
9/7/2014 openresty/memc-nginx-module

https://github.com/openresty/memc-nginx-module 1/15

 Explore Gist Blog Help

HTTPS clone URL

You can clone with HTTPS, SSH,
or Subversion.

memc-nginx-module /

latest commit 4ff1453bae

An extended version of the standard memcached module that supports set, add, delete, and many more
memcached commands. http://wiki.nginx.org/NginxHttpMemcModule

tests: skipped a test for conditional GETs.

 agentzh authored on Jul 15

 doc doc: bumped version to 0.15 and updated other parts to reflect recent… 2 months ago

 src added copyright notices to source files. 2 months ago

 t tests: skipped a test for conditional GETs. 2 months ago

 util removed the luajit suppression rules because we no longer need it. al… 2 months ago

 .gitignore updated .gitignore a bit. a year ago

 README.markdown doc: bumped version to 0.15 and updated other parts to reflect recent… 2 months ago

 config further refactoring by moving some parts of ngx_http_memc_module.c in… 5 years ago

 valgrind.suppress removed the luajit suppression rules because we no longer need it. al… 2 months ago

Search sethc23    

9 120 27 Watch  Star  Forkopenresty / memc-nginx-module

 Code

 Issues 5

 Pull Requests 0

 Pulse

 Graphs

https://github.com/openresty/memc-nginx-module.git



 Clone in Desktop

 Download ZIP

 227 commits 2 branches 20 releases 3 contributors   

  master branch: 

…

 README.markdown

ngx_memc - An extended version of the standard memcached module that supports set, add,
delete, and many more memcached commands.

This module is not distributed with the Nginx source. See the installation instructions.

Version
Synopsis
Description

Keep-alive connections to memcached servers
How it works

Memcached commands supported
get $memc_key
set $memc_key $memc_flags $memc_exptime $memc_value
add $memc_key $memc_flags $memc_exptime $memc_value
replace $memc_key $memc_flags $memc_exptime $memc_value
append $memc_key $memc_flags $memc_exptime $memc_value
prepend $memc_key $memc_flags $memc_exptime $memc_value
delete $memc_key
delete $memc_key $memc_exptime
incr $memc_key $memc_value

Name

Table of Contents

This repository

https://github.com/
https://github.com/explore
https://gist.github.com/
https://github.com/blog
https://help.github.com/
https://github.com/openresty/memc-nginx-module
https://github.com/openresty/memc-nginx-module/commit/4ff1453baefe2488bef51a8d45c7666eef79316f
http://wiki.nginx.org/NginxHttpMemcModule
https://github.com/openresty/memc-nginx-module/tree/master/doc
https://github.com/openresty/memc-nginx-module/commit/1518da4f04290e162c3b198924be511940ad138e
https://github.com/openresty/memc-nginx-module/tree/master/src
https://github.com/openresty/memc-nginx-module/commit/c3d62b76bd145da8bb5cdb51b44edd421f3e1779
https://github.com/openresty/memc-nginx-module/tree/master/t
https://github.com/openresty/memc-nginx-module/commit/4ff1453baefe2488bef51a8d45c7666eef79316f
https://github.com/openresty/memc-nginx-module/tree/master/util
https://github.com/openresty/memc-nginx-module/commit/e2862e677feb3a978e59c9b7a6753c5e53c3cc93
https://github.com/openresty/memc-nginx-module/blob/master/.gitignore
https://github.com/openresty/memc-nginx-module/commit/d02d9bd05bb0e7714287dee0701be5c9661bc6fe
https://github.com/openresty/memc-nginx-module/blob/master/README.markdown
https://github.com/openresty/memc-nginx-module/commit/1518da4f04290e162c3b198924be511940ad138e
https://github.com/openresty/memc-nginx-module/blob/master/config
https://github.com/openresty/memc-nginx-module/commit/97035ab5c6f969eccd3302dc2b2ee411f1001ed1
https://github.com/openresty/memc-nginx-module/blob/master/valgrind.suppress
https://github.com/openresty/memc-nginx-module/commit/e2862e677feb3a978e59c9b7a6753c5e53c3cc93
https://github.com/openresty/memc-nginx-module/commit/4ff1453baefe2488bef51a8d45c7666eef79316f
https://github.com/agentzh
https://github.com/sethc23
https://github.com/notifications
https://github.com/settings/profile
https://github.com/openresty/memc-nginx-module/watchers
https://github.com/openresty/memc-nginx-module/stargazers
https://github.com/openresty/memc-nginx-module/network
https://github.com/openresty/memc-nginx-module/subscription
https://github.com/openresty/memc-nginx-module/fork
https://github.com/openresty
https://github.com/openresty/memc-nginx-module
https://github.com/openresty/memc-nginx-module
https://github.com/openresty/memc-nginx-module/issues
https://github.com/openresty/memc-nginx-module/pulls
https://github.com/openresty/memc-nginx-module/pulse/weekly
https://github.com/openresty/memc-nginx-module/graphs
https://help.github.com/articles/which-remote-url-should-i-use
http://mac.github.com/
https://github.com/openresty/memc-nginx-module/archive/master.zip
https://github.com/openresty/memc-nginx-module/commits/master
https://github.com/openresty/memc-nginx-module/branches
https://github.com/openresty/memc-nginx-module/releases
https://github.com/openresty/memc-nginx-module/graphs/contributors
https://github.com/openresty/memc-nginx-module/find/master
https://github.com/openresty/memc-nginx-module/compare

