
Lec3

• Graphing, multiple displays

• Many particles - Newtonian gravity

• Higher order integrators

1

Graphing

• So far we have used Python to animate a

simulation of simple motion.

• For more quantitative work need to be able

to plot aspects of the motion.

• Eg. for the 1D harmonic oscillator problem

graph solution x(t)

Luckily, VPython provides the gcurve and

gdisplay objects to facilitate this

• We can also create more than 1 display

screen

2

Drawing graphs - I

stuff to initialize graphics

from visual import *

from visual.graph import *

scene=display(x=0,y=0,width=400,height=400,

title="simulation")

scene.autoscale=0

scene.range=10.0

pic=gdisplay(x=400,y=0,width=400,height=400,

title="x vs t",

xtitle="t",ytitle="x",

xmax=20.0,xmin=0,

ymax=8.0,ymin=-8.0)

xplot=gcurve(color=color.blue)

3

Drawing graphs - II

simulation/plotting code

use def force(pos,vel,t) from before here

ball=sphere(radius=0.5,pos=vector(4.0,0.0,0),

track=curve(radius=0.1,display=scene),

mass=1.0,display=scene)

ball.vel=vector(0,0,0)

dt=0.01

t=0

while (t<20.0) :

rate(100)

t=t+dt

ball.pos=ball.pos+ball.vel*dt

ball.vel=ball.vel+

(force(ball.pos,ball.vel,t)/ball.mass)*dt

ball.track.append(pos=ball.pos)

xplot.plot(pos=(t,ball.pos.x))

4

Time step errors

• The Euler method we have used so far has

its limitations – solution accurate to O(dt)

only

• See this by computing energy

E = 1/2mv2 + 1/2kx2

• Plot as function of time ...

5

Energy (non)conservation

Just add a line to compute the energy and plot

it now instead of x(t)

energy=0.5*ball.mass*ball.vel.x*ball.vel.x+

0.5*ball.pos.x*ball.pos.x

xplot.plot(pos=(t,energy))

• Should see that E is not constant.

•
∆E
E ∼ dt (Euler)

• Here, error remains finite as t → ∞ - not

always so. Often large enough dt > dtc
discrete equations unstable – x(t) blows up

..

• Solution ? Better algorithm than Euler

6

More accurate integrators

Using Taylor

x(t + dt) = x(t) + v(t)dt + a(t)dt2/2 + O(dt3)

leading to

xn+1 = xn + vndt + andt2/2

Also taking velocity from symmetric difference

vn+1 =
xn+2 − xn

2dt

Substiting for xn+1 using previous equation:

vn+1 = vn +
dt

2
(an + an+1)

Verlet or leap-frog algorithm

Accurate to O(dt2)

7

Code needed

a1=force(ball.pos,ball.vel,t)/ball.mass

ball.pos=ball.pos+ball.vel*dt+a1*0.5*dt*dt

a2=force(ball.pos,ball.vel,t)/ball.mass

ball.vel=ball.vel+(a1+a2)*dt*0.5

See much smaller errors in energy. Consistent

with ∆E
E ∼ dt2

8

Many particles

• Consider two masses a and b interacting

via some mutual force

• Denote force on a due to b as Fab.

• Likewise force on b due to a as Fba

• By Newton’s third law Fab = −Fba vector

statement

• Given a specific force law can we solve

Newton’s 2nd law for both particles numer-

ically – simulate the system ?

9

Python lists and for

Useful to introduce a list to store the objects

which are interacting

system=[balla,ballb]

In general lists can comprise arbitrary abstract

objects enclosed in square brackets eg.

a=[1,2,3]

b=[4,5,6]

The statement c=a+b concatenates the lists.

To process lists we often use the for command

for i in list:

....

10

Modules

• Useful to package related functions and

data into modules.

• Typically a module (eg the visual module

used for graphics) contains extensions to

Python to help code some new functional-

ity.

• Simply make a text file with the new com-

mands and save it with the .py extension

eg. usefulstuff.py

• Then to use it in some other piece of code

use the command

{\tt from usefulstuff import *}

11

Integrator Module I

from visual import *

G=1.0

Force on a due to b

def force(a,b):

diff=b.pos-a.pos

return G*b.mass*a.mass*norm(diff)/diff.mag2

Finds acceleration of a due to all objects b

def totalacc(a,objlist):

sum_acc=vector(0,0,0)

for b in objlist:

if (a!=b):

sum_acc=sum_acc+force(a,b)/a.mass

return sum_acc

12

Integrator Module II

Finds total acceleration on all objects

def update_acceleration(objlist):

for i in objlist:

i.acc=totalacc(i,objlist)

updates positions and track of each object

def update_position(objlist, dt):

for i in objlist:

i.pos=i.pos+dt*i.velocity

i.track.append(pos=i.pos)

update velocity of each object

def update_velocity(objlist, dt):

for i in objlist:

i.velocity=i.velocity+dt*i.acc

13

Gravity code

from visual import *

from integrator import *

scene.autoscale=0

scene.range=1

balla=sphere(..)

ballb=sphere(..)

create list of gravitating objects

system=[balla,ballb]

dt=0.01

while True:

rate(100)

update_position(system,dt)

update_acceleration(system)

update_velocity(system,dt)

14

