
9/7/2014 openresty/lua-resty-upload

https://github.com/openresty/lua-resty-upload 1/5

 Explore Gist Blog Help

HTTPS clone URL

You can clone with HTTPS, SSH,
or Subversion.

lua-resty-upload /

latest commit eaf2ec39c2

Streaming reader and parser for http file uploading based on ngx_lua cosocket

suppressed a false positive in libdl.

 agentzh authored on Apr 1

 lib/resty fixed the version number in the code. it should be 0.09. 8 months ago

 t use Test::Nginx::Socket::Lua instead of Test::Nginx::Socket in our te… 9 months ago

 .gitignore initial checkin. 3 years ago

 Makefile updated Makefile. 3 years ago

 README.markdown "compute" edit 10 months ago

 valgrind.suppress suppressed a false positive in libdl. 5 months ago

Search sethc23    

13 72 16 Watch  Star  Forkopenresty / lua-resty-upload

 Code

 Issues 1

 Pull Requests 1

 Wiki

 Pulse

 Graphs

https://github.com/openresty/lua-resty-upload.git



 Clone in Desktop

 Download ZIP

 59 commits 1 branch 9 releases 3 contributors   

  master branch: 

 README.markdown

lua-resty-upload - Streaming reader and parser for HTTP file uploading based on ngx_lua cosocket

Name
Status
Description
Synopsis
Author
Copyright and License
See Also

This library is considered production ready.

This Lua library is a streaming file uploading API for the ngx_lua nginx module:

http://wiki.nginx.org/HttpLuaModule

The multipart/form-data MIME type is supported.

Name

Table of Contents

Status

Description

This repository

https://github.com/
https://github.com/explore
https://gist.github.com/
https://github.com/blog
https://help.github.com/
https://github.com/openresty/lua-resty-upload
https://github.com/openresty/lua-resty-upload/commit/eaf2ec39c25bd1ef756ba6c648995de4e05a43fa
https://github.com/openresty/lua-resty-upload/tree/master/lib/resty
https://github.com/openresty/lua-resty-upload/commit/dd5a01b15e7b57dfc7896d4ef41fe65926e1f691
https://github.com/openresty/lua-resty-upload/tree/master/t
https://github.com/openresty/lua-resty-upload/commit/d0978d7f3f9497d167dff5bf650b4628e83f2d28
https://github.com/openresty/lua-resty-upload/blob/master/.gitignore
https://github.com/openresty/lua-resty-upload/commit/e8d19e2333f54a9dabd8093c1fdaa985c0535183
https://github.com/openresty/lua-resty-upload/blob/master/Makefile
https://github.com/openresty/lua-resty-upload/commit/e5b75acfcb2ef679523c11ad866f575c0ca8b39e
https://github.com/openresty/lua-resty-upload/blob/master/README.markdown
https://github.com/openresty/lua-resty-upload/commit/3e4e4a2665e1156fbe5b853b1f0d4d975f3605b5
https://github.com/openresty/lua-resty-upload/blob/master/valgrind.suppress
https://github.com/openresty/lua-resty-upload/commit/eaf2ec39c25bd1ef756ba6c648995de4e05a43fa
https://github.com/openresty/lua-resty-upload/commit/eaf2ec39c25bd1ef756ba6c648995de4e05a43fa
https://github.com/agentzh
https://github.com/sethc23
https://github.com/notifications
https://github.com/settings/profile
https://github.com/openresty/lua-resty-upload/watchers
https://github.com/openresty/lua-resty-upload/stargazers
https://github.com/openresty/lua-resty-upload/network
https://github.com/openresty/lua-resty-upload/subscription
https://github.com/openresty/lua-resty-upload/fork
https://github.com/openresty
https://github.com/openresty/lua-resty-upload
https://github.com/openresty/lua-resty-upload
https://github.com/openresty/lua-resty-upload/issues
https://github.com/openresty/lua-resty-upload/pulls
https://github.com/openresty/lua-resty-upload/wiki
https://github.com/openresty/lua-resty-upload/pulse/weekly
https://github.com/openresty/lua-resty-upload/graphs
https://help.github.com/articles/which-remote-url-should-i-use
http://mac.github.com/
https://github.com/openresty/lua-resty-upload/archive/master.zip
https://github.com/openresty/lua-resty-upload/commits/master
https://github.com/openresty/lua-resty-upload/branches
https://github.com/openresty/lua-resty-upload/releases
https://github.com/openresty/lua-resty-upload/graphs/contributors
https://github.com/openresty/lua-resty-upload/find/master
https://github.com/openresty/lua-resty-upload/compare
http://wiki.nginx.org/HttpLuaModule

9/7/2014 openresty/lua-resty-upload

https://github.com/openresty/lua-resty-upload 2/5

The API of this library just returns tokens one by one. The user just needs to call the read method
repeatedly until a nil token type is returned. For each token returned from the read method, just
check the first return value for the current token type. The token type can be header , body , and
 part end . Each multipart/form-data form field parsed consists of several header tokens
holding each field header, several body tokens holding each body data chunk, and a part end flag
indicating the field end.

This is how streaming reading works. Even for giga bytes of file data input, the memory used in the
lua land can be small and constant, as long as the user does not accumulate the input data chunks
herself.