9/7/2014 openresty/memc-nginx-module

https://github.com/openresty/memc-nginx-module 2/15

decr $memc_key $memc_value
flush_all
flush_all $memc_exptime
stats
version

Directives
memc_pass
memc_cmds_allowed
memc_flags_to_last_modified
memc_connect_timeout
memc_send_timeout
memc_read_timeout
memc_buffer_size
memc_ignore_client_abort

Installation
For Developers

Compatibility
Community

English Mailing List
Chinese Mailing List

Report Bugs
Source Repository
Changes
Test Suite
TODO
Getting involved
Author
Copyright & License
See Also

This document describes ngx_memc v0.15 released on 8 July 2014.

GET /foo?key=dog
#
POST /foo?key=cat
Cat's value...
#
PUT /foo?key=bird
Bird's value...
#
DELETE /foo?key=Tiger
location /foo {
 set $memc_key $arg_key;

 # $memc_cmd defaults to get for GET,
 # add for POST, set for PUT, and
 # delete for the DELETE request method.

 memc_pass 127.0.0.1:11211;
}

Version

Synopsis

http://github.com/openresty/memc-nginx-module/tags

9/7/2014 openresty/memc-nginx-module

https://github.com/openresty/memc-nginx-module 3/15

GET /bar?cmd=get&key=cat
#
POST /bar?cmd=set&key=dog
My value for the "dog" key...
#
DELETE /bar?cmd=delete&key=dog
GET /bar?cmd=delete&key=dog
location /bar {
 set $memc_cmd $arg_cmd;
 set $memc_key $arg_key;
 set $memc_flags $arg_flags; # defaults to 0
 set $memc_exptime $arg_exptime; # defaults to 0

 memc_pass 127.0.0.1:11211;
}

GET /bar?cmd=get&key=cat
GET /bar?cmd=set&key=dog&val=animal&flags=1234&exptime=2
GET /bar?cmd=delete&key=dog
GET /bar?cmd=flush_all
location /bar {
 set $memc_cmd $arg_cmd;
 set $memc_key $arg_key;
 set $memc_value $arg_val;
 set $memc_flags $arg_flags; # defaults to 0
 set $memc_exptime $arg_exptime; # defaults to 0

 memc_cmds_allowed get set add delete flush_all;

 memc_pass 127.0.0.1:11211;
}

 http {
 ...
 upstream backend {
 server 127.0.0.1:11984;
 server 127.0.0.1:11985;
 }
 server {
 location /stats {
 set $memc_cmd stats;
 memc_pass backend;
 }
 ...
 }
 }
 ...

