doesn't seem to be a valid file."

== ' main '

Prev Home Next
Numbers Arrays

10 of 10 3/5/09 10:44 PM

