IPython Tip Sheet

To make better use of ipython, do the following one-time operations:

1. Edit your ~/.bashrc file, and add the following lines in some appropriate place:

export LESS = "- R"
export EDITOR=emacs

This will tell the pager program less to interpret "raw" control sequences appropriately, and to use emacs as your default editor in certain situations.
IPython uses raw control sequences to make colored text in its displays.

2. Start up a new terminal window to get the updated environment variables, or, alternatively, type . ~/.bashrc to update the current shell.

3. Edit your ~/ipython/ipythonrc file, and search for the set of commands describing xmode. Comment out (using #) the lines for "xmode Plain" and
"xmode Context", and uncomment the line for "xmode Verbose", to get more useful information about python errors.

IPython "magic" commands are conventionally prefaced by %, but if the flag sautomagic is set to on, then one can call magic commands without the
preceding %. (2automagic appears to be on by default.)

The following ipython commands may be of use to you.

¢ ~/ipython/.ipythonrc: Any further tweaks to your configuration that you want to make permanent for all ipython sessions should involve editing the
appropriate information in your ipythonrc file.

¢ srun: You've already been using this, but it's included here for completeness. $run module or $run module.py Will execute the python code in the
file module.py, and bring everything in that module's namespace into the current interactive namespace, which is different than if you had typed
import module. NOTE: If both module and module.py exist, run module will execute run the former (which may not be a python source file)
rather than the latter.

o TAB-completion: At any point while typing an ipython input line, you can hit the TAB key and ipython will expand out all possible completions
based on what you've already typed. This is useful both to save you from having to type long function names (i.e., type out a few of the first
characters and then hit TAB), or to allow you to see what methods or attributes are attached to a particular object. For example, if (in the
SmallWorldNetworks module), you type:

g = MakeSmallWorldNetwork (100, 4, 0.1)
g.TAB # i.e., hit the TAB key after typing "g."

then you will be presented with the possible completions of the command g. :

g.AddEdge g.GetNeighbors g.HasNode g.__doc___ g.__module_

g.AddNode g.GetNodes g.__class___ g.__init_ g.neighbor_dict

e 2 and 22: Typing ? after a name will give you information about the object attached to that name, e.g., if I type g.AddEdge?, where g is the graph [
constructed above, then I see:

Type: instancemethod

Base Class: <type 'instancemethod'>

String Form: <bound method UndirectedGraph.AddEdge of <Networks.UndirectedGraph instance at 0x369ea30>>
Namespace: Interactive

File: /Users/myers/teaching/ComputationalMethods/ComputerExercises/PythonSoftware/Networks.py
Definition: g.AddEdge(self, nodel, node2)

Docstring:

Add nodel and node2 to network first

Adds new edge

(appends node2 to neighbor_dict[nodel] and vice-versa, since it's
an undirected graph)

Do so only if old edge does not already exist

(node2 not in neighbor dict[nodel])

Typing two question marks lists the not only the summary information produced above, but also shows the source code used to define the object of
interest.

¢ swho and gwhos: These magic functions list objects, functions, etc. that have been added in the current namespace, as well as modules that have
been imported. swho simply lists names of such objects, while swhos additionally lists type and data information (you might want to make your
terminal window wide enough to capture all the output, since it doesn't do a great job with formatting the text), e.g.:

Variable Type Data/Info

AddRandomEdges function <function AddRandomEdges at 0x34a8230>
FindAverageAveragePathLength function <function FindAverageAver<...>ePathLength at 0x34a8130>
FindAverageClusteringCoefficient function <function FindAverageClus<...>Coefficient at 0x34a8030>
GetClustering vs_p function <function GetClustering vs p at 0x34a8570>
GetPathLength_vs_p function <function GetPathLength vs_p at 0x34a80£0>
MakePathLengthHistograms function <function MakePathLengthHistograms at 0x34a8170>
MakeRingGraph function <function MakeRingGraph at 0x34a8270>
MakeSmallWorldNetwork function <function MakeSmallWorldNetwork at 0x34a81f0>

MultiPlot module <module 'MultiPlot' from <...>nSoftware/MultiPlot.pyc'>
NetGraphics module <module 'NetGraphics' fro<...>oftware/NetGraphics.pyc'>