read the memcached flags into the Last-Modified header
to respond 304 to conditional GET
location /memc {
 set $memc_key $arg_key;

 memc_pass 127.0.0.1:11984;

 memc_flags_to_last_modified on;
}

location /memc {

9/7/2014 openresty/memc-nginx-module

https://github.com/openresty/memc-nginx-module 4/15

 set $memc_key foo;
 set $memc_cmd get;

 # access the unix domain socket listend by memcached
 memc_pass unix:/tmp/memcached.sock;
}

This module extends the standard memcached module to support almost the whole memcached
ascii protocol.

It allows you to define a custom REST interface to your memcached servers or access memcached in
a very efficient way from within the nginx server by means of subrequests or independent fake
requests.

This module is not supposed to be merged into the Nginx core because I've used Ragel to generate
the memcached response parsers (in C) for joy :)

If you are going to use this module to cache location responses out of the box, try srcache-nginx-
module with this module to achieve that.

When used in conjunction with lua-nginx-module, it is recommended to use the lua-resty-
memcached library instead of this module though, because the former is much more flexible and
memory-efficient.

Back to TOC

You need the (now standard) HttpUpstreamKeepaliveModule together with this module for keep-alive
TCP connections to your backend memcached servers.

Here's a sample configuration:

 http {
 upstream backend {
 server 127.0.0.1:11211;

 # a pool with at most 1024 connections
 # and do not distinguish the servers:
 keepalive 1024;
 }

 server {
 ...
 location /memc {
 set $memc_cmd get;
 set $memc_key $arg_key;
 memc_pass backend;
 }
 }
 }

Back to TOC

Description

Keep-alive connections to memcached servers

How it works

http://nginx.org/en/docs/http/ngx_http_memcached_module.html
http://code.sixapart.com/svn/memcached/trunk/server/doc/protocol.txt
http://en.wikipedia.org/wiki/REST
http://github.com/srlindsay/nginx-independent-subrequest
http://www.complang.org/ragel/
http://github.com/openresty/srcache-nginx-module
http://github.com/openresty/lua-nginx-module
http://github.com/openresty/lua-resty-memcached
http://wiki.nginx.org/HttpUpstreamKeepaliveModule

9/7/2014 openresty/memc-nginx-module

https://github.com/openresty/memc-nginx-module 5/15

It implements the memcached TCP protocol all by itself, based upon the upstream mechanism.
Everything involving I/O is non-blocking.

The module itself does not keep TCP connections to the upstream memcached servers across
requests, just like other upstream modules. For a working solution, see section Keep-alive
connections to memcached servers.

Back to TOC

The memcached storage commands set, add, replace, prepend, and append uses the $memc_key as
the key, $memc_exptime as the expiration time (or delay) (defaults to 0), $memc_flags as the flags
(defaults to 0), to build the corresponding memcached queries.

If $memc_value is not defined at all, then the request body will be used as the value of the
 $memc_value except for the incr and decr commands. Note that if $memc_value is defined as an
empty string (""), that empty string will still be used as the value as is.

The following memcached commands have been implemented and tested (with their parameters
marked by corresponding nginx variables defined by this module):

Back to TOC

Retrieves the value using a key.

 location /foo {
 set $memc_cmd 'get';
 set $memc_key 'my_key';

 memc_pass 127.0.0.1:11211;

 add_header X-Memc-Flags $memc_flags;
 }

Returns 200 OK with the value put into the response body if the key is found, or 404 Not Found
otherwise. The flags number will be set into the $memc_flags variable so it's often desired to put
that info into the response headers by means of the standard add_header directive.

It returns 502 for ERROR , CLIENT_ERROR , or SERVER_ERROR .

