
 (/)

Richard Nyström
(/)

Simple API with Nginx and
PostgreSQL
26 Jul 2013

How to build a simple REST API using only Nginx and

PostgreSQL.

Sometimes it’s overkill to use a web framework if you only need to develop a very simple

REST API. It turns out that Nginx can be used to develop a full fledged REST API and

PostgreSQL can easily be used for persistence.

In this blog post I’m going to show you how to create a simple CRUD API for articles.

Setup

I recommend that you use the OpenResty (http://openresty.org) to install Nginx. It

contains the standard Nginx core and lots of 3rd-party Nginx modules including the

Postgres upstream module (https://github.com/FRiCKLE/ngx_postgres/) that allows

Nginx to communicate with a PostgreSQL database. OpenResty is not an Nginx fork, just

a software bundle so there’s nothing to worry about.

This is how I installed and compiled OpenResty on my Mac:

brew install pcre

tar xzvf ngx_openresty-1.4.1.1.tar.gz

cd ngx_openresty-1.4.1.1/

./configure \
--with-cc-opt="-I/usr/local/Cellar/pcre/8.33/include" \
--with-ld-opt="-L/usr/local/Cellar/pcre/8.33/lib" \
--with-http_postgres_module

Remember to change pcre version number to the one you have installed. It might differ.

For this blog post I used PostgreSQL 9.2. You can install PostgreSQL from Homebrew

(http://brew.sh) or use Postgres.app (http://postgresapp.com) .

Create the database

CREATE DATABASE articledb WITH OWNER username ENCODING 'UTF8';

CREATE TABLE articles (
 id serial PRIMARY KEY,
 title varchar(50) NOT NULL,
 body varchar(32000) NOT NULL,
 created_at timestamp DEFAULT current_timestamp
);

add a few rows:
INSERT INTO articles (title, body) VALUES ('Test title 1', 'Test body 1');
INSERT INTO articles (title, body) VALUES ('Test title 2', 'Test body 2');
INSERT INTO articles (title, body) VALUES ('Test title 3', 'Test body 3');

The complete nginx.conf

worker_processes 8;

events {}

http {
 upstream database {
 postgres_server 127.0.0.1 dbname=articledb user=username password=yourpass;
 }

 server {
 listen 8080;
 server_name localhost;

 location /articles {
 postgres_pass database;
 rds_json on;
 postgres_query HEAD GET "SELECT * FROM articles";

 postgres_escape $title $arg_title;
 postgres_escape $body $arg_body;
 postgres_query
 POST "INSERT INTO articles (title, body) VALUES($title, $body) RETURNING *";
 postgres_rewrite POST changes 201;
 }

 location ~ /articles/(?<id>\d+) {
 postgres_pass database;
 rds_json on;
 postgres_escape $escaped_id $id;
 postgres_query HEAD GET "SELECT * FROM articles WHERE id=$escaped_id";
 postgres_rewrite HEAD GET no_rows 410;

 postgres_escape $title $arg_title;
 postgres_escape $body $arg_body;
 postgres_query
 PUT "UPDATE articles SET title=$title, body=$body WHERE id=$escaped_id RETURNING *";
 postgres_rewrite PUT no_changes 410;

 postgres_query DELETE "DELETE FROM articles WHERE id=$escaped_id";
 postgres_rewrite DELETE no_changes 410;
 postgres_rewrite DELETE changes 204;
 }
 }
}

Test drive the API
Get all articles:

curl http://localhost:8080/articles

Create a new article:

curl -X POST http://localhost:8080/articles?title=Article1&body=body1

Update article:

curl -X PUT http://localhost:8080/articles/1?title=Article2&body=body2

Delete article:

curl -X DELETE http://localhost:8080/articles/1

PostgreSQL
 indexing
 in
 Rails
 9 comments Custom
 fields
 in
 Rails
 using
 PostgreSQL

AROUND
 THE
 WEB

ALSO
 ON
 RICHARD
 NYSTRÖM

WHAT'S
 THIS?

How to Buy Must-

Have Products for

Next to Nothing

Lifefactopia

Controversial "Skinny

Pill" Sweeps the

Nation

Healthy
 LifeStyle

CNN Money: How

Young Millionaires

Invest

CNN

4 Hormones All Skinny

People Have In

Balance

RealDose
 Nutrition

PostgreSQL
 indexing
 in
 Rails
 9 comments Custom
 fields
 in
 Rails
 using
 PostgreSQL

1 comment

Tagging
 in
 Rails
 4
 using
 PostgreSQL
 arrays

13 comments

Use
 UUIDs
 in
 Rails
 4
 with
 PostgreSQL
 4 comments

9
 Comments Richard
 Nyström
 Login

Sort
 by
 Best Share
 ⤤

Join the discussion…

• Reply •

Richard
 Nyström • a year agoMod

I just added commenting to my blog. There is already a lot of comments on Hacker News
about the blog post: https://news.ycombinator.com/i...

 4△ ▽

• Reply •

Francisco
 Zelaya • a year ago> Richard Nyström

How do you compare Nginx to Apache?
 △ ▽

• Reply •

Francisco
 Zelaya • a year ago> Richard Nyström

May I suggest that you add some snapshots to your end work, that will help visualize
better your nice work.

 △ ▽

• Reply •

Manuel
 Gonzalez • a year ago

Awesome post, thank you.
 1△ ▽

• Reply •

Mike
 Quentel • 8 months ago

Many thanks for sharing this...pre-reqs for OpenResty on my instance of Ubuntu Desktop: I
had to also install libpq, in addition to pcre. Also, had to include in the ngx_openresty-1.4.3.6
configure flag --with-luajit

 △ ▽

• Reply •

Larsie • 9 months ago

I just learnt that Postgres has some internal JSON support, but no HTTP access. Is that
correct? How would your example relate to the JSON support in postgres? Does it use it or
just store the JSON as a text field?

 △ ▽

eugeneware • a year ago

Hi, thanks for the great example. You use HTTP GET variables in your example. How could

Favorite
 ★

Share ›

Share ›

Share ›

Share ›

Share ›

Share ›

• Reply •

Hi, thanks for the great example. You use HTTP GET variables in your example. How could
you modify your example to pass HTTP POST variables through to postgres_query?

 △ ▽

Hakim
 Benoudjit • a year ago

Thanks for the tutorial!

Is the REST API built with Lua?

Share ›

Contact me
Github (https://github.com/ricn) • Twitter (https://twitter.com/richardnystrom) •

Linkedin (http://se.linkedin.com/in/richardnystrom) • E-mail (mailto:

ricny046@gmail.com)

