Lec3

e Graphing, multiple displays

e Many particles - Newtonian gravity

e Higher order integrators

Graphing

So far we have used Python to animate a
simulation of simple motion.

For more quantitative work need to be able
to plot aspects of the motion.

Eg. for the 1D harmonic oscillator problem
graph solution x(t)

Luckily, VPython provides the gcurve and
gdisplay oObjects to facilitate this

We can also create more than 1 display
screen

Drawing graphs - 1

stuff to initialize graphics
from visual import *

from visual.graph import *

scene=display(x=0,y=0,width=400,height=400,
title="simulation")
scene.autoscale=0

scene.range=10.0

pic=gdisplay(x=400,y=0,width=400,height=400,
title="x vs t",
xtitle="t",ytitle="x",
xmax=20.0,xmin=0,
ymax=8.0,ymin=-8.0)

xplot=gcurve(color=color.blue)

Drawing graphs - II

simulation/plotting code

use def force(pos,vel,t) from before here

ball=sphere(radius=0.5,pos=vector(4.0,0.0,0),
track=curve (radius=0.1,display=scene),
mass=1.0,display=scene)
ball.vel=vector(0,0,0)

dt=0.01
t=0

while (t<20.0)
rate(100)
t=t+dt
ball.pos=ball.pos+ball.velx*xdt
ball.vel=ball.vel+
(force(ball.pos,ball.vel,t)/ball.mass)*dt
ball.track.append(pos=ball.pos)
xplot.plot(pos=(t,ball.pos.x))

Time step errors

e [he Euler method we have used so far has

its limitations — solution accurate to O(dt)
only

e See this by computing energy
E = 1/2mv? 4 1/2kz?

e Plot as function of time ...

Energy (non)conservation

Just add a line to compute the energy and plot
it now instead of x(t)

energy=0.5*ball.mass*ball.vel.x*ball.vel.x+
0.b5*ball.pos.x*xball.pos.x
xplot.plot(pos=(t,energy))

e Should see that E is not constant.
o SF ~ dt (Euler)

e Here, error remains finite as t — oo - not
always so. Often large enough dt > dt.
discrete equations unstable — x(t) blows up

e Solution 7 Better algorithm than Euler

6

More accurate integrators

Using Taylor
z(t + dt) = z(t) + v(t)dt + a(t)dt?/2 + O(dtd)
leading to
Tp41 = Tn + vpdt + andt2/2
Also taking velocity from symmetric difference

Untl T T o0

Substiting for T,41 USING previous equation:

dt
Un+1 — Un + E(Cln + an—l—l)

Verlet or leap-frog algorithm
Accurate to O(dt?)

Code needed

al=force(ball.pos,ball.vel,t)/ball.mass
ball.pos=ball.pos+ball.vel*dt+al*0.5*xdt*dt
a2=force(ball.pos,ball.vel,t)/ball.mass
ball.vel=ball.vel+(al+a2)*dt*0.5

See much smaller errors in energy. Consistent
with S ~ dt?

Many particles

Consider two masses a and b interacting
via some mutual force

Denote force on a due to b as Fj.
Likewise force on b due to a as Fy,

By Newton’'s third law F,, = —F,, vector
statement

Given a specific force law can we solve
Newton's 2nd law for both particles numer-
ically — simulate the system 7

Python lists and for

Useful to introduce a 1ist to store the objects
which are interacting

system=[balla,ballb]

In general lists can comprise arbitrary abstract
objects enclosed in square brackets eg.

a=[1,2,3]
b=[4,5,6]

The statement c=a+b concatenates the lists.
To process lists we often use the for command

for 1 in list:

10

Modules

Useful to package related functions and
data into modules.

Typically a module (eg the visual module
used for graphics) contains extensions to
Python to help code some new functional-

ity.

Simply make a text file with the new com-
mands and save it with the .py extension
€d. usefulstuff.py

Then to use it in some other piece of code
use the command

{\tt from usefulstuff import *}

11

Integrator Module 1

from visual import *

G=1.0

Force on a due to b

def force(a,b):
diff=b.pos—-a.pos

return G*b.mass*a.mass*norm(diff)/diff.mag2
Finds acceleration of a due to all objects b

def totalacc(a,objlist):
sum_acc=vector(0,0,0)
for b in objlist:
if (a!=b):
sum_acc=sum_acc+force(a,b)/a.mass

return sum_acc

12

Integrator Module II

Finds total acceleration on all objects

def update_acceleration(objlist):
for i in objlist:

i.acc=totalacc(i,objlist)
updates positions and track of each object

def update_position(objlist, dt):
for i in objlist:
i.pos=i.pos+dt*i.velocity

i.track.append(pos=i.pos)
update velocity of each object

def update_velocity(objlist, dt):
for i in objlist:

i.velocity=i.velocity+dt*i.acc

13

Gravity code

from visual import *

from integrator import *

scene.autoscale=0
scene.range=1
balla=sphere(..)
ballb=sphere(..)

create list of gravitating objects
system=[balla,ballb]

dt=0.01

while True:
rate(100)
update_position(system,dt)
update_acceleration(system)

update_velocity(system,dt)

14