Back to TOC

To use the request body as the memcached value, just avoid setting the $memc_value variable:

 # POST /foo
 # my value...
 location /foo {
 set $memc_cmd 'set';
 set $memc_key 'my_key';

Memcached commands supported

get $memc_key

set $memc_key $memc_flags $memc_exptime
$memc_value

http://nginx.org/en/docs/http/ngx_http_headers_module.html#add_header

9/7/2014 openresty/memc-nginx-module

https://github.com/openresty/memc-nginx-module 6/15

 set $memc_flags 12345;
 set $memc_exptime 24;

 memc_pass 127.0.0.1:11211;
 }

Or let the $memc_value hold the value:

 location /foo {
 set $memc_cmd 'set';
 set $memc_key 'my_key';
 set $memc_flags 12345;
 set $memc_exptime 24;
 set $memc_value 'my_value';

 memc_pass 127.0.0.1:11211;
 }

Returns 201 Created if the upstream memcached server replies STORED , 200 for NOT_STORED ,
 404 for NOT_FOUND , 502 for ERROR , CLIENT_ERROR , or SERVER_ERROR .

The original memcached responses are returned as the response body except for 404 NOT FOUND .

Back to TOC

Similar to the set command.

Back to TOC

Similar to the set command.

Back to TOC

Similar to the set command.

Note that at least memcached version 1.2.2 does not support the "append" and "prepend"
commands. At least 1.2.4 and later versions seem to supports these two commands.

Back to TOC

Similar to the append command.

Back to TOC

add $memc_key $memc_flags $memc_exptime
$memc_value

replace $memc_key $memc_flags $memc_exptime
$memc_value

append $memc_key $memc_flags $memc_exptime
$memc_value

prepend $memc_key $memc_flags $memc_exptime
$memc_value

9/7/2014 openresty/memc-nginx-module

https://github.com/openresty/memc-nginx-module 7/15

Deletes the memcached entry using a key.

 location /foo
 set $memc_cmd delete;
 set $memc_key my_key;

 memc_pass 127.0.0.1:11211;
 }

Returns 200 OK if deleted successfully, 404 Not Found for NOT_FOUND , or 502 for ERROR ,
 CLIENT_ERROR , or SERVER_ERROR .

The original memcached responses are returned as the response body except for 404 NOT FOUND .

Back to TOC

Similar to the delete $memc_key command except it accepts an optional expiration time specified
by the $memc_exptime variable.

This command is no longer available in the latest memcached version 1.4.4.

Back to TOC

Increments the existing value of $memc_key by the amount specified by $memc_value :

 location /foo {
 set $memc_key my_key;
 set $memc_value 2;
 memc_pass 127.0.0.1:11211;
 }

In the preceding example, every time we access /foo will cause the value of my_key increments by
 2 .

Returns 200 OK with the new value associated with that key as the response body if successful, or
 404 Not Found if the key is not found.

It returns 502 for ERROR , CLIENT_ERROR , or SERVER_ERROR .

Back to TOC

Similar to incr $memc_key $memc_value.

Back to TOC

delete $memc_key

delete $memc_key $memc_exptime

incr $memc_key $memc_value

decr $memc_key $memc_value

flush_all

9/7/2014 openresty/memc-nginx-module

https://github.com/openresty/memc-nginx-module 8/15

Mark all the keys on the memcached server as expired:

 location /foo {
 set $memc_cmd flush_all;
 memc_pass 127.0.0.1:11211;
 }

Back to TOC

Just like flush_all but also accepts an expiration time specified by the $memc_exptime variable.

Back to TOC

Causes the memcached server to output general-purpose statistics and settings

 location /foo {
 set $memc_cmd stats;
 memc_pass 127.0.0.1:11211;
 }

Returns 200 OK if the request succeeds, or 502 for ERROR , CLIENT_ERROR , or SERVER_ERROR .

The raw stats command output from the upstream memcached server will be put into the response
body.