This Lua library takes advantage of ngx_lua's cosocket API, which ensures 100% nonblocking
behavior.

Note that at least ngx_lua 0.7.9 or ngx_openresty 1.2.4.14 is required.

 lua_package_path "/path/to/lua-resty-redis/lib/?.lua;;";

 server {
 location /test {
 content_by_lua '
 local upload = require "resty.upload"
 local cjson = require "cjson"

 local chunk_size = 5 -- should be set to 4096 or 8192
 -- for real-world settings

 local form, err = upload:new(chunk_size)
 if not form then
 ngx.log(ngx.ERR, "failed to new upload: ", err)
 ngx.exit(500)
 end

 form:set_timeout(1000) -- 1 sec

 while true do
 local typ, res, err = form:read()
 if not typ then
 ngx.say("failed to read: ", err)
 return
 end

 ngx.say("read: ", cjson.encode({typ, res}))

 if typ == "eof" then
 break
 end
 end

 local typ, res, err = form:read()
 ngx.say("read: ", cjson.encode({typ, res}))
 ';
 }
 }

A typical output of the /test location defined above is:

read: ["header",["Content-Disposition","form-data; name=\"file1\"; filename=\"a.txt\"","Content-Disposition: form-data; name=\"file1\"; filename=\"a.txt\""]]

Synopsis

https://github.com/chaoslawful/lua-nginx-module/tags
http://openresty.org/#Download

9/7/2014 openresty/lua-resty-upload

https://github.com/openresty/lua-resty-upload 3/5

read: ["header",["Content-Type","text\/plain","Content-Type: text\/plain"]]
read: ["body","Hello"]
read: ["body",", wor"]
read: ["body","ld"]
read: ["part_end"]
read: ["header",["Content-Disposition","form-data; name=\"test\"","Content-Disposition: form-data; name=\"test\""]]
read: ["body","value"]
read: ["body","\r\n"]
read: ["part_end"]
read: ["eof"]
read: ["eof"]

You can use the lua-resty-string library to compute SHA-1 and MD5 digest of the file data
incrementally. Here is such an example:

 local resty_sha1 = require "resty.sha1"
 local upload = require "resty.upload"

 local chunk_size = 4096
 local form = upload:new(chunk_size)
 local sha1 = resty_sha1:new()
 local file
 while true do
 local typ, res, err = form:read()

 if not typ then
 ngx.say("failed to read: ", err)
 return
 end

 if typ == "header" then
 local file_name = my_get_file_name(res)
 if file_name then
 file = io.open(file_name, "w+")
 if not file then
 ngx.say("failed to open file ", file_name)
 return
 end
 end

 elseif typ == "body" then
 if file then
 file:write(res)
 sha1:update(res)
 end

 elseif typ == "part_end" then
 file:close()
 file = nil
 local sha1_sum = sha1:final()
 sha1:reset()
 my_save_sha1_sum(sha1_sum)

 elseif typ == "eof" then
 break

 else
 -- do nothing
 end
 end

If you want to compute MD5 sums for the uploaded files, just use the resty.md5 module shipped by
the lua-resty-string library. It has a similar API as resty.sha1.

https://github.com/agentzh/lua-resty-string
https://github.com/agentzh/lua-resty-string

9/7/2014 openresty/lua-resty-upload

https://github.com/openresty/lua-resty-upload 4/5

For big file uploading, it is important not to buffer all the data in memory. That is, you should never
accumulate data chunks either in a huge Lua string or in a huge Lua table. You must write the data
chunk into files as soon as possible and throw away the data chunk immediately (to let the Lua GC
free it up).

Instead of writing the data chunk into files (as shown in the example above), you can also write the
data chunks to upstream cosocket connections if you do not want to save the data on local file
systems.

Back to TOC

Yichun "agentzh" Zhang (章亦春) agentzh@gmail.com, CloudFlare Inc.

Back to TOC

This module is licensed under the BSD license.

Copyright (C) 2012-2013, by Yichun "agentzh" Zhang (章亦春) agentzh@gmail.com, CloudFlare Inc.

All rights reserved.

Redistribution and use in source and binary forms, with or without modification, are permitted
provided that the following conditions are met:

Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

Back to TOC

the ngx_lua module
the lua-resty-string library
the lua-resty-memcached library

Author

Copyright and License

See Also

mailto:agentzh@gmail.com
mailto:agentzh@gmail.com
http://wiki.nginx.org/HttpLuaModule
https://github.com/agentzh/lua-resty-string
https://github.com/agentzh/lua-resty-memcached

9/7/2014 openresty/lua-resty-upload

https://github.com/openresty/lua-resty-upload 5/5

the lua-resty-redis library
the lua-resty-mysql library

Back to TOC

Status API Training Shop Blog About© 2014 GitHub, Inc. Terms Privacy Security Contact 

https://github.com/agentzh/lua-resty-redis
https://github.com/agentzh/lua-resty-mysql
https://status.github.com/
http://developer.github.com/
http://training.github.com/
http://shop.github.com/
https://github.com/blog
https://github.com/about
https://github.com/site/terms
https://github.com/site/privacy
https://github.com/security
https://github.com/contact