Networks module <module 'Networks' from 'Networks.pyc'>

Percolation module <module 'Percolation' from 'Percolation.py'>

PlotClustering vs_p function <function PlotClustering vs_p at 0x34a8730>
PlotPathLength_vs_p function <function PlotPathLength _vs_p at 0x34a80b0>
PlotScaledPathLength_vs_pZL function <function PlotScaledPathL<...>ngth vs pZL at 0x34a8070>
PlotWattsStrogatzFig2 function <function PlotWattsStrogatzFig2 at 0x34a8770>
SmallWorldBetweenness function <function SmallWorldBetweenness at 0x34a87f0>
SmallWorldSimple function <function SmallWorldSimple at 0x34a81b0>
TestBetweennessSimple function <function TestBetweennessSimple at 0x34a87b0>

g Networks.UndirectedGraph <Networks.UndirectedGraph instance at 0x369ea30>

numpy module <module 'numpy' from '/sw<...>ages/numpy/__init__ .pyc'>
os module <module 'os' from '/sw/lib/python2.5/os.pyc'>

pylab module <module 'pylab' from '/sw<...>site-packages/pylab.pyc'>
random module <module 'random' from '/s<...>ib/python2.5/random.pyc'>

Output from swhos can be restricted to objects of a specified type; e.g., typing $whos function will print out only those objects in the namespace
that are functions.

e shist: This presents a list of the last several input command lines. (It presents ipython magic commands not as you typed them but as they were
processed through the _ip.magic system; shist -r will show the command lines exactly as you typed them.) Previous input commands are stored in
the list In; e.g., In[37] will show the string associated with input line 37, and exec 1n[37] will actually (re)execute that line. Similarly, the output
of each of the previous commands is stored in the out variable, indexed by the line number. Finally, while typing input to a command line, hit
<CONTROL>-P and ipython will present you with all previous command lines that began with the text you have typed (more efficient than paging
through all previous commands with the UP arrow); repeatedly typing <CONTROL>-P cycles through this list.

e smacro: Assign a name to a set of input commands, so that they can be executed all together using the assigned name, e.g., if I start a session with
the following 5 lines:

%run SmallWorldNetworks

g = MakeSmallWorldNetwork (100, 4, 0.1)
NetGraphics.DisplayCircleGraph(g)

distances = Networks.FindPathLengthsFromNode(g, 0)
print distances

then I can make a macro called runswn (short for RunSmallWorldNetworks) that executes everything from lines 1 through 5, inclusive:
$macro runswn 1-5

It is obviously of use to run ¢hist to find which specific line numbers need to be included in the macro. Line numbers need not be contiguous, e.g.,
smacro runswn 1-5 7 12-15 will assemble a macro from the specified disjoint set of command lines.

e sedit: This will open an editor (whatever the shell variable EDITOR is set to, see above, or vi/vim if no variable is set) containing the specified
material, based on what arguments are provided, and will execute that code once the editor is exited. Therefore this is better for making small
changes and testing things out, rather than keeping a large source file open in an editor as we usually do. Here are some examples of its use:

%edit SmallWorldNetworks.py # opens the file SmallWorldNetworks.py

$edit MakeSmallWorldNetwork # opens the source file containing the function MakeSmallWorldNetwork
%edit runswn # opens the runswn macro defined above in a temporary file

%edit 1-5 7 12-15 # opens a temporary file containing the input lines 1-5, 7, and 12-15

e slsmagic: This lists all ipython magic commands. Have a peek and see if there are other functions that may be of use, such as:
o s%store (stores variables, functions, etc. that you've defined in your .ipython/ipythonrc file for use in future sessions)

2pdb (configures ipython to automatically open the python debugger pdb when an error occurs)

stime and $timeit (timing functions to see how long expressions take to execute)

$logstart, $logon, $logoff, and $logstate (to log ipython input and/or output to files)

o
o
o
0 %cd, $pushd, $popd, and gbookmark (to change directories, manipulate directory stacks, and create directory "bookmarks")

¢ See also the IPython "Quick Tips" at the IPython web site at http://ipython.scipy .org/doc/manual/node4 .html .
An aside on debugging and profiling

The python pdb module implements a debugger, typically used by calling pdb. run on a quoted python expression, e.g.:

import pdb
pdb.run('Networks.FindPathLengthsFromNode(g, 0)")

This puts you into the debugger, from which you can do the usual sort of things (list source code, set breakpoints, step one line at a time, continue until a
breakpoint or exception is reached, etc.). Type 2 at the pdb prompt for a list of available commands. As noted above, setting $pdb on within ipython will
make it such that the pdb debugger will automatically be started at the point of an exception, once it is encountered.

Similarly, the python profile module is useful for identifying how much time is spent in various functions. The syntax is similar to that for debugging:

import profile
profile.run('Networks.FindPathLengthsFromNode(g, 0)"')

http://ipython.scipy.org/doc/manual/node4.html