Back to TOC

Queries the memcached server's version number:

 location /foo {
 set $memc_cmd version;
 memc_pass 127.0.0.1:11211;
 }

Returns 200 OK if the request succeeds, or 502 for ERROR , CLIENT_ERROR , or SERVER_ERROR .

The raw version command output from the upstream memcached server will be put into the
response body.

Back to TOC

All the standard memcached module directives in nginx 0.8.28 are directly inherited, with the
 memcached_ prefixes replaced by memc_ . For example, the memcached_pass directive is spelled
 memc_pass .

Here we only document the most important two directives (the latter is a new directive introduced by

flush_all $memc_exptime

stats

version

Directives

http://nginx.org/en/docs/http/ngx_http_memcached_module.html

9/7/2014 openresty/memc-nginx-module

https://github.com/openresty/memc-nginx-module 9/15

this module).

Back to TOC

syntax: memc_pass <memcached server IP address>:<memcached server port>

syntax: memc_pass <memcached server hostname>:<memcached server port>

syntax: memc_pass <upstream_backend_name>

syntax: memc_pass unix:<path_to_unix_domain_socket>

default: none

context: http, server, location, if

phase: content

Specify the memcached server backend.

Back to TOC

syntax: memc_cmds_allowed <cmd>...

default: none

context: http, server, location, if

Lists memcached commands that are allowed to access. By default, all the memcached commands
supported by this module are accessible. An example is

 location /foo {
 set $memc_cmd $arg_cmd;
 set $memc_key $arg_key;
 set $memc_value $arg_val;

 memc_pass 127.0.0.1:11211;

 memc_cmds_allowed get;
 }

Back to TOC

syntax: memc_flags_to_last_modified on|off

default: off

context: http, server, location, if

Read the memcached flags as epoch seconds and set it as the value of the Last-Modified header.
For conditional GET, it will signal nginx to return 304 Not Modified response to save bandwidth.

memc_pass

memc_cmds_allowed

memc_flags_to_last_modified

9/7/2014 openresty/memc-nginx-module

https://github.com/openresty/memc-nginx-module 10/15

Back to TOC

syntax: memc_connect_timeout <time>

default: 60s

context: http, server, location

The timeout for connecting to the memcached server, in seconds by default.

It's wise to always explicitly specify the time unit to avoid confusion. Time units supported are "s"
(seconds), "ms"(milliseconds), "y"(years), "M"(months), "w"(weeks), "d"(days), "h"(hours), and "m"
(minutes).

This time must be less than 597 hours.

Back to TOC

syntax: memc_send_timeout <time>

default: 60s

context: http, server, location

The timeout for sending TCP requests to the memcached server, in seconds by default.

It's wise to always explicitly specify the time unit to avoid confusion. Time units supported are "s"
(seconds), "ms"(milliseconds), "y"(years), "M"(months), "w"(weeks), "d"(days), "h"(hours), and "m"
(minutes).

This time must be less than 597 hours.

Back to TOC

syntax: memc_read_timeout <time>

default: 60s

context: http, server, location

The timeout for reading TCP responses from the memcached server, in seconds by default.

It's wise to always explicitly specify the time unit to avoid confusion. Time units supported are "s"
(seconds), "ms"(milliseconds), "y"(years), "M"(months), "w"(weeks), "d"(days), "h"(hours), and "m"
(minutes).

This time must be less than 597 hours.

Back to TOC

memc_connect_timeout

memc_send_timeout

memc_read_timeout

memc_buffer_size

9/7/2014 openresty/memc-nginx-module

https://github.com/openresty/memc-nginx-module 11/15

syntax: memc_buffer_size <size>

default: 4k/8k

context: http, server, location

This buffer size is used for the memory buffer to hold

the complete response for memcached commands other than get ,
the complete response header (i.e., the first line of the response) for the get memcached
command.

This default size is the page size, may be 4k or 8k .

Back to TOC

syntax: memc_ignore_client_abort on|off

default: off

context: location

Determines whether the connection with a memcache server should be closed when a client closes a
connection without waiting for a response.

This directive was first added in the v0.14 release.

Back to TOC

You're recommended to install this module (as well as the Nginx core and many other goodies) via
the ngx_openresty bundle. See the installation steps for ngx_openresty .

Alternatively, you can compile this module into the standard Nginx source distribution by hand:

Grab the nginx source code from nginx.org, for example, the version 1.7.2 (see nginx compatibility),
and then build the source with this module:

wget 'http://nginx.org/download/nginx-1.7.2.tar.gz'
tar -xzvf nginx-1.7.2.tar.gz
cd nginx-1.7.2/

Here we assume you would install you nginx under /opt/nginx/.
./configure --prefix=/opt/nginx \
 --add-module=/path/to/memc-nginx-module

make -j2
make install

Download the latest version of the release tarball of this module from memc-nginx-module file list.

Back to TOC

memc_ignore_client_abort

Installation

For Developers

http://openresty.org/
http://openresty.org/#Installation
http://nginx.org/
http://github.com/openresty/memc-nginx-module/tags

9/7/2014 openresty/memc-nginx-module

https://github.com/openresty/memc-nginx-module 12/15

The memached response parsers were generated by Ragel. If you want to regenerate the parser's C
file, i.e., src/ngx_http_memc_response.c, use the following command from the root of the memc
module's source tree:

$ ragel -G2 src/ngx_http_memc_response.rl

Back to TOC

The following versions of Nginx should work with this module:

1.7.x (last tested: 1.7.2)
1.5.x (last tested: 1.5.12)
1.4.x (last tested: 1.4.4)
1.2.x (last tested: 1.2.9)
1.1.x (last tested: 1.1.5)
1.0.x (last tested: 1.0.10)
0.9.x (last tested: 0.9.4)
0.8.x (last tested: 0.8.54)
0.7.x >= 0.7.46 (last tested: 0.7.68)

It's worth mentioning that some 0.7.x versions older than 0.7.46 might also work, but I can't easily
test them because the test suite makes extensive use of the echo module's echo_location directive,
which requires at least nginx 0.7.46 :)

Earlier versions of Nginx like 0.6.x and 0.5.x will not work.

If you find that any particular version of Nginx above 0.7.46 does not work with this module, please
consider reporting a bug.

Back to TOC

Back to TOC

The openresty-en mailing list is for English speakers.

Back to TOC

The openresty mailing list is for Chinese speakers.

Back to TOC

Compatibility

Community

English Mailing List

Chinese Mailing List

Report Bugs

http://www.complang.org/ragel/
http://github.com/openresty/memc-nginx-module/blob/master/src/ngx_http_memc_response.c
http://github.com/openresty/echo-nginx-module
http://github.com/openresty/echo-nginx-module#echo_location
https://groups.google.com/group/openresty-en
https://groups.google.com/group/openresty

9/7/2014 openresty/memc-nginx-module

https://github.com/openresty/memc-nginx-module 13/15

Although a lot of effort has been put into testing and code tuning, there must be some serious bugs
lurking somewhere in this module. So whenever you are bitten by any quirks, please don't hesitate to

1. create a ticket on the issue tracking interface provided by GitHub,
2. or send a bug report or even patches to the nginx mailing list.

Back to TOC

Available on github at openresty/memc-nginx-module.

Back to TOC

The changes of every release of this module can be obtained from the ngx_openresty bundle's
change logs:

http://openresty.org/#Changes

Back to TOC

This module comes with a Perl-driven test suite. The test cases are declarative too. Thanks to the
Test::Base module in the Perl world.

To run it on your side:

$ PATH=/path/to/your/nginx-with-memc-module:$PATH prove -r t

You need to terminate any Nginx processes before running the test suite if you have changed the
Nginx server binary.

Either LWP::UserAgent or IO::Socket is used by the test scaffold.

Because a single nginx server (by default, localhost:1984) is used across all the test scripts (.t
files), it's meaningless to run the test suite in parallel by specifying -jN when invoking the prove
utility.

You should also keep a memcached server listening on the 11211 port at localhost before running
the test suite.

Some parts of the test suite requires modules rewrite and echo to be enabled as well when building
Nginx.

Back to TOC

add support for the memcached commands cas , gets and stats $memc_value .

Source Repository

Changes

Test Suite

TODO

http://github.com/openresty/memc-nginx-module/issues
http://mailman.nginx.org/mailman/listinfo/nginx
http://github.com/openresty/memc-nginx-module
http://openresty.org/#Changes
http://github.com/openresty/memc-nginx-module/tree/master/t/
http://github.com/openresty/memc-nginx-module/blob/master/t/storage.t
http://search.cpan.org/perldoc?Test::Base
http://search.cpan.org/perldoc?LWP::UserAgent
http://search.cpan.org/perldoc?IO::Socket
http://github.com/openresty/memc-nginx-module/blob/master/test/lib/Test/Nginx/LWP.pm
http://nginx.org/en/docs/http/ngx_http_rewrite_module.html
http://github.com/openresty/echo-nginx-module

9/7/2014 openresty/memc-nginx-module

https://github.com/openresty/memc-nginx-module 14/15

add support for the noreply option.

Back to TOC

You'll be very welcomed to submit patches to the author or just ask for a commit bit to the source
repository on GitHub.

Back to TOC

Yichun "agentzh" Zhang (章亦春) <agentzh@gmail.com>, CloudFlare Inc.

This wiki page is also maintained by the author himself, and everybody is encouraged to improve this
page as well.

Back to TOC

The code base is borrowed directly from the standard memcached module in the Nginx core. This
part of code is copyrighted by Igor Sysoev and Nginx Inc.

Copyright (c) 2009-2013, Yichun "agentzh" Zhang (章亦春) agentzh@gmail.com, CloudFlare Inc.

This module is licensed under the terms of the BSD license.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.
Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Back to TOC

Getting involved

Author

Copyright & License

See Also

mailto:agentzh@gmail.com
http://nginx.org/en/docs/http/ngx_http_memcached_module.html
mailto:agentzh@gmail.com

9/7/2014 openresty/memc-nginx-module

https://github.com/openresty/memc-nginx-module 15/15

The original announcement email on the nginx mailing list: ngx_memc: "an extended version of
ngx_memcached that supports set, add, delete, and many more commands"
My slides demonstrating various ngx_memc usage: http://agentzh.org/misc/slides/nginx-conf-
scripting/nginx-conf-scripting.html#34 (use the arrow or pageup/pagedown keys on the
keyboard to swith pages)
The latest memcached TCP protocol.
The ngx_srcache module
The lua-resty-memcached library based on the lua-nginx-module cosocket API.
The standard memcached module.
The echo module for Nginx module's automated testing.
The standard headers module and the 3rd-parth headers-more module.

Status API Training Shop Blog About© 2014 GitHub, Inc. Terms Privacy Security Contact 

http://forum.nginx.org/read.php?2,28359
http://agentzh.org/misc/slides/nginx-conf-scripting/nginx-conf-scripting.html#34
http://code.sixapart.com/svn/memcached/trunk/server/doc/protocol.txt
http://github.com/openresty/srcache-nginx-module
https://github.com/openresty/lua-resty-memcached
http://github.com/openresty/lua-nginx-module
http://nginx.org/en/docs/http/ngx_http_memcached_module.html
http://github.com/openresty/echo-nginx-module
http://nginx.org/en/docs/http/ngx_http_headers_module.html
http://github.com/openresty/headers-more-nginx-module
https://status.github.com/
http://developer.github.com/
http://training.github.com/
http://shop.github.com/
https://github.com/blog
https://github.com/about
https://github.com/site/terms
https://github.com/site/privacy
https://github.com/security
https://github.com/contact

